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GROUPS OF ISOMETRIES OF
A TREE AND THE CCR PROPERTY

CLAUDIO NEBBIA

1. Introduction. Let X be a homogeneous tree of order ¢ + 1 > 3.
Let Q be the tree boundary. Let Aut (X) be the locally compact group
of all isometries of X. The reader is referred to [10] or [3] for undefined
notions and terminology. In [5] a locally compact group G is called a
CCR-group if 7(f) is a compact operator for every f € L'(G) and for
every m € G where G is the set of equivalence classes of all unitary
continuous irreducible representations of G. Every CCR-group is a
type I group [2]. Aut(X) is a CCR-group, see [7] or [3, p. 113].
Also, PGL(2,Q,) where Q, is the field of the p-adic numbers, is a
CCR-group [9]. It is known that PGL(2,Q,) may be realized as
a closed subgroup of Aut(X), for some tree X,in such a way that
PGL(2,Q,) acts transitively on X and Q. If G is a locally compact
totally disconnected group, then the property CCR is equivalent to the
fact that every unitary irreducible representation of G is admissible,
see Section 2 below. On the other hand, in the present paper, we
prove that if G is a closed unimodular CCR~subgroup of Aut (X) acting
transitively on X, then G acts transitively on 2. We conjecture that
the converse is true. This conjecture is supported by the fact that all
noncuspidal irreducible representations of a closed subgroup of Aut (X)
acting transitively on X and on 2 are in fact admissible representations.
This follows from the classification given in [3, p. 84]. It is also true
that every irreducible subrepresentation of the regular representation
is admissible [4, p. 6].

2. The result. There exists a K-invariant probability measure
on the tree boundary, 2, say v. Let P(g,w) be the Poisson kernel
associated with v, that is, P(g,w) = (dvy/dv)(w) for g € Aut (X) and
w € Q with vy(w) = v(g~'w), see [3, pp. 34-35]. For every t € R, we
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define the following representation of Aut (X) on L?(Q,v):

[m1/2+it(9) fl(w) = P27 (g,w) f (g~ w).

For every t € R, m /244 is irreducible. The series of representations
{m1/2+4i¢ : t € R} is called the unitary principal series of representations
of Aut (X). In [1], Bouaziz-Kellil proved that the representations of the
unitary principal series restrict irreducibly to any closed unimodular
subgroup of Aut (X) acting transitively on X. A locally compact group
G is called a CCR-group if, for every irreducible representation 7 and
for every f € L*(G), the operator 7 (f) = [, f(z)n(x)dz is compact.
As observed in the introduction, if G is a totally disconnected locally
compact group, then G is a CCR-group if and only if every unitary
irreducible representation is admissible. (Recall that a representation
7 is called admissible if, for every compact open subgroup H of G,
the subspace of H-invariant vectors is finite-dimensional.) In fact, the
space S of locally constant functions with compact support is dense in
LY(G) and, for every f € S there exists an open compact subgroup
H of G such that f = 2?21 ciXz;H where X, is the characteristic
function of the coset z; H. Therefore, 7(f) is compact for every 7 and
f in L'(G) if and only if m(Xg) is compact for every compact open
subgroup H. This means that 7 is admissible because (1/A(H))m(Xm)
(where X is a fixed left Haar measure) is the orthogonal projection on
the space of H-invariant vectors. The aim of this note is to prove that,
if G is a closed unimodular subgroup of Aut (X) which acts transitively
on X but does not act transitively on €2, then G is not a CCR-group.

Theorem. Let G be a closed unimodular CCR-subgroup of Aut (X)
acting transitively on X; then G acts transitively on Q.

