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THE ERGODIC HILBERT TRANSFORM
ON THE WEIGHTED SPACES &£,(G,w)

PHYLLIS PANMAN

ABSTRACT. We extend a theorem of Hunt, Muckenhoupt
and Wheeden on weighted norm inequalities for the Hilbert
transform. Our generalization to locally compact abelian
groups is formulated in terms of the ergodic Hilbert transform
and the ergodic Ap-condition.

1. Introduction. We consider the question of the continuity of
the ergodic Hilbert transform from a weighted £,-space £,(G,w) into
itself, where G is a locally compact abelian group. The classical result
for G = R or T is that the Ap-condition for a weight w characterizes
the continuity of the Hilbert transform. This result was given by
Hunt, Muckenhoupt and Wheeden [6], which we state in the following
theorem.

Theorem 1.1. Let G = R or T, let T = H or MH, the Hilbert
transform or maximal Hilbert transform, and let w be a nonnegative
function in &1 (G). If 1 < p < oo, then the weighted norm inequality

(1.1) /G TH(O)Pwt) dt < K, /G F@)Pu(t) di

holds for every f € £,(G,w) if and only if the weight w satisfies the
Ap-condition

) s [w@a( g [wmtove dt>p_1 =4

When G is any locally compact abelian group, the ergodic A,-
condition, defined in terms of a continuous homomorphism from R into
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318 P. PANMAN

G, is analogous to the Ap-condition. Using the transference methods
of Coifman and Weiss, we show that if a weight w satisfies the ergodic
Ap-condition on a locally compact abelian group G, then the ergodic
Hilbert transform is bounded from £,(G,w) into itself. This is an
extension of a theorem of Lancien [7]. However, transference methods
are not applicable in proving the converse.

In this paper we develop new methods to attack the converse. We
define the uniform A,-condition, uniform with respect to continuous
homomorphisms from R into G, and construct examples of weights
satisfying this condition. In the case G = R or T, the uniform
Ap-condition reduces to the A,-condition. In our main theorem,
Theorem 1.2, we consider a continuous weight w on a locally compact
abelian group G. We show that the ergodic Hilbert transform is
bounded uniformly with respect to continuous homomorphisms from
R into G exactly when w satisfies the uniform Ap,-condition. This
reduces to the classical result for the cases of G =R or T.

Before stating our main result, we need to define terms used through-
out the paper. We let G denote a locally compact abelian group with
character group G and Haar measure u, and suppose that there is a
continuous homomorphism ¢ : R — G. For a function f € £;(G), the
nth truncated ergodic Hilbert transform, with respect to the homomor-
phism ¢, is given by

Hif@) =1 [ fle®)jd aeC.
1/n<|t|<n t

™

The ergodic Hilbert transform is defined for almost every « by H? f(z) =
lim,,_, o Hf f(z), and the mazimal ergodic Hilbert transform is defined
for almost every x by MH? f(z) = sup,, Hf f (z).

Now suppose 1 < p < oo and w : G — RT is a nonnegative locally
integrable function. The weight w satisfies the ergodic A,-condition,
with respect to the homomorphism ¢, if, for almost every z € G,

(1.2) B
s 1 [ wte— o) ar(h [w o Ve pe)ar) < 4

where the constant A¥ is independent of z. In this case w € A%(G)
and A is the least constant such that (1.2) holds. (In other words,
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w € AP(G) if and only if, for almost every z € G, the functions
w, : R — R, defined by w, (t) = w(z — ¢(t)), satisfy the A,-condition
on R, with a constant A¥ independent of x.) Now, if w € A%(G) for
all continuous homomorphisms ¢ : R — G and 2, = sup,, A7 is finite,
then we say that w satisfies the uniform A,-condition or w € A,(G).

If f is a v-measurable function defined on G and 1 < p < oo, the
Lorentz £, o quasi-norm is defined by ||f\|f:p o =sup, T(v({z € G

|f(z)| > 7}))*/P. See [11, Chapter 5, Section 3]; note that || - ”)*3;, o)
actually defines a norm when 1 < p < oo.

We now state our main result.

