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OSCILLATORY AND ASYMPTOTIC PROPERTIES
OF THE SOLUTIONS OF A CLASS OF
OPERATOR-DIFFERENTIAL EQUATIONS

D.D. BAINOV, M.B. DIMITROVA AND A.D. MYSHKIS

ABSTRACT. In the present paper the oscillatory and
asymptotic properties of the solutions of the operator-differ-
ential equation

(a1 (O)rn—2@)- - [ (@0 (O2(@B)]] ... 1] +6(Az)(t) =0

are investigated, where A is a monotonic operator with certain
properties.

Particular realizations of the operator A are given, for which
the results obtained can be applied.

1. Introduction. In 1987 the book of Ladde, Lakshmikantham,
Zhang [2] was published. In it for the first time in sufficient detail
problems related to the oscillation and asymptotic theory of functional
differential equations are considered. Parallel to the development of the
oscillation theory of functional differential equations the development of
the oscillation and asymptotic theory of various classes of ordinary dif-
ferential equations began, such as differential equations with “maxima,”
impulsive differential equations, integro-differential equations, etc. We
shall note that the results obtained for these equations are of isolated
character and the traditional problems set in the oscillation theory are
almost untouched for them.

In the present paper the oscillatory and asymptotic properties of the
solutions of a class of homogeneous operator-differential equations are
investigated, and, thus, by means of a single approach, the properties
of the solutions of numerous little investigated classes of differential
equations are studied. We shall note that an analogous approach was
used in Mishev, Bainov [3].
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2. Preliminary notes. Consider the operator-differential equation
1) [ @®lrn—2@)] - @) [ro@)z@)]) .. ]T] + 6(Az)(t) = 0

where § = +1, n > 1; the number ¢ty € R is fixed. A is an operator
with certain properties: ; € C([to, ), (0,00)), 4 =0,...,n — 1. Here
C(M, N) is the set of all continuous functions f: M — N.

Introduce the following notation:
(Lo)(t) = 7o(t)x(t)
(Liz)(t) = mi(O)[(Licax) @), i=1,...,n, 7a(t):
1 ¢ d81
to (3

B (®) :/ 1)

1=2,...,n—1, n>2

Il
=

Ry(t)

T1

Denote by D,, the set of all functions z € C([T,,); R), T, > to,
such that the functions L;z, i = 0,1,... ,n, exist and are continuous
for [T, 00).

Definition 1. The function z : [T}, 00) — R is said to be a solution
of equation (1) if z € D,, and x satisfies equation (1) for

t > max{T,,TA;}, TA, > ty.

Definition 2. A given function u : [tp, 00) — R is said to eventually
enjoy the property P if there exists a point t,, > %o such that for
t > t, . the property P is valid.

Definition 3. The function x € C([T}, o0); R) is said to be eventu-
ally zero if z(t) = 0 eventually, and eventually nonzero otherwise.

Definition 4. The function x € C([Iy,00); R) is said to oscillate
if there exists a sequence of numbers t; < to < -+ < t, < ---,
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lim,, o0 tn, = oo such that z(¢;)z(t;+1) < 0. Otherwise the function
is said to be nonoscillating. The function z is said to weakly oscillate
if sup{t : z(¢t) = 0} = oo.

For any nonoscillating function y € C([T}, o0); R), T, > tg, we define
the function

o)) = [ " y(s)ds
(o) = [ ) g

Ti+1(8)

t=n—2,...,0;n>1.

We shall say that conditions (H) are satisfied if the following condi-
tions hold:

H1l. 7; € C([tp, ), (0,00)),i=0,...,n—1.
H2. .ﬁooodt/Ti(t):OO,izl,... ,n— 1.
H3. A:D, — C([Taz,©); R)

H4. If the functions z1,22 € D, and z;1(t) < z3(t) eventually, then
(Azq)(t) < (Azz)(t) eventually.

H5. If the function z € D,, and z(t) = 0 eventually, then (Az)(t) =0
eventually.

H6. If the function z € D, and z is eventually nonzero and
nonoscillating, then the function Az is eventually nonzero.

Lemma 1. Let the following conditions hold:

1. Conditions H1 and H2 hold.

2. The function z € D,

3. The function L,x is eventually nonzero and nonoscillating.
Then:

1. FEach function L;x, i =0,... ,n— 1, is eventually monotonic and
nonzero.

2. If n>1 and lim;, o (Liz)(t) # 0 for somei=1,... ,n—1, then
limy o0 (Ljz) () = sgn (im¢—yo0 (Liz)(2)) - 00 for any j =0,...,i— 1.
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3. Iflimy,oo(Liz)(t) = 0 for some i =0,...,n—1, then (L;z)(t) -
(Lj+1z)(t) < 0 eventually for j =1,...,n—1.