Proof. We will prove that, if G is a closed unimodular subgroup of
Aut (X) acting transitively on X but not on Q, then G does not satisfy
the CCR property. As observed in the previous remarks, the restriction
to G of m1/24i¢|c is irreducible for every ¢ [1]. Therefore it is enough
to prove that 7y /51| is not admissible. Let xq be a fixed vertex of
X. Let K be the stability subgroup of xy. The subgroup K is compact
open in Gj let

My ={f € L*(Q) : for every k € K f(kw) = f(w) a.e.}.
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Since P(k,w) = 1 for every k € K, it follows that Mg is exactly
the closed subspace of L?(f2) consisting of all K-invariant vectors of
71 244t|a for every t € R. Hence, it suffices to show that dim My =
+o00. This is a consequence of the following two lemmas. ]

Lemma 1. Let G be a closed unimodular subgroup of Aut (X) acting
transitively on X. If G is not transitive on €2, then no orbit of G on 2
1S open.

Proof. We recall that, if an orbit E of G on {2 has an interior point,
then E is open. In [6] we prove that,if a closed subgroup of Aut (X)
acts transitively on X and on an open subset of 2, then either G fixes
one end of X or G acts transitively on 2. Also we can deduce from
the proof of [6, Theorem 3, p. 377] that, if the action of G on  is not
transitive, then G fixed an end w € Q and it acts transitively on Q\{w}.
Therefore, to prove Lemma 1, it suffices to show that, if G fixes w and
it acts transitively on Q\{w}, then G is not unimodular. In fact, G
contains a step one translation [6, Lemma 1, p. 378] because G acts
transitively on X. For a and 8 in Q with a # 3, let (o, 3) be the unique
infinite geodesic joining a to B. If G fixes w and it acts transitively on
Q\{w} then, for every wy # wy with wy # w and w; # w, there exists
g € G such that g(w) = w and g(wp) = wy, that is, g((w,wp)) = (w, w1).
Therefore, if w is a step one translation along (w,wy), then it is easy
to see that gwg~! is a step one translation along the geodesic (w,wr).
This means that, for every geodesic (w,w;) with w # wy, there exists a
step one translation in G along (w,w;). We now fix an infinite geodesic
(w,wp) with w # wp and a step one translation w € G along (w,wp). Let
{sn} be the sequence of distinct vertices of (w,wp) for n € Z. Let K,
be the stability subgroup of s,, for n € Z. For every n, K, is compact

open in G. We can suppose that the sequence {sg,s1,82,... ,8n,..-}
for n > 0 identifies wy while the sequence {sg,s-1,8-2,... ,8_n,...}
identifies w. So K,, C K,,_; for every n because G fixes w. Moreover,
we can suppose that w(s,) = s,41. Therefore wK, w=! C K,.

If G is unimodular, then A(wK, jw™?!) = MK, 1) < MK,) (A is
a fixed left Haar measure). On the other hand, K, C K, ; and
AMKn-1) = A(K,). Since the subgroup K, is compact open, then
K,_1 = K, for every n. The same argument applies to every geodesic
(w,w;) with w # w; by replacing w with gwg~! as observed. We have
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that X is the union of different geodesics (w,wq) where wg € Q\{w}, as
is easily seen. Therefore, it is easy to see that, if g(v) = v for a vertex
v, then g = e, that is, GN K, = {e}. This means that G acts faithfully
and transitively on X. This is a contradiction because such a group is
discrete and so it does not act transitively on Q\{w}. In fact, a discrete
subgroup of Aut (X) is countable; therefore, every orbit of a discrete
subgroup is countable. O

Lemma 2. Let G be a closed unimodular subgroup of Aut(X)
which acts transitively on X but does not act transitively on Q). Then
dim Mg = +o0.

Proof. Lemma 1 implies that no orbit of G on 2 is open. Obviously,
this property is true also for the subgroup K. We recall that an orbit
is open if and only if it contains an interior point. Let ¢ be the fixed
vertex of X such that K = K,,. For z € X, z # x¢, let C(x) be the
subset of €2 consisting of all ends w € €2 such that the infinite geodesic
[z0,w) contains z. C'(z) is open in (2, therefore K is not transitive on
C(z) for every z. Let S,, = {y € X : d(zo,y) = n} forn=1,2,3,...
Obviously S, is K-invariant for every n. Since K is compact, it is easy
to see that K acts transitively on €2 if and only if K acts transitively on
Sy, for every n. Also, for a fixed vertex = # zy, K acts transitively on
C(z) if and only if K acts transitively on E(z,n) for every n > d(z¢, x)
where

E(z,n) ={y € S, : 3w € C(z) such that y € [zy,w)}.

