ON CHARACTERIZATION OF STRONGLY EXTREME POINTS IN KÖTHE-BOCHNER SPACES

RYSZARD PŁUCIENNIK

ABSTRACT. It is shown that the necessity in the characterization of strongly extreme points in Köthe-Bochner space E(X), given by H. Hudzik and M. Mastyło in [2], is true without requiring that E be (LUR) and X be separable. The corollary concerning strongly extreme points in Musielak-Orlicz spaces of Bochner type is presented.

1. Introduction. Denote by N and R the sets of natural and real numbers, respectively. Let (T, Σ, μ) denote a measure space with a σ -finite and complete measure μ and $L^0 = L^0(T)$ the space of μ equivalence classes of Σ -measurable real-valued functions. The notation $f \leq g$ for $f, g \in L^0$ will mean that $f(t) \leq g(t)$ μ -almost everywhere in

A Banach space $(E, \|\cdot\|_E) \subset L^0$ is said to be a Köthe space if

- (i) $|f| \le |g|, f \in L^0, g \in E \text{ imply } f \in E \text{ and } ||f||_E \le ||g||_E;$
- (ii) supp $E =: \bigcup \{ \text{supp } f : f \in E \} = T$.

Now let us define the type of spaces to be considered in this paper. For a real Banach space $(X, \|\cdot\|_X)$, denote by $\mathcal{M}(T, X)$, or just $\mathcal{M}(X)$, the family of all strongly measurable functions $f: T \to X$ identifying functions which are μ -almost everywhere equal. Let

$$E(X) = \{ f \in \mathcal{M}(X) : || f(\cdot) ||_X \in E \}.$$

Then E(X) becomes a Banach space with the norm

$$||f|| = |||f(\cdot)||_X||_E,$$

and it is called a Köthe-Bochner space.

Copyright ©1997 Rocky Mountain Mathematics Consortium

Received by the editors on June 10, 1994. 1991 Mathematics Subject Classification. 46E30, 46E40, 46B20.

Key words and phrases. Kothe-Bochner space, strongly extreme points, local uniform rotundity, Musielak-Orlicz space. Supported by KBN grant 2 P03A 031 10.

For any Banach space X, we denote by S(X), B(X), the unit sphere, closed unit ball, respectively.

A Banach space X is locally uniformly rotund (write (LUR)) if for any $x \in S(X)$ and any sequence (x_n) of elements of B(X) we have

$$||x_n||_X \to ||x||_X$$
 and $||x_n + x||_X \to 2||x||_X \Rightarrow x_n \to x$ strongly in X.

A point $x \in S(X)$ is called a strongly extreme point of the unit ball B(X) (write $x \in \delta_{se}B(X)$) if, for every sequence $(y_n), (z_n) \subset B(X), \lim_{n\to\infty} \|(y_n+z_n)-2x\|_X = 0$ implies that $\lim_{n\to\infty} \|y_n-x\|_X = 0$.

The following characterization of strongly extreme points of the unit sphere in a Köthe-Bochner space is given in [2] (cf. [2, Theorems 2 and 3].

Theorem 1. Let E be a locally uniformly rotund Köthe space over a measure space (T, Σ, μ) , and let X be a Banach space.

- a) If $f \in S(E(X))$ and $f(t)/\|f(t)\|_X \in \delta_{se}B(X)$ for μ -almost all $t \in \operatorname{supp} f$, then $f \in \delta_{se}B(E(X))$.
- b) If, additionally, X is a separable Banach space and $f \in \delta_{se}B(E(X))$, then $f(t)/\|f(t)\|_X \in \delta_{se}B(X)$ for μ -almost all $t \in \text{supp } f$.
- **2.** Main result. Theorem 1 b) is true without requiring that E be (LUR) and X be separable. Adopting some ideas from [1], we can prove the following

Theorem 2. Let E be a Köthe space over a measure space (T, Σ, μ) , and let X be a Banach space. If $f \in \delta_{se}B(E(X))$, then $f(t)/\|f(t)\|_X \in \delta_{se}B(X)$ for μ -almost all $t \in \text{supp } f$.