4. If (L;z)(t) - (Lis12)(t) < 0 eventually for some i =0,...,n—1,
then lim; o (L;iz)(t) = c € R.

5. If limy, oo (Liz)(t) € R for some i =0,...,n — 1, then

* L)), _
/t Ti+1(8) ds <

and

2) (Lia)(®) = Jim (Laa)(t) + (~1)" (L) (1)

6. Forn > 1 the following equality is valid

(Lox)(t) _ -
(3) tlggoT(t) —tllglo(Liw)(t), i=1,...,n—1

Remark 1. Lemma 1 is a corollary of the respective theorems proved
in [1, 5, 6, 7].

3. Main results.

Theorem 1. Let the following conditions hold:
1. Conditions (H) are met.

2. For any constant ¢ € R\{0} there exists an integer i € [0,n — 1]
such that eventually the following relation is valid

(2ol

Then for the existence of an eventually nonzero nonoscillating solution
x of equation (1) for which Loz is a bounded function it is necessary
ford =1 (6 = —1) that n be an odd (even) number. For these solutions
the following relations are valid

lim (L;z)(t) =0

t—o0
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and

sgn (Liz)(t) = (—1)'sgnz(t), i=0,...,n—1

Proof. Let x € D,, be an eventually nonzero, nonoscillating solution
of equation (1). Without loss of generality, we can assume that z(t) > 0
for t € [t;,00), where t; > t;. From condition H4 it follows that there
exists a point t3 > t; such that (Az)(t) > 0 for t > ts.

Then from equation (1) it follows that
(5) 0(Lpz)(t) = —(Az)(t) <0 for ¢ > tq,

i.e., we can apply Lemma 1.

We shall prove that lim; o (Loz)(t) = 0. If we suppose that
this is not true, then from assertion 1 of Lemma 1 it follows that
70(t)z(t) > ¢ > 0 eventually for some constant c.

From condition H4 and (1) it follows that eventually the following
inequality holds

7o

(6) |(Lo) (1) = (Az) () > (Ai><t>.

Choose i, ¢ = 0,...,n — 1, which corresponds to the constant c (see
condition 2 of Theorem 1). From assertion 2 of Lemma 1 it follows that
lim; o (L;z)(t) is a finite number. Then from equality (2) it follows
that

(7) ((YiLnz) ()] < 0.
From inequalities (6) and (7) we obtain that
(el m

7o

which contradicts condition (4). Hence

® Jim (Loa) ) = 0.
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From (8) and assertions 2 and 3 of Lemma 1 it follows that
9) (Lig)(t) - (Lynz) () <O, j=0,....n—1
Jim (Ly)(¢) = 0.

From inequalities (9) and (5) it follows that for § = 1 (§ = —1) the
number n is odd (even). o

Theorem 2. Let the following conditions hold:
1. Conditions (H) are met.

2. Condition 2 of Theorem 1 holds.

3. 0=1.

4. For n > 1 for any integer i € [0,n — 2] which is odd or even
Just as n is, and for any constant ¢ € R\{0} the following relation is
eventually valid

(10) (w142 )0 =,

7o

Then the assertion of Theorem 1 is valid without the requirement for
boundedness of the function Lyzx.

Proof. Let x be an eventually nonzero nonoscillating solution of equa-
tion (1). Without loss of generality assume that z(t) > 0 eventually.
Then from conditions H4, H5, condition 3 of Theorem 1 and equation
(1) it follows that (L,z)(t) < 0 eventually and we can apply Lemma
1. Let i be the greatest integer for which eventually the inequalities
(L;z)(t) > 0 and (Li+12)(¢) > 0 are valid (if there exists no ¢ with
this property, then the boundedness of the function Loz follows im-
mediately from Lemma 1). From Lemma 1 it follows that n — ¢ =
0 (mod 2) and lim;_, o (L;z)(t) > 0. From the last inequality and from
(3) we derive that eventually the following inequality is valid

(Loz)(t) cR;(t)
Ri(t) 7o(t)
We apply Lemma 1 and obtain that lim; . (L;117)(t) < oco. Then
from (2) it follows that

(11) (Wit Ln) ()] < o0

>c>0, ie. z(t) >
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From the fact that eventually

(12) (Lo2) (8] = (Az) () > (ACRi)(w

To
and from inequalities (11) and (12) it follows that

CRi

70

(oo <

which contradicts condition (10). o

Corollary 1. Let the conditions of Theorem 2 hold and let n be even.
Then all solutions of equation (1) oscillate.

Theorem 3. Let the following conditions hold:
1. Conditions (H) are met.

2. Condition 2 of Theorem 1 holds.

3. 0=-1.