Theorem 1.2. Let 1 < p < co. Let G be a locally compact abelian
group. Let TY = H? or MHY and suppose that w € €t (G). Then the
wetghted norm inequality

(1.3) 1% flle < Kpllflle,cw)

p,o0(G,w) —

holds for all f € £,(G,w) N L1(G) and all continuous homomorphisms
¢ : R — G if and only if the weight w € A, (G).

The plan of the paper is as follows. In Section 2 we prove the necessity
part of Theorem 1.2. In Section 3 we prove a result that shows that if
the ergodic Hilbert transform is bounded from £,(G, w) into itself, then
it is bounded on certain subspaces. In Section 4 we use this result, along
with some other arguments, to prove our main theorem, Theorem 1.2.
In Section 5 we construct weights that satisfy the uniform A,-condition.

2. Weighted norm inequalities on locally compact abelian
groups. In this section we show that, if G is a locally compact abelian
group and w satisfies the ergodic A,-condition, then the ergodic Hilbert
transform is bounded from £,(G, w)N£;(G) into £,(G, w). In the case
that G is compact, Lancien [7] shows that the necessity part of our main
theorem, Theorem 1.2, holds. We show that this is also true when G is
a locally compact abelian group. Our proof is similar to the argument
in [7], using the transference methods of Coifman and Weiss [3]; we
include the proof here for completeness.
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Theorem 2.1. Let 1 < p < oo. Let G be a locally compact
abelian group with Haar measure p, let ¢ : R — G be a continuous
homomorphism, and let T¥ = H¥ or MHY. Ifw : G — R¥ is in
A¥(G), then the weighted norm inequality

172515, w (@) < AF 2y )

holds for all f € £,(G,w) N £1(G).

Proof. We show the theorem holds for the case 1 < p < co. The case
p = 1 follows by a similar argument. We assume that w € A?(G) with
bound A7 and show that the inequality

(2.1) IT% flle,cw) < AP flle,(cw)

is valid for all f € €yo(G). (By a straightforward argument using [5,
Theorem 33.11], it follows that (2.1) holds for all f € £,(G,w)NL1(G).)
Let K, ={t:1/n < |t| < n} and k,(t) = (1/(7t))1k, (t). To see that
(2.1) holds, it is enough to show that, for N > 1, the inequality

(2.2)

[ (s, 12 1)) (o) dute) < (457 [ 1£(@)]Pw(o) dute)

1<n<N

is valid for all f € €yo(G). Then (2.1) follows from Fatou’s lemma.

To see that (2.2) holds, let V > 1 and fix f € €y(G). Since R
is amenable, given ¢ > 0, we can choose a compact set K such that
|K—Kn|/|K| < 1l+e¢, see [3, p. 8]. Then, by the translation invariance
of Haar measure p and Fubini’s theorem, we have the following:

[ (e 1 £@)]) () die)

- % /K [ (max 1272 = o(0)]) sl = o(t) dn(o)
=i [ (s, [ st paoras] )

~w(z — p(t)) dt dp(z)

:%/(}A{(lglangv/;f(xcp(ts))lK_KN(ts)kn(s)ds>p
~w(z — p(t)) dt du(z).
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Let g, (t) = f(z — ¢(t))1x—ky (t) and w,(t) = w(zr — ¢(t)). We have
assumed that w € A# (@), which means that, for y-almost every z € G,
w, satisfies the A,-condition on R with bound A7. Then, by the above
equalities and Theorem 1.1, we have the following

[ (s 1122 £@))) wta) dte)

1<n<N
1 p
= W/(V;\/IV( <1g1la§XN‘/Rgz(t—8)kn(8)ds>

- wy(t) dt du(z)

< O [ [ lgattpwa(t deaute)

A®)P
—(|;;) [ [0
(e — olt)) du(a) dt

= “’p7|K_KN| z)Pw(x T
= gy S [ 1 p@)Pue) duta).

Since (|[K — Kn|/|K]|) < 1+ ¢, and ¢ is arbitrary, we have shown that
(2.2) holds, completing the proof of the theorem. O

3. Subspaces of £,(G,w). The next theorem is a crucial result
needed to prove our main theorem, Theorem 1.2. It is necessary for
our analysis to define the function space A£;(G), where G is a locally

compact abelian group: A£,(G) = {f € £.(Q): f € £.,(G)}.

