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AN EFFECTIVE ROTH’S THEOREM
FOR FUNCTION FIELDS

JULIE TZU-YUEH WANG

ABSTRACT. We will give a new proof of Roth’s theorem
for function fields which is motivated by Steinmetz’s proof of
Nevanlinna’s second main theorem of slowly moving target
functions. This method provides effective results.

0. Introduction. The correspondence between number theory and
value distribution theory has been observed by Osgood [3] and Vojta
[6]. Both these areas are related to function fields. For example, one
can establish the analogue of Cartan’s truncated second main theorem
for function fields [7], which corresponds to the so-called abc conjecture
for number fields. Usually for a corresponding result in function fields,
one can also expect two proofs, one analogous to number theory and
the other analogous to value distribution theory. For example, the
Thue-Siegel-Roth theorem for function fields was proved by Uchiyama
[6] with a line of proof similar to the one for number fields, and
hence is ineffective. However, Roth’s theorem for function fields should
also correspond to some sort of second main theorem with moving
target functions in value distribution theory (such as in Nevanlinna’s
conjecture with slowly moving target functions) which was proved by
Steinmetz [4] in the case of functions. Indeed, since the ideas in [4]
mainly involve Wronskians, one can expect an analogous proof for
function fields. In this paper we will give a proof of Roth’s theorem for
function fields which is analogous to [4]. As we move on to the proof,
it will become clear that the results are effective in the sense that the
constants in the proof can be effectively determined from the method
of the proof.

Let K be the function field of a smooth projective curve C' over an
algebraically closed field k of characteristic 0. For each P € C we
have a valuation vp on K. Each vp can be extended to K¢, where
K* is the algebraic closure of K. For each f € K one can define the

height hx (f) = > pee —min{0,vp(f)} = X pccmax{0,vp(f)}. We
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will drop the index K when there is no confusion. Roth’s theorem for
function fields can be formulated as follows.

Roth’s theorem. Let S be a nonempty set of finitely many points
in C. Assume that, for each P € S, we have an element ap € K*, and
that vp is extended to K® in some way. Suppose that k is a real number
greater than 2. Then the elements f € K satisfying the approzimation

(1) > max{0,vp(ap — )} = whi(f)

pPes

have bounded height.

Remark 1. If we enlarge the size of S, we get a stronger statement.
So in the proof we can expand S as necessary.

Remark 2. Let L be a finite normal extension of K containing every
ap for P € S, and let R be the smooth projective model of L. Then
we have a surjective morphism 7 : R — C. For every Q € 7~ 1(P), we
can find an ag which is conjugate to ap satisfying

vp(ap — f) = K] > wolag — f).

Qen—1(P)

Take S’ = {Q : Q € 7 1(S)}. Then since hx (f) = (1/[L : K])hL(f) for
all f € K, (1) is equivalent to }° 5 max{0,vq(aqg — f)} > khr(f).
Therefore, without loss of generality, we can assume ap € K for all
Pes.

1. The main theorem. Let aq,...,a, be distinct elements in
K. Let L(r) be the vector space over k spanned by a}'...aq? with
ni,...,Ng > 0and ny +---+ny =r. Let B1,..., 5, be a base of L(r),
which can be assumed to consist of monomials. Let by,...,b, be a
base of L(r + 1) which can also be assumed to consist of monomials.

Main theorem. Suppose that t, ai,...,a, are S-units and that f
is a nonzero element of K. If fB1,...,fBn,b1,---,bn are linearly
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independent over k,then

Z Z max{0,vp(f — a;)}
i=1 PES
< m:"h(f)
N (m+mn— 1)(m+")(zg_2+2|5| + h(t))

n

+ (¢ —1)? ’ h(a;).

Let t be a nonconstant function in K. Recall that the Wronskian
matrix of gg,...,9 € K with respect to ¢t is the matrix whose i, j-
th entry is (d*/(dt)!)(g;), for 0 < i, j < I. We will denote the
Wronskian matrix of go,. .., € K with respect to ¢t as W(go, ..., gi)
and the Wronskian matrix of gg,...,9 € K with respect to tp as
Wi (905 --- ,91), where tp is a local parameter of a point P in C.