Hence, by Lemma 1, it follows that, for every = # xg, there exists
n > d(zg, z) such that K is not transitive on E(z,m) for every m > n.
As observed, S, is K-invariant and so S,, is a disjoint union of different
orbits of K on X. Let {S}, 5% ..., Sin} be the partition of S,, into the
orbits of K. Since K is not transitive on ,then i,, > 1 for n sufficiently
large. Let S7 be a fixed orbit of K contained in S,,; then the following
subset of 2,
Fi=J cw)

yes)

is K-invariant, and so X;n, the characteristic function of the set F3,
is a K-invariant continuous function with compact support, that is,
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Xjn € Mg. On the other hand, if F,{ ﬂF,},LL = ¢, then the functions X,
and Xp,, are linearly independent in L?(§2,v). Therefore, Lemma 2 is
a consequence of the following claim. For every integer p there exist p
sets Ay, Aa, ..., A, of type F? such that A; N A, = @ for every s # t,
s,t = 1,2,...,p. The claim follows easily from the first part of this
proof. Indeed, there exists n such that i,, > 1; let S}, S2 be two distinct
orbits of S,,. We define A; = F,}. There exists m > n such that K is
not transitive on the union of the sets E(x,m) with x € S2; therefore,
there exist two distinct orbits, say S} and S2,, in this set union of the
sets E(x,m). We define Ay = F; obviously F! N F! = & because
Sl N S2 = @. Similarly, there exists A > m such that the action of K
on the union of the sets E(x,h) with = € S2, is not transitive, and the
lemma follows. o

Remarks. (1) Using an argument similar to that for Lemma 2, we
can also prove that dim My = +4o0 for every compact open subgroup
H of G.

(2) Finally, we provide examples of closed unimodular nondiscrete
subgroups of Aut (X) as in Lemma 2. Let r be an integer such that
1 <r < g+1 where g+1 is the order of the tree X. Fori =1,2,... ,r,
let E; be a set of indices such that

|E1| + |E2|+ -+ |Er| = ¢+ 1.

We suppose that E;NE; = @ for every i # j. If r = 1, then |Eq| = ¢+1,
if r = ¢+ 1 then |Ey| = |E3| = --- = |E,;| = 1. We may label the
nonoriented edges of X in such a way that, for every vertex v of X,
there is a bijection of the set of indices £y UE>U---UE, onto the g+1
edges starting from the vertex v. We will only consider nonoriented
edges. This means that, if © and y are adjacent vertices, then the
edge [z,y] = [y, ] is labeled in the same way from 2’s point of view
or y’s point of view. In this way, for every v, there is a partition
FY Fy, ..., FY into disjoint subsets of the set of edges starting from v
such that, for every ¢ = 1,2,...,r, F is in one-to-one correspondence
with F;. Therefore, X becomes a labeled tree; we consider the set G2
of all isometries g of X such that g(F}) = F;;(v) foreveryi=1,2,...,r
and for every v € X, that is, the set of all automorphisms of the labeled
tree X .. It is easy to see that G is a closed subgroup of Aut (X) acting
transitively on X. If r = 1, then G, = Aut (X)) while r = ¢+ 1 implies
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that Gz = T" where I' is the simply transitive subgroup of Aut (X)
isomorphic with Z3Z%---*Zy q + 1-times [3, p. 16]. Moreover, it is
easy to see that, for 1 < r < ¢+ 1, G is a closed nondiscrete subgroup
of Aut (X) which acts transitively on X but does not act transitively
on 2. We prove now that G is unimodular. It follows directly that,
for every edge [z,y] there exists an inversion of order 2 in G on the
edge [z,y]. This implies that G contains a discrete simply transitive
subgroup T isomorphic to Z3Z% - - -* Zy g + 1-times [3, pp. 14-15]. Let
K be the stability subgroup of a fixed vertex v of X; K is compact
open in G, and G = T'K with ' N K = {e}. Since I is discrete and
K is compact, it follows that G is unimodular.
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