Proof. Let $f \in \delta_{se}B(E(X))$. Suppose that the theorem is not true, i.e.,

$$\mu \left\{ t \in \operatorname{supp} f : \frac{f(t)}{\|f(t)\|_X} \notin \delta_{\operatorname{se}} B(X) \right\} > 0.$$

Denote

$$A_{m,j} = \left\{ x \in S(X) : \left\| \frac{1}{2} (x_1 + x_2) - x \right\|_X < \frac{1}{m} \right\}$$
 for some $x_1, x_2 \in B(X) \setminus \left[x + \frac{1}{j} B(X) \right]$

for $m, j \in \mathbf{N}$. The sets $A_{m,j}$ have the following properties:

- a) $x \notin \delta_{se}B(X)$, if and only if there exists j such that for all m we have $x \in A_{m,j}$;
 - b) $A_{m+1,j} \subset A_{m,j} \subset A_{m,j+1}$;
- c) Every $A_{m,j}$ is open in S(X) with respect to the topology induced from X.

The statement a) follows immediately from the negation of the definition of strongly extreme point. b) is a consequence of standard comparison of the sets. To prove c), suppose that $(y_k) \in S(X) \setminus A_{m,j}$, $k \in \mathbb{N}$, and

$$||y_k - y||_X \longrightarrow 0$$
 as $k \longrightarrow \infty$.

Obviously, $y \in S(X)$. Moreover, fixing a positive $\varepsilon < 1/m$, a positive integer k_0 can be found such that

$$||y_k - y||_X < \varepsilon \quad \text{for } k \ge k_0.$$

Let $x_1, x_2 \in B(X) \setminus [y + (1/j)B(X)]$. Then, for $k \geq k_0$, we have

$$\left\| \frac{1}{2} (x_1 + x_2) - y \right\|_{X} \ge \left\| \left\| \frac{1}{2} (x_1 + x_2) - y_k \right\|_{X} - \|y_k - y\|_{X} \right\|_{X}$$

$$\ge \frac{1}{m} - \varepsilon.$$

Hence, $y \in S(X) \backslash A_{m,j}$, because ε is arbitrary. Therefore, $A_{m,j}$ are open for every $m, j \in \mathbf{N}$.

Define

$$g(t) = \begin{cases} f(t)/\|f(t)\|_X & \text{for } t \in \text{supp } f \\ 0 & \text{for } t \notin \text{supp } f. \end{cases}$$

Then, by a), we can conclude that

$$g^{-1}[S(X)\backslash \delta_{\operatorname{se}}B(X)] = \bigcup_{j=1}^{\infty} \bigcap_{m=1}^{\infty} g^{-1}(A_{m,j})$$
$$= \left\{ t \in \operatorname{supp} f : \frac{f(t)}{\|f(t)\|_{X}} \notin \delta_{\operatorname{se}}B(X) \right\}.$$

Consequently, by our assumption and by b), there are $L \in \mathbf{N}$ and $G \in \Sigma$ of finite measure such that

$$\mu\bigg\{\cap_{m=1}^{\infty}g^{-1}(A_{m,L})\cap G\bigg\}>0.$$

Choose

$$F \in \Sigma$$
 such that $\mu(F) > 0$, $F \subset \bigcap_{m=1}^{\infty} g^{-1}(A_{m,L}) \cap G$

and

$$F \subset \{t \in T : a \le ||f(t)||_X\}$$

for some a > 0.

Now we will show that, for any $\delta \in (0, 1/L)$, there is a measurable partition $\{F_k\}$ of F such that diam $f[F_k] < a\delta/3$ for all k, and there exists $t_k \in F_k$ such that $||f(t_k)||_X = \inf ||f[F_k]||_X$ for all k.

Really, since f[F] is separable, there is a measurable partition $\{E_n\}$ of F such that $\operatorname{diam} f[E_n] < a\delta/3$ for all n. For each fixed n, choose a sequence $\{x_j\}$ in E_n such that $\{\|f(x_j)\|_X\}$ is decreasing to $\inf \|f[E_n]\|_X$. Let

$$E_{n,0} = \{ t \in E_n : ||f(t)||_X \ge ||f(x_1)||_X \}$$

and

$$E_{n,j} = \{t \in E_n : ||f(x_j)||_X > ||f(t)||_X \ge ||f(x_{j+1})||_X\}$$

for $j \in \mathbf{N}$. Then $E_{n,j}$ is measurable for all $n, j \in \mathbf{N}$. Let $\{F_k\}$ be the family consisting of all $E_{n,j}$, $n, j \in \mathbf{N}$. Therefore $\{F_k\}$ satisfies the desirable conditions in an obvious manner.

