GROUPS OF ISOMETRIES OF A TREE AND THE CCR PROPERTY

CLAUDIO NEBBIA

1. Introduction. Let X be a homogeneous tree of order $q+1 \ge 3$. Let Ω be the tree boundary. Let Aut (X) be the locally compact group of all isometries of X. The reader is referred to [10] or [3] for undefined notions and terminology. In [5] a locally compact group G is called a CCR-group if $\pi(f)$ is a compact operator for every $f \in L^1(G)$ and for every $\pi \in \hat{G}$ where \hat{G} is the set of equivalence classes of all unitary continuous irreducible representations of G. Every CCR-group is a type I group [2]. Aut (X) is a CCR-group, see [7] or [3, p. 113]. Also, $PGL(2, \mathbf{Q}_p)$ where \mathbf{Q}_p is the field of the p-adic numbers, is a CCR-group [9]. It is known that $PGL(2, \mathbf{Q}_p)$ may be realized as a closed subgroup of Aut(X), for some tree X, in such a way that $PGL(2, \mathbf{Q}_p)$ acts transitively on X and Ω . If G is a locally compact totally disconnected group, then the property CCR is equivalent to the fact that every unitary irreducible representation of G is admissible, see Section 2 below. On the other hand, in the present paper, we prove that if G is a closed unimodular CCR-subgroup of Aut (X) acting transitively on X, then G acts transitively on Ω . We conjecture that the converse is true. This conjecture is supported by the fact that all noncuspidal irreducible representations of a closed subgroup of Aut (X)acting transitively on X and on Ω are in fact admissible representations. This follows from the classification given in [3, p. 84]. It is also true that every irreducible subrepresentation of the regular representation is admissible [4, p. 6].

2. The result. There exists a K-invariant probability measure on the tree boundary, Ω , say ν . Let $P(g,\omega)$ be the Poisson kernel associated with ν , that is, $P(g,\omega) = (d\nu_g/d\nu)(\omega)$ for $g \in \text{Aut}(X)$ and $\omega \in \Omega$ with $\nu_g(\omega) = \nu(g^{-1}\omega)$, see [3, pp. 34–35]. For every $t \in \mathbf{R}$, we

Received by the editors on October 12, 1996, and in revised form on December 6, 1996.

define the following representation of Aut (X) on $L^2(\Omega, \nu)$:

$$[\pi_{1/2+it}(g)f](\omega) = P^{1/2+it}(g,\omega)f(g^{-1}\omega).$$

For every $t \in \mathbf{R}$, $\pi_{1/2+it}$ is irreducible. The series of representations $\{\pi_{1/2+it}: t \in \mathbf{R}\}$ is called the unitary principal series of representations of Aut (X). In [1], Bouaziz-Kellil proved that the representations of the unitary principal series restrict irreducibly to any closed unimodular subgroup of Aut (X) acting transitively on X. A locally compact group G is called a CCR-group if, for every irreducible representation π and for every $f \in L^1(G)$, the operator $\pi(f) = \int_G f(x)\pi(x) dx$ is compact. As observed in the introduction, if G is a totally disconnected locally compact group, then G is a CCR-group if and only if every unitary irreducible representation is admissible. (Recall that a representation π is called admissible if, for every compact open subgroup H of G, the subspace of H-invariant vectors is finite-dimensional.) In fact, the space S of locally constant functions with compact support is dense in $L^1(G)$ and, for every $f \in \mathcal{S}$ there exists an open compact subgroup H of G such that $f = \sum_{i=1}^{n} c_i \chi_{x_i H}$ where $\chi_{x_i H}$ is the characteristic function of the coset $x_i H$. Therefore, $\pi(f)$ is compact for every π and f in $L^1(G)$ if and only if $\pi(\chi_H)$ is compact for every compact open subgroup H. This means that π is admissible because $(1/\lambda(H))\pi(\chi_H)$ (where λ is a fixed left Haar measure) is the orthogonal projection on the space of H-invariant vectors. The aim of this note is to prove that, if G is a closed unimodular subgroup of Aut (X) which acts transitively on X but does not act transitively on Ω , then G is not a CCR-group.

Theorem. Let G be a closed unimodular CCR-subgroup of Aut (X) acting transitively on X; then G acts transitively on Ω .