Definition. (1) B[f] := W(b1,... ,bm, B, fBn)
(2) Bip[f] :=Wip(biy-oe ybm, fB1y- -5 [Bn)-

Proposition 1. det B[f — a;] = det B[f].
Proof. This is because a;3; € L(r + 1). O

Proof of the main theorem. Since ffB1,...,fBn, b1,...,bn are lin-
early independent over k, we have det B[f] # 0. Let Q (respectively Q)
be the matrix obtained by multiplying the (m+1)-st through (m+n)-th
columns of B|[f], respectively B[f —a;], by f~!, respectively (f —a;)~!.
Then

det B[f — a;] = (f — a;)"det Q;.
Let B*[f], respectively Q*, Q, be the determinant of the matrix
obtained by multiplying the i-th (1 < i < m) column of B[f] by b, ! and
multiplying the I-th (m 4+ 1 <1 < m + n) column of B[f], respectively
Q, Qj, by Bl_l, that is, B*[f], respectively Q*, @7, is the logarithmic
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Wronskian determinant of B[f], respectively @, Q;. Together with
Proposition 1, we have

n _ detBlf] _ B*[f]
U=a)" =g, = @

Therefore vp(f — a;) = (1/n)vp(B*[f]) — (1/n)vp(Q;). We have

max{0, vp(f — )} < - wax{0,up (" [f))}
(2) 1
~ ~ min{0, vp(Q5)}

Since a; —aj = (f —a;) — (f — a;), we have

(3) vp(a; — a;) = min{vp(f — ai),vp(f — a;)}-
Let

(4) ap = max{0, vp(a; — a;)}-

Then

> max{0,vp(f )} < - 3 max{0,0p(B1))}

PesS j=1 PeS

(5) +2 3 max {— min{0, vp(Q)})
pPeS —

=q

+(q—1)Zo¢p.

PesS

The theorem then follows from the following lemmas:

Lemma 1. Ift is an S-integer, then ) p o max{0,vp(dt/dtp)} <
29 — 2+ S|+ h(t).

Lemma 2. h(B*[f]) < (m+n)h(f)+ ((m+n—1)(m+n)/2)(2g —
2+ 2|S| + h(t)).
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Lemma 3. ZPES maxlsqu{fmin{ﬂ,vp(Q;f)}} < ((m+n—-1)(m+
n)/2)(2g — 2+ 2|S| + h(t)).

Lemma 4. Y, qap < (¢—1) > h(a;).

Proof of Lemma 1. If vp(t) < 0, then vp(dt/dtp) = vp(t)—1. On the
other hand, if vp(t) > 0, then vp(dt/dip) > 0. By the Riemann-Roch
theorem,

o 2 () 2 ()

vp(t)<0 vp(£)>0 dtp

= Y @ -1+ ZmaX{O’”P(di_D}

vp(t)<0 PeC

—h(t) = |S| + ¥ max {o,vp <£—i> }

pPeC

v

Therefore, ) pc max{0,vp(dt/dtp)} < 2g — 2+ S| + h(t). o

Proof of Lemma 2. Let B} [f], respectively Q. ), be obtained in
the same way as B*[f], respectively Qf,, but by taking derivatives
with respect to tp instead. By the basic properties of Wronskian

determinants, we have
. . dt —(m+n—1)(m+n)/2
511 = 85,171 4 .

Therefore,

0,06 (B 1)} ming0, (B, 1))
C(mtn-Dm+tn) {o,vp <£> }

2 dtp

For P € S, we use the relation B} [f] = f"Qf,. Since Qf, is a
logarithmic Wronskian determinant, the order of its pole at P does not
exceed (m +n — 1)(m + n)/2. Therefore,

(m—i—n—l)(m—l—n)‘
2

(7)  min{0,vp (B, [f])} = nmin{0, vp(f)} —
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If P ¢ Sand vp(f) > 0, then because by, ... ,bm,B1,-.. ,Bn are S-units
®) or (B, [f]) > 0.
If P¢ S and vp(f) <0, then

detBtP[f] = dEtth(bla--- 7bmafB17-" 7an)

m—+n b1 bm
:f +detth<77"'777617"'75n>'
Then, since by,... ,bm,B1,--. ,Bn are S-units,

min{0, vp (B, [f])} = min{0, vp(det B.,.[f])}

(9) > (m +n)min{0,vp(f)}.