Theorem 3.1. Let 1 < p < oco. Let G be a locally compact abelian
group, and let H be a closed subgroup of G. Let 8 : R — H be a
continuous homomorphism from R into H. Let T? = HP or MHP
and w € €1 (G). Suppose the weighted norm inequality

(3.1) IT°£1I%, () < KpllFllepicm)

holds for all f € £,(G,w)NL1(G). Then, for everyy € G, the weighted
norm inequality

(3-2) T2 1%y oty < KpllF L, (21,0,
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holds for all f € £,(H,wy) N £1(H), where w, : H — R* is the
translate of w defined by wy(h) = w(y + h).

Proof. 1t is enough to show that, for any y € G, we have for all
F e Q:()()(H) N ASl(H)
(3.3)

1{h:max1§n§N |H,€F(h)\>1}(h)wy(h) dpp(h) < KZI;HFHIQP(H,%)’

H

where K, is independent of F, y and N. (By a straightforward
argument using [5, Theorem 33.11], it follows that (3.3) holds for all
F e £,(H,wy)N£1(H). Then the theorem follows by Fatou’s lemma.)

Fix N € N, and fix F € €yo(H) N AL, (H). Let A = A(G,H) be
the annihilator of H in G. By [9, p. 35], we have G/A = H and A
is closed. Since F € AL, (H), we have F € £,(H) = £,(G/A). By
the Weil formula [5, Theorem 28.54] it is easy to see that there is a

function v € £1(G) such that

(3.4) a(~h) = F(h), heH.

Now if —Kqo = supp F, by [5, Theorem 31.37], there is a function

g € £1(G) such that § € €yp(G) and § = 1 on —Ky. Define
f S Q:O()(G) n A,Sl(G) by

Clearly we have f(h) = F(h) for all h € H.

Let K be a compact neighborhood of the identity in G/H. Let U be
an open neighborhood containing K. By [1, Proposition 2.13], there is

a measure v € M(G) such that
supp 0 C Nz (U), 0<9<1 and o=1onn, (K),

where ng : G — G/H is the natural map from G onto G/H. Then,
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clearly, for all z € ;' (K) and h € H,

(35)  max, [H(0f)(a+h)

= InaXx
1<n<N

= max
1<n<N

= max |HJ(f)(@+h)]-

Fix y € G. By the hypothesis and the fact that 0 < 0 <1,
(3.6) /G L ey 15 (0 o1 ()10 (2) ()
B /G HaeGumaxy cnen [H2(05) (o)]>1 (D)W () du(z)

< 5 [ 100)-y@Pu(e) duto)

Let A = {z € G : maxi<,<n |HZ(0f)(z)| > 1}. By (3.6), we have
14wy € £1(G), so we can apply the Weil formula [5, Theorem 28.54],
to get

/ /lA(:E—i—h)wy(x—f—h)d,uH(h)d,ug/H(x—i—H)
G/HJH
~ [ La@uy(@) du(o)
G
<K [ [07() 7w, () dute)

_ K;;/ l6(z + ) f(z + h)[?
G/HJH

~wy(z + h)dpp(h) dpg a(z + H).
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Note that 0(x +h) =0if 2+ H ¢ U and h € H. So we have
[ 14+ byt 7)) (= + 1)
KJH

< K? /U /H oz + B) f(z+ B

Let B = {z € G : maxj<n<n |HE f(x)| > 1}. From (3.5), the above,
and 0 <0 <1,

/K/HlB(fU—i-h)wy(x+h)duH(h)dpg/H(m+H)
:/K/H1A($+h)wy(w—l—h)duH(h)dug/H(w—i—H)
SKg/U/H\ﬁ(m+h)f(w—i—h)|pwy(w+h)duH(h)d,ug/H(ac—|—H)
SKI‘;/U/H\f(a:+h)\pwy(a:+h)duH(h)dug/H(w+H).

Since U is an arbitrary open neighborhood containing K, we can replace
U by K to get

60 [ [ 15 By, o) dun(h) discym(o -+ H)

<& [ [ 1fa WPy e+ 0) du6) duynle + 1)

It is easy to see that the function M(z) = maxj<,<n |HE f(z)| is
a continuous function on G and has compact support. Also, since
1p is the characteristic function of an open o-compact subset of G,
there is a sequence (u;)72; C €go(G) such that 0 < u; < w;y1 and
uj(x) = 1g(x) for all x € G.