Proof. We will prove that, if G is a closed unimodular subgroup of Aut (X) acting transitively on X but not on Ω , then G does not satisfy the CCR property. As observed in the previous remarks, the restriction to G of $\pi_{1/2+it}|_G$ is irreducible for every t [1]. Therefore it is enough to prove that $\pi_{1/2+it}|_G$ is not admissible. Let x_0 be a fixed vertex of X. Let K be the stability subgroup of x_0 . The subgroup K is compact open in G; let

$$M_K = \{ f \in L^2(\Omega) : \text{ for every } k \in K f(k\omega) = f(\omega) \text{ a.e.} \}.$$

Since $P(k,\omega)=1$ for every $k\in K$, it follows that M_K is exactly the closed subspace of $L^2(\Omega)$ consisting of all K-invariant vectors of $\pi_{1/2+it}|_G$ for every $t\in \mathbf{R}$. Hence, it suffices to show that $\dim M_K=+\infty$. This is a consequence of the following two lemmas. \square

Lemma 1. Let G be a closed unimodular subgroup of $\operatorname{Aut}(X)$ acting transitively on X. If G is not transitive on Ω , then no orbit of G on Ω is open.

Proof. We recall that, if an orbit E of G on Ω has an interior point, then E is open. In [6] we prove that, if a closed subgroup of Aut (X)acts transitively on X and on an open subset of Ω , then either G fixes one end of X or G acts transitively on Ω . Also we can deduce from the proof of [6, Theorem 3, p. 377] that, if the action of G on Ω is not transitive, then G fixed an end $\omega \in \Omega$ and it acts transitively on $\Omega \setminus \{\omega\}$. Therefore, to prove Lemma 1, it suffices to show that, if G fixes ω and it acts transitively on $\Omega \setminus \{\omega\}$, then G is not unimodular. In fact, G contains a step one translation [6, Lemma 1, p. 378] because G acts transitively on X. For α and β in Ω with $\alpha \neq \beta$, let (α, β) be the unique infinite geodesic joining α to β . If G fixes ω and it acts transitively on $\Omega \setminus \{\omega\}$ then, for every $\omega_0 \neq \omega_1$ with $\omega_0 \neq \omega$ and $\omega_1 \neq \omega$, there exists $g \in G$ such that $g(\omega) = \omega$ and $g(\omega_0) = \omega_1$, that is, $g((\omega, \omega_0)) = (\omega, \omega_1)$. Therefore, if w is a step one translation along (ω, ω_0) , then it is easy to see that gwg^{-1} is a step one translation along the geodesic (ω, ω_1) . This means that, for every geodesic (ω, ω_1) with $\omega \neq \omega_1$, there exists a step one translation in G along (ω, ω_1) . We now fix an infinite geodesic (ω, ω_0) with $\omega \neq \omega_0$ and a step one translation $\omega \in G$ along (ω, ω_0) . Let $\{s_n\}$ be the sequence of distinct vertices of (ω,ω_0) for $n\in\mathbf{Z}$. Let K_n be the stability subgroup of s_n for $n \in \mathbf{Z}$. For every n, K_n is compact open in G. We can suppose that the sequence $\{s_0, s_1, s_2, \ldots, s_n, \ldots\}$ for $n \geq 0$ identifies ω_0 while the sequence $\{s_0, s_{-1}, s_{-2}, \dots, s_{-n}, \dots\}$ identifies ω . So $K_n \subseteq K_{n-1}$ for every n because G fixes ω . Moreover, we can suppose that $w(s_n) = s_{n+1}$. Therefore $wK_{n-1}w^{-1} \subseteq K_n$. If G is unimodular, then $\lambda(wK_{n-1}w^{-1}) = \lambda(K_{n-1}) \leq \lambda(K_n)$ (λ is a fixed left Haar measure). On the other hand, $K_n \subseteq K_{n-1}$ and $\lambda(K_{n-1}) = \lambda(K_n)$. Since the subgroup K_n is compact open, then $K_{n-1} = K_n$ for every n. The same argument applies to every geodesic (ω, ω_1) with $\omega \neq \omega_1$ by replacing w with gwg^{-1} as observed. We have that X is the union of different geodesics (ω, ω_0) where $\omega_0 \in \Omega \setminus \{\omega\}$, as is easily seen. Therefore, it is easy to see that, if g(v) = v for a vertex v, then g = e, that is, $G \cap K_v = \{e\}$. This means that G acts faithfully and transitively on X. This is a contradiction because such a group is discrete and so it does not act transitively on $\Omega \setminus \{\omega\}$. In fact, a discrete subgroup of $\operatorname{Aut}(X)$ is countable; therefore, every orbit of a discrete subgroup is countable.

