ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 29, Number 1, Spring 1999

SOME IDENTITIES CONNECTING
PARTITION FUNCTIONS TO OTHER
NUMBER THEORETIC FUNCTIONS

NEVILLE ROBBINS

Introduction. Let A be a subset of IV, the set of all natural numbers.
If n belongs to N, let pa(n) denote the number of partitions of n into
parts belonging to A. Let o4(n) denote the sum of the divisors of n
that belong to A. In particular, if A = N, then ps(n) = p(n), the
unrestricted partition function, and o4(n) = o(n); if A is the set of
odd natural numbers, then p4(n) = g(n), the number of partitions of
n into odd parts, and 4 (n) = o°(n), our notation for the sum of the
odd divisors of n. Let gyo(n) denote the number of partitions of n into
distinct odd parts. Let E(n) = n(3n—1)/2. The integers E(+n), where
n > 0, are know as the pentagonal numbers. Let T'(n) = n(n + 1)/2.
The integers T'(n), where n > 0, are known as the triangular numbers.
Consider the following general theorem:

Theorem X. Let f: A — N be a function such that both

Fa(z) = H (1—zm)yF/n =14 ZpAVf(n)a:”

neA n=1

and

converge absolutely and represent analytic functions in the unit disk:
|z] < 1. Let pa,f(0) =1 and fa(k) =>_{f(d):d| k,d e A}. Then

(1) npaf(n) =Y paj(n—k)fa(k).
k=1
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Theorem X is Theorem 14.8 in [1]; its proof is obtained by logarithmic
differentiation of the generating function F4(z). Theorem X is a master
identity that can be used to derive many partition identities. For
example, if we let f(n) = n, then p4 ¢(n) =pa(n) and fa(k) = oa(k).
We thus obtain

(1.1) npa(n) :ZpA(n—k:)aA(k:).
If we let A = N, we obtain
(12 np(n) = 3" p(n — K)o (k).

In [4], Erdos used (1.2) in the equivalent form

n_[n/m]
(1.3) np(n) = Z mp(n — km)

m=1 k=

—

to prove by elementary means that p(n) ~ (C/n)exp(27(n/6)'/?).
(This important estimate had been proven earlier in more precise form,
namely with C' = 48~1/2 by Hardy and Ramanujan. See [5].

In [6], Kraetzel used (1.3) to prove the bound
p(n) < 5n/4

with equality only when n = 4. If we let A = N and f(n) = —n,
then (by Euler’s well-known pentagonal number formula) we have
fa(k) = —o(k) and

Pas = {0 ™
This yields
)+ Y (-1)¥{o(n — E(k)) + o(n — E(k))}

k>1

{n(—1)m—1 if n = E(+m)

0 otherwise.
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In this note, in Theorems 1 and 2a below, we use (1) to derive
identities pertaining to ¢(n) and go(n) that are analogous to (1.2). In
Theorem 2b and Corollary 1, we obtain explicit formulas for ¢°(n) and
o(n) in terms of g(n) and go(n). (As for the sum of the even divisors of
n, which we denote o (n), it is easily seen that, if n = 2*m where k > 0
and m is odd, so that d°(n) = o(m), then o®(n) = (28*! — 2)0(n).)

In addition to the results mentioned above, we prove Theorem Y,
which is Exercise 14.10 in [1]. We use Theorem Y to prove several
additional identities. The first two, which involve u(n) and ¢(n),

respectively, are not new; the third yields a new formula for p(n) in
terms of o(n).

2. Preliminaries. Let |z| < 1. Then

(2.1) f[l (1—2" ip(n)m"

(2.2) i[l(l = gq(n)w"

(2.3) f[l(l +z? ) = gqg(n)x"

(2.4) f[l (1—a" ni:( )P 4 zBC™Y  (Buler)
(2.5) ﬁ 12" = i(fl)”@n +1)zT™  (Jacobi).

n=1 n=0

Remarks. Equations (2.1) through (2.5) may be found in [1]. (See
Table 14.1 and Theorems 14.3 and 14.7.)



338 N. ROBBINS

3. The main theorems.

Theorem 1.
n

ng(n) =Y q(n— k)o°(k).

k=1

Proof. Let A be the set of all odd natural numbers. Then pa(n) =
q(n),o4(k) = 0°(k), and the conclusion follows from (1.1). o

Theorem 2.

(a) ngo(n) = Y (~=1)*qo(n — k)o° (k)
k=1

(b) o%(n) =Y (=1)* 'kqo(k)g(n — k).
k=1

Proof of (a). Let A be the set of all odd natural numbers. Write
(2.3) in the form:

Z qo(n)z" = H (1+2z").

necA

Replace = by —z to obtain

Y (Dra(n) = [T -2m).
n=0 neA

Let f(n) = —n, so that fa(k) = —0°(k). Now Theorem X applies,
with pa s(n) = (—1)"go(n), so that

(%) n(=1)"qo(n) = Y (=1)" Fqo(n — k)(=o"(k)).

k=1

Upon simplifying, we obtain (a). O



SOME IDENTITIES

Proof of (b). (%) implies that

k=1

If |z| < 1, then we have

Z < (=)™ Fgo(n — k)ao(k)> " = Z n(—=1)""1qo(n)z",
that is,

(L v ) (S ewe) = 3 a0 wlma

n=0 n=0 n=0

Now (2.3) implies

Therefore

o0 o0

> o' = 3 (K1 (o))

n=1 n=1

Y (1) go(n — K)o’ (k) = n(=1)" " q0(n).