Now we can conclude that, for every k, there exist

(1)
$$x_{k,1}x_{k,2} \in B(X) \setminus \left[\frac{f(t_k)}{\|f(t_k)\|_X} + \frac{1}{L}B(X) \right],$$

and

(2)
$$\left\| \frac{1}{2} (x_{k,1} + x_{k,2}) - \frac{f(t_k)}{\|f(t_k)\|_X} \right\|_X < \frac{\delta}{3}.$$

Let $\gamma = (a/(3L)) \|\chi_F\|_E > 0$. Define

$$f_i = \chi_{T \setminus F} f + \sum_{k=1}^{\infty} ||f(t_k)||_X x_{k,i} \chi_{F_k},$$

i = 1, 2. To finish the proof, it is enough to show that

(3)
$$||f_i - f|| \ge \gamma \text{ for } i = 1, 2,$$

and

$$\left\|\frac{1}{2}(f_1+f_2)-f\right\|<\delta.$$

To prove inequality (3), note that by (1) we conclude

$$\left\| \sum_{k=1}^{\infty} (\|f(t_k)\|_X x_{k,i} - f(t_k)) \chi_{F_k} \right\|$$

$$= \left\| \sum_{k=1}^{\infty} \|\|f(t_k)\|_X x_{k,i} - f(t_k)\|_X \chi_{F_k} \right\|_E$$

$$\geq \frac{1}{L} \left\| \sum_{k=1}^{\infty} \|f(t_k)\|_X \chi_{F_k} \right\|_E$$

$$\geq \frac{a}{L} \left\| \sum_{k=1}^{\infty} \chi_{F_k} \right\|_E$$

$$= \frac{a}{L} \|\chi_F\|_E = 3\gamma$$

for i = 1, 2. Moreover, by the fact that diam $f[F_k] < a\delta/3$, we get

$$\left\| \sum_{k=1}^{\infty} f(t_k) \chi_{F_k} - f \chi_F \right\| = \left\| \sum_{k=1}^{\infty} (f(t_k) - f) \chi_{F_k} \right\|$$

$$\leq \left\| \sum_{k=1}^{\infty} \| f(t_k) - f(\cdot) \|_X \chi_{F_k} \right\|_E$$

$$\leq \frac{a\delta}{3} \left\| \sum_{k=1}^{\infty} \chi_{F_k} \right\|_E$$

$$\leq \frac{a}{3L} \| \chi_F \|_E = \gamma.$$

Therefore,

$$||f_{i} - f|| = \left\| \sum_{k=1}^{\infty} ||f(t_{k})||_{X} x_{k,i} \chi_{F_{k}} - f \chi_{F} \right\|$$

$$\geq \left\| \sum_{k=1}^{\infty} (||f(t_{k})||_{X} x_{k,i} - f(t_{k})) \chi_{F_{k}} \right\|$$

$$- \left\| \sum_{k=1}^{\infty} f(t_{k}) \chi_{F_{k}} - f \chi_{F} \right\|$$

$$\geq 3\gamma - \gamma > \gamma$$

for i = 1, 2. Thus (3) is proved.

It remains to prove the inequality (4). Taking into account the inequality (2), we have

$$\left\| \frac{1}{2} (f_1 + f_2) - f \right\| = \left\| \frac{1}{2} \sum_{i=1}^{2} (f_i - f) \right\|$$

$$= \left\| \frac{1}{2} \sum_{i=1}^{2} \sum_{k=1}^{\infty} (\|f(t_k)\|_X x_{k,i} - f) \chi_{F_k} \right\|$$

$$= \left\| \frac{1}{2} \sum_{i=1}^{2} \sum_{k=1}^{\infty} (\|f(t_k)\|_X x_{k,i} - f) \chi_{F_k} \right\|$$

$$- f(t_k) + f(t_k) - f) \chi_{F_k} \right\|$$

$$\leq \left\| \frac{1}{2} \sum_{i=1}^{2} \sum_{k=1}^{\infty} (\|f(t_{k})\|_{X} x_{k,i} - f(t_{k})) \chi_{F_{k}} \right\|$$

$$+ \left\| \frac{1}{2} \sum_{i=1}^{2} \sum_{k=1}^{\infty} (f(t_{k}) - f) \chi_{F_{k}} \right\|$$

$$\leq \left\| \sum_{k=1}^{\infty} \left\| \frac{1}{2} \sum_{i=1}^{2} (\|f(t_{k})\|_{X} x_{k,i} - f(t_{k})) \right\|_{X} \chi_{F_{k}} \right\|_{E}$$

$$+ \left\| \sum_{k=1}^{\infty} \|f(t_{k}) - f(\cdot)\|_{X} \chi_{F_{k}} \right\|_{E}$$

$$\leq \left\| \sum_{k=1}^{\infty} \frac{\delta}{3} \|f(t_{k})\|_{X} \chi_{F_{k}} \right\|_{E} + \left\| \sum_{k=1}^{\infty} \frac{a\delta}{3} \chi_{F_{k}} \right\|_{E}$$

$$\leq \frac{\delta}{3} \|\|f(\cdot)\|_{X} \chi_{F} \|_{E} + \frac{\delta}{3} \|a\chi_{F} \|_{E}$$

$$\leq \frac{\delta}{3} \|f\| + \frac{\delta}{3} \|\|f(\cdot)\|_{X} \chi_{F} \|_{E}$$

$$\leq \frac{\delta}{3} + \frac{\delta}{3} < \delta,$$

i.e., (4) is satisfied.