Lemma 2. Let G be a closed unimodular subgroup of $\operatorname{Aut}(X)$ which acts transitively on X but does not act transitively on Ω . Then $\dim M_K = +\infty$.

Proof. Lemma 1 implies that no orbit of G on Ω is open. Obviously, this property is true also for the subgroup K. We recall that an orbit is open if and only if it contains an interior point. Let x_0 be the fixed vertex of X such that $K = K_{x_0}$. For $x \in X$, $x \neq x_0$, let C(x) be the subset of Ω consisting of all ends $\omega \in \Omega$ such that the infinite geodesic $[x_0,\omega)$ contains x. C(x) is open in Ω , therefore K is not transitive on C(x) for every x. Let $S_n = \{y \in X : d(x_0,y) = n\}$ for $n = 1,2,3,\ldots$. Obviously S_n is K-invariant for every n. Since K is compact, it is easy to see that K acts transitively on Ω if and only if K acts transitively on C(x) if and only if K acts transitively on C(x) if and only if K acts transitively on C(x) if and only if K acts transitively on C(x) if and only if K acts transitively on C(x) where

$$E(x, n) = \{ y \in S_n : \exists \omega \in C(x) \text{ such that } y \in [x_0, \omega) \}.$$

Hence, by Lemma 1, it follows that, for every $x \neq x_0$, there exists $n > d(x_0, x)$ such that K is not transitive on E(x, m) for every $m \geq n$. As observed, S_n is K-invariant and so S_n is a disjoint union of different orbits of K on X. Let $\{S_n^1, S_n^2, \ldots, S_n^{i_n}\}$ be the partition of S_n into the orbits of K. Since K is not transitive on Ω , then $i_n > 1$ for n sufficiently large. Let S_n^j be a fixed orbit of K contained in S_n ; then the following subset of Ω ,

$$F_n^j = \bigcup_{y \in S_n^j} C(y)$$

is K-invariant, and so χ_{jn} , the characteristic function of the set F_n^j , is a K-invariant continuous function with compact support, that is,

 $\chi_{jn} \in M_K$. On the other hand, if $F_n^j \cap F_m^h = \varnothing$, then the functions χ_{jn} and χ_{hm} are linearly independent in $L^2(\Omega, \nu)$. Therefore, Lemma 2 is a consequence of the following claim. For every integer p there exist p sets A_1, A_2, \ldots, A_p of type F_n^j such that $A_s \cap A_t = \varnothing$ for every $s \neq t$, $s, t = 1, 2, \ldots, p$. The claim follows easily from the first part of this proof. Indeed, there exists n such that $i_n > 1$; let S_n^1, S_n^2 be two distinct orbits of S_n . We define $A_1 = F_n^1$. There exists m > n such that K is not transitive on the union of the sets E(x,m) with $x \in S_n^2$; therefore, there exist two distinct orbits, say S_m^1 and S_m^2 , in this set union of the sets E(x,m). We define $A_2 = F_m^1$; obviously $F_n^1 \cap F_m^1 = \varnothing$ because $S_n^1 \cap S_n^2 = \varnothing$. Similarly, there exists h > m such that the action of K on the union of the sets E(x,h) with $x \in S_m^2$ is not transitive, and the lemma follows. \square

Remarks. (1) Using an argument similar to that for Lemma 2, we can also prove that dim $M_H = +\infty$ for every compact open subgroup H of G.