4. For any integeri € [0,n—1] which is odd if n is even and vice versa,
and for any constant ¢ € R\{0} the following relation is eventually valid

Cki
(13) ‘ (wmin{Hl,nl}AT—O) (t)‘ -

Then for any nonoscillating solution = of equation (1) just one of the
following assertions is valid:

1. limy oo (Ljz)(t) =0, j =0,...,n — 1 and then n is even.

2. [limy,o(Ljz)(t)| =00, j=0,...,n—1 and then

R,_1(t)

o) =o(z(t)) ast— oo.

Proof. Let x be an eventually nonzero nonoscillating solution of
equation (1) for 6 = —1. Without loss of generality we can assume
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that x(t) 0. Then (Lnz)(t) > 0 eventually. Denote by i (i =

0,. ) the least integer such that the inequalities (L;z)(¢) > 0
and ( l+1ac)( ) > 0 are eventually valid (if there exists no such integer
€ [0,n — 1]), then from Lemma 1 it follows that the function Loz

is bounded. Then assertion 1 of Theorem 3 follows from Theorem 1).
Then n —i =1 (mod 2).

If i = n—1, then from Lemma 1 we obtain that lim;_, oo (L, _12)(t) >
0. Suppose that lim;_, (L, _12)(t) < co. Then eventually

(14) (Yn-14z)(t) = (Pn_1Lnz)(t) < 0.
But from assertion 6 of Lemma 1 it follows that eventually

(Loz)(?)
Ry_1(t)

CRn, 1 (t)

(15) o(t)

>c¢>0, ie., z(t) >

From (14) and (15) we obtain a contradiction with condition (13).
Hence lim; o (Lp—12)(t) = oo. Then lim; .o (L;z)(t) = oo for
j =0,...,n— 1. The relation R,_1(t)/70(t) = o(z(t)) as t - oo
follows from (3) for i = n — 1. For ¢ < n — 3 we get to a contradiction
by arguments analogous to those in the proof of Theorem 2. o

Remark 2. In Theorems 1-3 let condition H6 be replaced by the
weaker condition HT:

H7. If z € D, and sup{t : z(¢) = 0} < oo, then the function Az is
eventually nonzero.

Then the assertions of Theorems 1-3 will be valid if we replaced in
them nonoscillating solution by nonweakly-oscillating solution.

4. Some particular realizations of the operator.

Theorem 4. Let the following conditions hold:

1.

Az)(t) = max  Fi(t,g1(d1(s)z(h1(s
(Ae)) = max  Fitoa(d(s)e(n(5)

+ min F5(t, go(da(s)x(ha(s
p2(t)<s<q2(t) 2( 92( 2( ) ( 2( ))))

(16)
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where for each i =1,2,

piaqiadiahi € C([tO)OO)aR)
Jlim p;(t) = lim h;(t) = o0,  di(t) >0

pi(t) < ¢i(t), g; € C(R, R) are nondecreasing functions and sgn g;(u) =
sgnu, F; € C([ty, o) X R, R)

F;(t,u) are nondecreasing functions with respect to u.
2. Conditions H1-H2 hold.
3. Condition 2 of Theorem 1 holds.

Then for the existence of an eventually nonzero monoscillating solu-
tion x of the equation

(Lna)(t) +6(  max  Fi(t, g1(di(s)z(hi(s))))

(17) p1(t)<s<qi ()
. P _
+P2(t)I£S}ISIQ2(t) 2(t, 92(da(s)(ha(s))))) = 0
for which Loz is a bounded function it is necessary for 6 =1 (6 = —1)

that n be an odd (even) number. For these solutions the following
relations are valid
lim (L;z)(t) =0

t— o0

and '
sgn (L;z)(t) = (—1)'sgnz(¢), i=0,...,n—1

Theorem 5. Let the following conditions hold:
1. Condition 1 of Theorem 4 holds.

2. Conditions H1-H2 hold.

3. Conditions 2, 3 and 4 of Theorem 2 are met.

Then the assertion of Theorem 4 is valid without the requirement for
boundedness of the function Lozx.

Theorem 6. Let the following conditions hold:
1. Condition 1 of Theorem 4 holds.
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2. Conditions H1-H2 hold.
3. Conditions 2,3 and 4 of Theorem 3 are met.

Then, for any nonoscillating solution of equation (17) just one of the
following assertions is valid:

1. limy oo (Ljz)(t) =0, j=0,... ,n — 1 and then n is even.

2. [limy, o (Ljz)(t)| =00, j =0,...,n—1 and then

R,_1(t)
To(t)

=o(z(t)) ast— oo.

Theorems 4, 5, and 6 are particular cases of Theorems 1, 2 and 3,
respectively.

Remark 3. If only one of the two addends enter the right-hand side
of (16), then the operator A satisfies conditions H3-H5 and H7.