By (3.7) we have

//uj(ac—i-h)wy(:v—f-h)d,uH(h)d,ug/H(x—i-H)
KJH

SK{;/K/H‘f(:v-}-h)‘Pwy(x—}—h)duH(h)duG/H(I_}_H)‘
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Now, for any function v € €go(G), the function z — [, v(z+h)dug(h)
is continuous on G and constant on cosets of H. Hence, the function
+H — [, v(z+h)dpy(h) is well-defined and continuous on G/H. So,
since w is continuous on G and K is an arbitrary compact neighborhood
of the identity in G/H, we have

[ sy 6) dpaa0) < 15[ 150, (0) ),
H H

But f(h) = F(h) for all h € H, and so, by the monotone convergence
theorem,

[ Lnertmneszcn oy (B () d (1)
— [ 160w, ) dua(h)
H

<K? /H |F(B)Pwy () dyur (1),

where K, is independent of F', y and N. Thus we have shown that
(3.3) holds, completing the proof of the theorem. o

Corollary 3.2. Let 1 < p < co. Let G be a locally compact abelian
group, and let ¢ : R — G be a topological isomorphism. Let TY = H¥
or MH?, and let w € €T (G). Suppose the weighted norm inequality

IT?FIIE, « cw) < Epllflle,cw)

holds for all f € £,(G,w) N £1(G). Then w € AL (G), where AY < K,
and the inequality in (1.2) holds for all x € G.

Proof. This follows immediately from Theorem 3.1 and Theorem 1.1.
]

4. Proof of main theorem. To prove our main theorem, Theo-
rem 1.2, we first prove the case of G = T™ and then use this to prove
the theorem for certain compact groups, which we then use to prove
the theorem for any locally compact abelian group.
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The following notation will be used. If ¢, : R — T is defined by
op(t) = (et eicrat || ein—19t) e say that oy is a one-dimensional
homomorphism. In the next theorem we prove the case of G =
T™ by approximating continuous homomorphisms by one-dimensional
homomorphisms.

Theorem 4.1. Let 1 < p < oo. Let w € €H(T"), and let
T% = H?Y or MH¥. Suppose that, for all continuous homomorphisms
p: R — T", the weighted norm inequality

1T f1I5,, o (xmw) < Epllfll2,(rm,w)

holds for all f € £,(T",w) N £1(T"), where K, is independent of f
and ¢. Then w € A,(T") and A, < K2(47)?P.

Proof. Let ¢ : R — T™ be a continuous homomorphism, where
o(t) = (e"t, ... ,e**?). To show that w € AZ(T"), fix an interval
I = [¢,d]. Since w is continuous on the compact metric space T", it
is easy to see that there is a sequence of continuous one-dimensional
homomorphisms ¢f : R — T" such that, for all z € T" and
all t € I, w(zpf(=t)) — w(zp(—t)) and w= VP~V (zpk(~t)) —
w~ P~V (zp(—t)). Fixing k, by the hypothesis and Theorem 3.1, we
have for each x € T™, the weighted norm inequality

e I
I, e < Kol e

holds for all f € £,(¢F(R),w,) N L1(p (R)) where K, is independent

of f and z. But ¢f(R) = ¢f(R) & T, so by Theorem 1.1 we have,
for all z € T", w, € A,(¢F(R)). (The bound A, is less than or equal
to K2(4m)%; see the proof of Theorem 1.1 in [6].) This is true for all
k € N so, by Fatou’s lemma, we have for all z € T,

i [ weet-oa( g [ e oo ‘“)pl

‘ ‘hmlnf/ w(zpy (—t)) dt

(l1m1nf—/ ~1/=1) gk (— ))dt)

p—1
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1
m hmsup/w(xgallf(ft))dt
I

p—1
hmsup<| |/w_1/(p_1)(m<p’g(—t)) dt>
2
<K, (4m)?P

We can do this for all intervals I, hence w € A#(T") and the inequality

n (1.2) holds for all x € T™. Since this is true for all continuous
homomorphisms ¢ : R — T", we have w € 2,(T") and A, <
K2(4m)?. u]

A group G is solenoidal if it contains a dense homomorphic image
of R. In the next theorem we prove the sufficiency part of our main
theorem, Theorem 1.2, in the case when G is a compact solenoidal
group. We need the following lemma.