(2) Finally, we provide examples of closed unimodular nondiscrete subgroups of Aut (X) as in Lemma 2. Let r be an integer such that $1 \le r \le q+1$ where q+1 is the order of the tree X. For $i=1,2,\ldots,r$, let E_i be a set of indices such that

$$|E_1| + |E_2| + \cdots + |E_r| = q + 1.$$

We suppose that $E_i \cap E_j = \emptyset$ for every $i \neq j$. If r = 1, then $|E_1| = q+1$, if r = q+1 then $|E_1| = |E_2| = \cdots = |E_r| = 1$. We may label the nonoriented edges of X in such a way that, for every vertex v of X, there is a bijection of the set of indices $E_1 \cup E_2 \cup \cdots \cup E_r$ onto the q+1 edges starting from the vertex v. We will only consider nonoriented edges. This means that, if x and y are adjacent vertices, then the edge [x,y] = [y,x] is labeled in the same way from x's point of view or y's point of view. In this way, for every v, there is a partition $F_1^v, F_2^v, \ldots, F_r^v$ into disjoint subsets of the set of edges starting from v such that, for every $i = 1, 2, \ldots, r$, $i = 1, 2, \ldots, r$, $i = 1, 2, \ldots, r$ and for every i = 1, 2

that $G_{\mathcal{L}} = \Gamma$ where Γ is the simply transitive subgroup of Aut (X) isomorphic with $\mathbf{Z}_2^*\mathbf{Z}_2^*\cdots^*\mathbf{Z}_2$ q+1-times $[\mathbf{3},\ \mathbf{p},\ 16]$. Moreover, it is easy to see that, for 1 < r < q+1, $G_{\mathcal{L}}$ is a closed nondiscrete subgroup of Aut (X) which acts transitively on X but does not act transitively on Ω . We prove now that $G_{\mathcal{L}}$ is unimodular. It follows directly that, for every edge [x,y] there exists an inversion of order 2 in $G_{\mathcal{L}}$ on the edge [x,y]. This implies that $G_{\mathcal{L}}$ contains a discrete simply transitive subgroup Γ isomorphic to $\mathbf{Z}_2^*\mathbf{Z}_2^*\cdots^*\mathbf{Z}_2$ q+1-times $[\mathbf{3},\ \mathbf{pp},\ 14-15]$. Let K be the stability subgroup of a fixed vertex v of X; K is compact open in $G_{\mathcal{L}}$ and $G_{\mathcal{L}} = \Gamma K$ with $\Gamma \cap K = \{e\}$. Since Γ is discrete and K is compact, it follows that $G_{\mathcal{L}}$ is unimodular.

REFERENCES

- 1. F. Bouaziz-Kellil, Représentations sphériques des groupes agissant transitivement sur un arbre semi-homogène, Bull. Soc. Math. France 116 (1988), 255–278.
- **2.** J. Dixmier, Les C^* -algèbres et leurs représentation, Gauthier-Villars, Paris, 1969.
- 3. A. Figà-Talamanca and C. Nebbia, *Harmonic analysis and representation theory for groups acting on homogeneous trees*, London Math. Soc. Lecture Note Ser. **162** (1991).
- 4. Harish-Chandra (notes by G. van Dijk), Harmonic analysis on reductive p-adic groups, Lecture Notes in Math 162 (1970).
 - 5. I. Kaplansky, Group algebras in the large, Tôhoku Math. J. 3 (1951), 249-256.
- **6.** C. Nebbia, Amenability and Kunze-Stein property for groups acting on a tree, Pacific J. Math. **135** (1988), 371–380.
- 7. G.I. Ol'shianskii, Representations of groups of automorphisms of trees, Usp. Mat. Nauk 303 (1975), 169–170.
 - 8. J.P. Serre, Arbres, amalgames, SL_2 , Astérisque 46 (1977).
- 9. A.J. Silberger, PGL_2 over the p-adics: Its representations, spherical functions and Fourier analysis, Lecture Notes in Math. 166 (1970).
- 10. J. Tits, Sur le groupe des automorphisms d'un arbre, Essays on topology and related topics, Mémoires dédiés à G. de Rham, Springer-Verlag, Berlin, 1970, 188–211.

DIPARTIMENTO DI MATEMATICA "G. CASTELNUOVO," UNIVERSITÀ DI ROMA "LA SAPIENZA," 00185 ROMA, ITALY

 $E ext{-}mail\ address: {\tt CLNB@ITCASPUR.CASPUR.IT}$