339

The conclusion now follows by equating coefficients of like powers of x.

O
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Remark. Note that, if n is odd, then 0°(n) = o(n). More generally,
we have

Corollary 1. If n = 2/m, where j > 0 and m is odd, then

m

o(n) = (291 — Z Ve~ kqo(k)g(m — k).

k=1

Proof. By hypothesis, (27, m) = 1. Therefore

m

o(n) = o(2)o(m) = (27" — 1) S (~1)F kao (k)g(m — k)

k=1

by Theorem 2, part (b). o

Theorem 3.

S (~)F(2k 4 D)o (n— T(k)) = { (()71)’"*1(2m +1n/3 ifn=T(m)

>0 otherwise.

Proof. Write the conclusion of Theorem X as

() npa,f(n ZpAf )fa(n — k).

Let A= N, f(n) = —3n, so fa(k) = —30(k). Write (2.5) as

Hl—x ZpAf
n=1

where .
—-1)*2k+1) ifn=T(k
pasn) = { (@D 0 = T
0 otherwise.

Applying (x) and dividing by —3, we obtain the conclusion. O
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Remark. Theorem 3 is not a new result; it appears on page 127
of [7]. The proof suggested by the distinguished authors involves the
logarithmic differentiation of (2.5), as well as use of the identities:

o0

o(n)n=* = ((s)¢(s — 1)

n=1

and

oo

Z o(n)z" =

(See [7, pp. 121, 127 and 318].) Our proof is thus somewhat simpler.

nx" /(1 —z").

n=

Theorem 4.

o(n) =np(n)

+ > (=1 (n—Ek))p(n—E(k))+(n—E(=k))p(n—E(=k))}.

k>1

Proof. If |z| < 1, then (1.2) implies

2 (ki_op(k)o—(n -)en - gnpm)xn,

that is, . . )
(ot (S ater) = 3 nsto

Now (2.1) implies

f[l(l —z)! (ia(n)m") - Tinp(n)mn,
so that -

3
-
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Now (2.4) implies

niff(n)x" = (14 T DA 42500 (gnpm)w").

k>1

The conclusion now follows from matching coefficients of like powers of
x. O

Theorem Y (using the notation of Theorem X). Let

Fa(e) = [T —am) 1000,

nc€A
Ha(z) =Y fa(k)ak.
k=1
Then Fa(z) = exp{ [, (Ha(t)/t) dt}.

Proof. From the proof of Theorem X, see [1, p. 322], we have

zF)(z) = Fa(z)Ha(z).

Thus
Fi\(2)/Fa(z) = Ha(2)/.
Hence, N N
| @wnypadi= [ ayna
0 0
that is,

Log Fa(z) = /OI(HA(t)/t) dt,

from which the conclusion follows.
Theorem 5.

H(l — g/ — 7T if | < 1.

n=1
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Proof. Let A= N, f(n) = —u(n). Now
1 k=1,
dZK“(d): {0 if ke # 1.

Thus H4(x) = —z. The conclusion now follows from Theorem Y. o

Theorem 6.

[T@—am?m/m = e/t ] < 1.

n=1

Proof. Let A= N, f(n) = —¢(n). Now fa(k) = =3, ¢(d) = —k.

Thus -
> ke =—w(zw )
(Zxk}> 1 _m) 1)/
k=1
=—z(l-2z) %
Now . .
/( A(t)/t)dt:/ (1—0)2dt
0 0
T
1—t)7 2 = )
(-0 =
The conclusion now follows from Theorem Y. m|

Remark. Theorem 5 was posed as a problem in the American
Mathematics Monthly in 1943, see [2]; a solution was given by Buck
[3]. Theorems 5 and 6 appear as Exercise 72.1 in [7, p. 126]. The
suggested solution in [7] involves use of the identities

> pn)nt = 1/¢(s),

n=1

> o) (s = 1)/¢(s)-

n=

[y
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We conclude with two additional applications of Theorem Y.

Theorem 7.

k

NOEDI-TD DI | Y

k=1"""i1+is+--+ip=nj=1

Proof. Let f(n) =n, A= N. Now

Fa(z) = H(l —z") = Zp(n)a:”

Thus
Tip(n)ﬂ«"" = exp { g %wk} = g %(JZ; #az’)

The conclusion now follows from matching coefficients of like powers of
z. O

Theorem 8.

(D! Toli/i
= S Tlets

k=1 ' i1+io+Fig=n j=1
B { (—1)* 1 ifn = E(£m)

0 otherwise.

Proof. Let f(n) = —n, A = N, use (4) and Theorem Y. O
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