Lemma 4.2. Let 1 < p < oco. Let G be a compact solenoidal abelian
group and let T¥ = HY or MH?. Let S = ({X; ?:1> be a finitely
generated subgroup of G, let Gy = A(G, S’) be the annihilator of S in
G, and let py be Haar measure on Gqy. Suppose w € €T(G) and for all
continuous homomorphisms ¢ : R — G, the weighted norm inequality

T2 FI%, 6wy < Kpllflle, @)

holds for all f € £,(G,w) N £1(G). Then wy € A,(G/Gy), where
A, < K2(4m)*! and wo : G/Go — RT is defined by wo(z + Go) =
Ja, wlz +y) dpo(y)-

Proof. It suffices to show that, for all continuous homomorphisms
B : R — G/Gy, the weighted norm inequality

(4.1) ITPFI%, (G /Govwo) < KollFlle, (@ /como)

holds for all f € £,(G/Go,wo) N £1(G/Gy), where K, is independent
of f and . This is because S is finitely generated and G is torsion

free, see [4, Theorem 25.18], so that S is isomorphic to Z* and
G/Go = S = TF; then we can use Theorem 4.1 to get wy € 2A,(G/Go)

with 2, < K2(4m)%.
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To show that (4.1) holds, fix a continuous homomorphism 5 : R —
G/Gy with adjoint 3 : S — R. By [4, p. _441], there is a continuous
homomorphlsm ¥ : G — R that extends 3. So then we can realize 8
by B:8 5 G % R, where ¢ is the identity map from $ into G. Then
we have 6: R 5 G 5 G /Gy, where 7 is the natural map from G onto
G/Gy and ¢ : R — @G is the adjoint of 1. Now fix a trigonometric
polynomial f € T(G), so then f*py € £,(G,w) N L1(G). Letting B =
{z € G:|T?(f*po)(z)| > 1} and By = {z € G : [T#(fy xpo)(x)| > 1},
we have by the translation invariance of u, Fubini’s theorem, and the
hypothesis,

/G1B( Yw * po(z //Go 1p(z)w(z —y) duo(y) du(x)
— /G 0 /G 1p, (z)w(z) du(z) dpo(y)

<K? /G /G [Fy * 0 (&) Pw() dia() dio()
= &2 [ 1+ mo(@)lPw x po(s) due).

Using the Weil formula [5, Theorem 28.54] and the fact that 8 = no,
it is easy to see that this is enough to show that (4.1) holds, completing
the proof of the lemma. a

Theorem 4.3. Let 1 < p < co. Let G be a compact solenoidal
abelian group equipped with Haar measure p and dual G. Let T% = H¥
or MH¥. Suppose w € €1(G) and that whenever ¢ : R — G is a
continuous homomorphism, we have for all f € £,(G,w) N £.(G),

1T%flle, oG w) < Kpllflle,cw)s

where K, is independent of f and ¢. Then w € A,(G), where the
bound A, < K7 (4m)%P.

Proof. By the Stone-Weierstrass theorem, the set of trigonometric
polynomials is dense in €(G), see [9, p. 24]. So, since w € €T (G),
there is a trigonometric polynomial h,, such that ||h, —wl, < 1/n. Let
Wy, = |hyp| + 1/n, and we have

(42) Jwn = wlly = [llfal +1/n = wlha < 1/n+ bl = wle < 2/n.
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We claim that, for any continuous homomorphism ¢ : R — G, we
have for all f € £,(G,w,) N £:1(G),

(4.3) 1T £11%, G wm) < Collflle,wa)s

where 6,, is a constant independent of f, n and ¢. To prove the
claim, let ¢ : R — G be a continuous homomorphism, and let

f € £5(G,wn)NL1(G). By [2, Theorem 6.5], we have T2 f|% (g ) <

Mprng(G,u), where M, is a constant independent of f and ¢. By
(4.2), the hypothesis and [2, Theorem 6.5],

T2 1%, (@)’

— sup? /G 1(scciire 1oy (2)wn(2) ds(z)

T

< supr? /G 1accpre fomy (@) wm(z) — w(z)] du(z)

T

T sup P /G Lacare s1omy (@)u(a) dp(z)

T

S Wi% /G |f ()P du(z) + K /G £ (2)[Pw(z) du(z)
< 207, [ 7@ (o) duta)

K3 [ 1@ lu(e) — (@) duta)

83 [ 1@l 0,0 duta)

<M1 6 )+ 2K e () BB NI G

= Gyl Gy

where 6,, is independent of f, n and ¢. Thus we have proved that (4.3)
holds for any continuous homomorphism ¢ : R — G.