By (6), (7), (8), (9) and Lemma 1, we have
h(B*[f]) < (m+n)h(f)

(m+n—-1)(m+n)
2

+ (20— 2+2|S| +h(t)). O

Proof of Lemma 3. Let Q] ,, be obtained in the same way as 7 but
by taking derivatives with respect to tp instead. We have

(m—i—nfl)(m—i—n)‘
2

(10) —min{0,vp(Qj,)} <
Again, by the basic properties of Wronskian determinants,

Q; = Q3 (dt/dtp) (mEn-DmEn)/2,
Therefore

Z lrgfgq{f min{0,vp(Q})}}
pes =

< (D) (5 ()} 5.

PesS
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By Lemma 1, we have

Z max{ min{0,vp(QF)}

1<37

< (m+n—-1)(m+n)
- 2

(29 —2+2|S|+h(t)). o

Proof of Lemma 4.

Zap— ZmaX{O vp(a; —aj)}

Pes Pes
< Z ZmaX{O,vp(ai —aj)}
PES i#j
< Z h(a; — a;)
i#£j
< Z (a;) + h(a;))
i#j
q
<(g-1)) h(a;). o

i=1

Therefore we have completed the proof of the main theorem.

2. The proof of Roth’s theorem. First we need to deal with the
case when det B[f] = 0. We need the following properties:

Proposition 2. If g € L(s), then h(g) < s> ¢, h(a;).

Proof. Since g € L(s), g is a linear combination of a}'...aq? with
ni,...,nq > 0and ny + - -+ ng = s. Therefore,

vp(g) > smin{vp(ai),...,vp(aq)}

min{0,vp(g9)} > s Z min{0, vp(a;)}.

Therefore, h(g) < sy i, h(a;). O
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Lemma 5. Let 81,...,B8n € L(r) and by,... by, € L(r +1). If
I8, s [Bnyb1,... by are linearly dependent over k, then h(f) <
(2r+1)>7 | h(ai).

Proof. Since ffB1,..., fBn,b1,...,by are linearly dependent over k,

Z?; cib;
i1 diB;

for some ¢;, d; € k. Since 370, ¢;b; € L(r + 1) and 3772, d;8; € L(r),

f=

h(f) < h<§;Cibi> +h<édjﬂj> <(2r+ 1)Zq:h(ai)

i=1

by Proposition 2. ]

Let I(r) be the dimension of L(r). Since I(r + 1) > I(r), inf, I(r +
1)/1(r) is well defined.

Lemma 6. inf, I(r+1)/I(r) = 1.

Proof. Suppose this is not true. Then there exists § > 0 such that
I(r+1) > (1+96)i(r) for r > 0. Therefore

(11) I(r) > (1+6)".

On the other hand, from the construction of L(r)

r

(12) I(r) < <q+7’ - 1) =0(r' Y.
This contradicts (11). O
Proof of Roth’s theorem. It suffices to show the following:

(x) Let ai,...,aq be distinct elements in K, and let t be a non-
constant element of K. Let S be a finite set of points of C such that
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t,a1,...,aq are S-units. Suppose k > 2. Then the elements f € K
satisfying the approximation

(13) > max{0,vp(f — a;)} > rh(f)
PeSi=1

have bounded height.

Suppose for £ > 2 that
q
> max{0,0p(f — a;)} > kh(f).
PeS i=1
Given an ¢ such that kK — 2 — ¢ > 0, we can find an integer r such that

(r+1)

(14) .

<1l+e.
Suppose m = [(r + 1) and n = I(r). Then

(15) <l+e

3|3

Let By,...,0B, be abase of L(r) and by, ... , b, be a base of L(r+1). If

fBi,---, fBn, b1, .. b, are linearly dependent over k, then by Lemma
5
q
h(f) < (2r+1) ) h(ay).
i=1
Therefore, we only have to consider the case when ff31,..., fBn,b1,...,

by, are linearly independent over k. By the main theorem and (13)

<fi m:n>h(f) < (m+n*:)(m+n)(2g72+2‘s|+h(t))

q

+(g—1)*)_ h(a:).

=1
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Since m/n <1+ ¢, we have K — (m +n)/n > kK — 2 — . Hence,
(k=2—=¢e)h(f) < (2+e)(m+n—1)2(29 — 2+ 2|S| + h(t))
q
+(g=1)*> h(ai)
i=1

<2(2+¢) <1‘{i’1‘> (29 — 2 +2|S| + h(t))

+(a= 17 ha).

Therefore h(f) is bounded. This completes the proof of Roth’s theorem.
O
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