Theorem 7. Let the following conditions hold:

q(t)
(18) 1. (Az)(t) = F(t, /(t) k(t,s,x(t),w(s))dsT(t,s))

where
a) The function F satisfies condition 1 of Theorem 4.
b) p,q € C([to,0); R), lim;—, p(t) = 00, p(t) < q(t)

) k € C([tp,0)?x R% R). The function k(t, s,u,v) is nondecreasing
with respect to u and v.

d) sgnk(t,s,u,0) =sgnu, sgnk(t,s,0,v) =sgnv
e) For anyt € [tg,00) the function s — 7(t,s) is increasing.
f) The functions t — 7(t,p(t)) and t — 7(t,q(t)) are continuous and

for t € [ty,0) the following relation is valid

min{q(t),q(t')}
lim |T(t',s) — 7(t,s)|ds =0
=t Jmax{p(t),p(t')}
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2. Conditions H1-H2 are met.
3. Condition 2 of Theorem 1 holds.

Then for the existence of an eventually nonzero nonoscillating solu-
tion x of the equation

(19) (Lna:)(t)—i-(SF(t, / "

k(t, s, z(t), z(s)) dsT (8, s)> =0
(®)

for which Loz is a bounded function it is necessary for 6 =1 (§ = —1)
that n be an odd (even) number. For these solutions the following
relations are valid

lim (L;z)(t) =0

t—o0

and '
sgn (L;z)(t) = (—1)'sgnx(¢), i=0,...,n—1

Theorem 8. Let the following conditions hold:
1. Condition 1 of Theorem T holds.

2. Conditions H1-H2 hold.

3. Conditions 2, 3 and 4 of Theorem 2 are met.

Then the assertion of Theorem 7 is valid without the requirement for
boundedness of the function Lgzx.

Theorem 9. Let the following conditions hold:
1. Condition 1 of Theorem T holds.

2. Conditions H1-H2 hold.

3. Conditions 2,3 and 4 of Theorem 3 are met.

Then for any nonoscillating solution x of equation (19) just one of
the following assertions is valid:

1. limy oo (Ljz)(t) =0, j =0,...,n—1 and then n is even.
2. | limyy oo (Ljz)(t)| =00, 5 =0,...,n — 1 and then

R,_1(t)

o) =o(z(t)) ast— oo.
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Theorems 7, 8 and 9 are particular cases of Theorems 1, 2 and 3,
respectively.

Remark 4. If the operator A defined by (18) satisfies condition 1 of
Theorem 7 but conditions 1d and le are replaced by the conditions

k(t,s,u,v) >0 for u>0,u>0
k(t,s,u,v) <0 for u<0,u0<0
and the function s — 7(t,s) is nondecreasing and nonconstant in

the interval [p(t),q(t)], respectively. Then the operator A satisfies
conditions H3-H5 and HT.

REFERENCES

1. I.T. Kiguradze, Some singular boundary value problems for ordinary differen-
tial equations, Izd. Thilisi State Univ., Thbilisi, 1975 (in Russian).

2. G.S. Ladde, V. Lakshmikantham and B.G. Zhang, Oscillation theory of
differential equations with deviating arguments, Pure Appl. Math. 110 (1987), 305
pp-

3. D.P. Mishev and D.D. Bainov, Some properties of the nonoscillating solutions

of functional differential equations of m-th order, Rend. Circ. Mat. Palermo 35
(1986), 233-243.

4. A.D. Myshkis, Linear differential equations with retarded argument, Nareka,
Moscow, 1972 (in Russian).

5. Ch.G. Philos, Oscillatory and asymptotic behavior of the bounded solutions
of differential equations with deviating arguments, Hiroshima Math. J. 8 (1978),
31-48.

6. ———, Oscillatory and asymptotic behavior of all solutions of differential
equations with deviating arguments, Proc. Roy. Soc. Edinburgh Ser. A 81 (1978),
195-210.

7. , On the asymptotic behavior of the nonoscillatory solutions of differ-
ential equations with deviating arguments, Math. Nachr. 113 (1983), 107-128.

8. Ch. Philos and V.A. Staikos, A basic asymptotic criterion for differential
equations with deviating arguments and its applications to the nonoscillation of
linear ordinary equations, Nonlinear Anal. Theory Appl. 6 (1982), 1095-1113.

9. Ch.G. Philos, Y.G. Sficas and V.A. Staikos, Some results on the asymptotic
behavior of nonoscillatory solutions of differential equations with deviating argu-

ments, J. Austral. Math. Soc. 32 (1982), 295-317.

SouTH-WEST UNIVERSITY, NEOPHYTE RILSKI, BLAGOEVGRAD, BULGARIA
TECHNICAL UNIVERSITY, SILVEN, BULGARIA

RAILWAY TRANSPORT ENGINEERING INSTITUTE, Moscow, USSR