Fix n € N. We have w, (z) = |k, (z)| +1/n = | 21 a;X; ()] +1/n,
where a; € C and X; € G. Define S, C G to be the subgroup
generated by {Xj}é(g If we let G = A(G,S,), the annihilator of

S, in G, then by (4.3) and Lemma 4.2, we have wy € A,(G/G§),
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where wi(z + G§) = fcg wp(z + y)dud(y) and A, < (Cp)2(4nm)2P.
Now, by the definition of Gfj and w,,, we have w,(z + y) = wy,(x) for
all y € G, and hence w (z + Gf) = w,(z) for all z € G. Then clearly
it follows that w, € 2,(G), where the constant 2, is independent of

n. By an argument similar to that used in Theorem 4.1, it follows that
w e A, (G). o

Now if G is any locally compact abelian group and ¢ : R — G is a
continuous homomorphism, then ¢ is either a topological isomorphism
or ¢(R) is compact [4, Theorem 9.1]. We use this fact in the proof of
our main theorem, Theorem 1.2.

Proof of Theorem 1.2. The necessity part of the theorem follows from
Theorem 2.1. We show that the sufficiency part of the theorem holds.
Let ¢ : R — G be a continuous homomorphism. If ¢ is a topological
isomorphism, then w € A#(G) by Corollary 3.2, so suppose p(R) is
compact. Consider a continuous homomorphism g : R — m Since
we also have 8 : R — G, given any f € £,(G,w) N £1(G), we have by
the hypothesis

||Tﬂf||zp,oo(G,w) < KP”f”Qp(G,w)v

where K, is independent of f and 8. Then, by Theorem 3.1, for all
y € G, the weighted norm inequality

B £||* -
I AW, . @, < Kol e, G,
holds for all f € £,(¢(R),wy) N L£1(¢(R)), where K, is independent
of f, y and 8. This is true for all continuous homomorphisms (3 :

R — ¢(R) so, by Theorem 4.3, w, € A,(¢(R)) for all y € G, where
the constant 2, < (Cp)?(4m)*. In particular, w, € Af(p
y € G. Then, given y € G, we have, for some z = ¢(s) € p(

(R)) for all
¢(R),

-~ \2 2p i _
(Cp)2amy > sup o [ ot — 1)

(b [ oot opar)



THE ERGODIC HILBERT TRANSFORM 331

1
=sup — wy (p(t)) dt
I |I| s—1I

([ e e a)

1
=sup i /Iw(y —p(t)) dt

' (ﬁ / w D (y — (1)) dt)p_l.

(Refer to the proofs of Theorem 4.1 and Theorem 4.3 to see that the
above inequality actually holds for all + € ¢(R).) This is true for
any y € G, so w € Af(G) and A? is independent of ¢. Thus, for
all continuous homomorphisms ¢ : R — G, we have w € Af(G) and
sup,, AY is finite. Hence, w € ,(G), completing the proof of the
theorem. o

5. Examples of weights satisfying the uniform A,-condition.
The following question is still open: If we suppose that (1.3) holds
for a weight w and a fixed homomorphism ¢ : R — G, does this
necessarily imply that w satisfies the ergodic Ap,-condition? The proof
of Theorem 1.2 shows the importance of the case of T™ in considering
this question. In this section we construct examples of weights on T™
that provide insight into the above question.

Stein [10] and Muckenhoupt [8] show that, if -1 < o < p — 1 and
Wy (z) = ||, then the weight W, satisfies the A,-condition on R. In
the next lemma we show that the functions defined by wq(t) = | sin¢|®
satisfy the A,-condition on T if and only if -1 < o < p — 1. Then,
defining the weights w : T™ — R™ by w(t1,... ,tn) = |sint;|* 4.+ +
|sint,|*", we have w € 2,(T") if and only if —1 < a; <p—1.