Inequalities (3) and (4) imply that $f \notin \delta_{se}B(E(X))$. This contradiction completes the proof of the theorem.

3. Corollaries. Now we apply our results to the case of Musielak-Orlicz space of Bochner type. To do it, we agree on some terminology.

A function $\varphi: \mathbf{R} \times T \to [0, \infty]$ is said to be a *Musielak-Orlicz function* if

- a) $\varphi(u,\cdot)$ is measurable for each $u \in \mathbf{R}$,
- b) $\varphi(0,t) = 0$ and $\varphi(\cdot,t)$ is convex, even, lower semi-continuous, not identically equal to zero, continuous at zero for μ -almost all $t \in T$.

By the Musielak-Orlicz space L^{φ} we mean

$$L^{\varphi}=igg\{f\in L^0:I_{arphi}(cf)=\int_T arphi\left(cf(t),t
ight)d\mu<\infty ext{ for some }c>0igg\},$$

equipped with so-called Luxemburg norm defined as follows

$$||f||_{\varphi} = \inf \{ \varepsilon > 0 : I_{\varphi}(f/\varepsilon) \le 1 \}.$$

The Musielak-Orlicz space $L^{\varphi}(X)$ of Bochner type we define as the family of functions $f \in \mathcal{M}(T,X)$ such that $||f(\cdot)|| \in L_X^{\varphi}$, i.e., E(X) with $E = L^{\varphi}$.

We say that the Musielak-Orlicz function φ satisfies the Δ_2 -condition if there exist a real number b>0 and a nonnegative integrable function $a(\cdot)$ such that

$$\varphi(2u, t) \le b\varphi(u, t) + a(t)$$

for μ -almost all $t \in T$ and every $u \in \mathbf{R}$.

For more details, we refer to [4].

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. Let φ be a Musielak-Orlicz function.

- a) If φ satisfies the Δ_2 -condition, $\varphi(\cdot,t)$ is strictly convex for μ -almost all $t \in T$, $f \in S(L^{\varphi}(X))$, and $f(t)/\|f(t)\|_X \in \delta_{\operatorname{se}}B(X)$ for μ -almost all $t \in \operatorname{supp} f$, then $f \in \delta_{\operatorname{se}}B(L^{\varphi}(X))$.
- b) If $f \in \delta_{se} B(L^{\varphi}(X))$, then $f(t)/\|f(t)\|_X \in \delta_{se} B(X)$ for μ -almost all $t \in \text{supp } f$.

Proof. By a Kamińska's result, cf. [3], the Musielak-Orlicz space is (LUR) if and only if $\varphi(\cdot,t)$ is strictly convex μ -almost everywhere in T, and φ satisfies the Δ_2 condition. Applying Theorem 1a), we get Corollary 2a).

Corollary 2b) is an immediate consequence of Theorem 2.

Open question. Is Theorem 1a) true without requiring that E be (LUR)?

REFERENCES

- 1. Z. Hu and B.L. Lin, Strongly exposed points in Lebesgue Bochner function spaces, Proc. Amer. Math. Soc. 120 (1994), 1159–1165.
- 2. H. Hudzik and M. Mastylo, Strongly extreme points in Köthe-Bochner spaces, Rocky Mountain J. Math. 23 (1993), 899–909.
- **3.** A. Kamińska, On some convexity properties of Musielak-Orlicz spaces, Rend. Circ. Mat. Palermo, Serie II, Suppl. **5** (1984), 63–72.

- ${\bf 4.}$ J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. ${\bf 1034}$ (1983), 1–222.
- **5.** M.A. Smith, Strongly extreme points in $L^p(\mu, X)$, Rocky Mountain J. Math. **16** (1986), 1–5.

Department of Mathematics, Tadeusz Kotarbiński Pedagogical University, Plac Słowiański 9, 65-077 Zielona Góra, Poland

University of Banking, Al. Niepodlegkości 2, 61-874 Posnań, Poland