Lemma 5.1. Define the weight wy(t) = |sint|*. If1 < p < oo,
then wo € A,(T) if and only if -1 < a < p—1. If p =1, we have
wq € Ap(T) if and only if —1 < a < 0.

Proof. We show that w, € A,(T) for 0 < o < p—1. The case of —1 <
a < 0 follows by a similar argument. Let I = (a,b) C (—7/2,7/2).
Recall that the weight W, (z) = |z|* is in A,(R), and let A,(W,)
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denote the uniform bound. Note that |t| > |sint| > v/2[t|/4 for all
—m/2 <t < /2. Then we have

1 b 1 b /( 1) p—1
. o —a/(p—

—b—a/a | sin ¢| dt(—b_a/a | sin ¢| dt>

1 b 1 b 2 —a/(p-1) p—1
—/ 141 dt —/ V2, dt
b—a /, b—a /, 4

V2™
(T) Ap(Wa).

Next, consider an interval I = (7/2 —a,7/2+b), where 0 < a < b <
w/2. Let I} = (w/2—b,7/2+b) and J; = (7/2—b,7/2). Then we have

L (gntoar( L [ 1sintl-/0-D g )
— sint|*dt| — sin t P=3) dt
1] |I|
I
p—1
< = |smt|0‘dt< / | sint| =/ (P~ 1)d15>
|I| n 1]

2 p-t
|I| |s1nt|°‘dt<|I|/ |sint|°‘/(p1)dt>
J1
\/5 —a
S (CF) Am)

< 2 (42) "aowa)

~(42) "o

IN

-1

III”

(The first equality follows from the fact that sin(7/2—z) = sin(7/2+x);
the second inequality follows from (5.1).)

Now if I is any interval in R with |I| < 7/2, by the periodicity
of |sinz| and the translation invariance of Lebesgue measure, we
have (1/|1]) [, |sint|*dt((1/|I]) [, |sint|~®/®=D d@¢)P~! bounded by a
constant independent of I. This is enough to show that w, € A,(T)
for 0 < a < p—1. (By a simple change of variable, the boundedness for
intervals of length less than 7/2 implies the boundedness for intervals
of any length.)
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To show the converse, we consider the case o < —1. The other
cases follow by a similar argument. Let (a,,) be a sequence of positive
real numbers converging to 0, such that 0 < a, < 7/8, and let
I, = (an,m/4). Since 1 + a < 0, we have sup,,(sina,)'** = co. Also,
a/(p—1) < 1sothat —C = (1/ — (a+1))(1/(1 —a/(p —1)))?=! > 0.
Then

1 1 fo-1) g\
sup—/ sint"‘dt(—/ sint|” /P~ dt>
Py J, s gy, e

1
> sup m/ cost(sint)™ dt
n n I,

1 inp)-a/o-0 gt )
A\ cost(sint) =P~ dt
n I,

= sup ﬁ(fC)((sin an )T — (sin(r/4))1F)

. ((sin(ﬂ/4))1_a/(p_1) — (sinan)l—a/(p—l))p—l

> sup 725 (~0) (s, = (sin(r/4)!+)

. ((sin(w/4)1_°‘/(1’—1) _ (Sin(w/g))l—a/(p—l))p—l

= o0.
Thus wy ¢ A,(T) if @ < —1. O

Now 2,(T") & A2(T"). For example, define the function w(e'*,e%)
= |sinz|* + |siny|*? on T?, where -1 < a; < p—1 and ay >
p — 1, and consider the continuous homomorphisms ¢(t) = (e, 1) and
@1(t) = (1,€"). By Lemma 5.1, it is easy to see that w € A?(T?) but
w ¢ A2 (T?) and hence w ¢ 2,(T?).

Also there are weights w such that H¢ is bounded (with respect to
w) for some homomorphism ¢ : R — T", but H # is not bounded (with
respect to w) for some one-to-one homomorphism 3 : R — T". For
example, define the weight w(e®®,e”) = |sinz|* + |siny|** on T?,
where —1 < a3 < p—1 and as > p — 1. If we suppose that H*
is bounded (with respect to w) for all homomorphisms o : R — T2,
then by Theorem 1.2, we have w € 2,(T?), which is a contradiction to
the above. Then it is easy to see that there is a continuous one-to-one
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homomorphism 3 : R — T? such that H? is not bounded (with respect
to w).
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