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THE ERGODIC THEOREM
FOR TOPOLOGICAL COCYCLES

K.M. MADDEN AND N.G. MARKLEY

Cocycle occur in purely algebraic, measure theoretic, topological and
differentiable settings. The focus of this paper is continuous vector-
valued cocycles for lattice actions on compact metric spaces. Since
these cocycles satisfy the same inequality as a bounded linear operator,
it is natural to examine them for some kind of asymptotic linear
behavior. Specifically, for most points in the space is a “time” average
asymptotic to linear map? Any theorem of this type can be thought of
as an ergodic theorem for cocycles.

In 1991 Boivin and Derriennic [1] published a definitive cocycle er-
godic theorem which generalizes the Birkhoff individual ergodic theo-
rem. The context of their results is a measurable action of the integer
lattice Z™ or the vector space R™ and an invariant probability mea-
sure x. When the acting group is Z™, restrictions of the cocycle to the
generators of Z™ is required to be in the Lorentz space Lq(m, i), and
the proof depends on several delicate weighted maximal inequalities.

An ergodic theorem of the same type for Z™ was first stated by
Katok [2] without proof for an ergodic probability measure and cocycles
whose restrictions to generators were in Lq(u). A full discussion of the
relationship between these two theorems can be found in [1].

The purpose of this note is to show for continuous cocycles that an
ergodic theorem of the same type can be proved by quite different and
more elementary methods than those used by Boivin and Derriennic.
Our proof uses the familiar Birkhoff individual ergodic theorem and the
Poincaré recurrence theorem from the theory of a single measure pre-
serving transformation and passes to the Z™ action with an application
of the Ascoli lemma which is the distinctive feature of our approach.

The restriction to continuous cocycles for commuting homeomor-
phisms is not artificial. These cocycles provide a way of modeling

Received by the editors on February 3, 1997.
1991 AMS Mathematics Subject Classification. Primary 58F25, Secondary
28D10, 54H20.

Copyright ©1999 Rocky Mountain Mathematics Consortium

229



230 K.M. MADDEN AND N.G. MARKLEY

and studying continuous actions of R™ on metric spaces [9, 4]. Fur-
thermore, the growth and asymptotic properties of these cocycles are
important ingredients in their study [3, 8], and asymptotic averages of
the kind considered here play an important role in earlier works. (See
[5, 6, 7].) This paper closes a gap in the theory of continuous cocycles
by providing a simple proof of a cocycle ergodic theorem in that con-
text and thereby a better understanding of the asymptotic behavior of
continuous cocycles.

Throughout this paper, X will be a compact metric space on which
the integer lattice group Z™ is acting as a group of homeomorphisms.
The action of a € Z™ on z € X will be denoted by az. It will be
convenient to use the norm

m
ol = > luil
i=1

on Z™ and R™.

A topological cocycle or simply a cocycle in the present context is a
continuous function h : X x Z™ — R satisfying

h(z,a + b) = h(z,a) + h(az,b)
for all x € X and all a,b € Z™. Setting

h
|h||:sup{%:xeXandanm,a#O}
a

defines a norm on the vector space C of all topological cocycles. With
this norm C is a separable Banach space. Several essential properties
of continuous cocycles readily follow from these definitions. First
h(bz,—b) = —h(z,b) because 0 = h(z,0) = h(z,b —b). It then follows
that h(bz,a — b) = h(z,a) — h(z,b). From the definition of the norm
on C it is obvious that |h(x,a)| < ||h|||a| and then, using the preceding
observations, it follows that

|h(2,a) = h(z,b)| < [|hllla - b].

The linear maps from R™ to R will play a special role, and the vector
space of these linear maps will be denoted by £. Given L € L, setting
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h(z,a) = L(a) defines a cocycle, usually called a constant cocycle, and

so L CC.

The nonempty set of invariant Borel probability measures for the Z™
action will be denoted by M. A Borel set F of X is said to have
invariant measure one provided p(E) =1 for all p € M.

We can now state the main theorem:

Theorem 1. There exists a Borel set QQ of invariant measure one
and for each x € Q a linear map L, : C — L such that

L Ih(z,a) — La(h)(a)]

la]—o0 \a|

forallh € C and = € Q.

The proof has two main components, one measure theoretic and the
other topological. The measure theoretic part is concerned with an
analysis of limits of the form

h(x, N
lim h(z, Na)

N—o0
for fixed a € Z™. In the topological component, the cocycle is extended
to X x R™ and limits in the compact open topology are linked to those
of the form described above.

Let u € M, and let h € C. For fixed a € Z, the transformation
x — ax preserves the measure p and the individual ergodic theorem
for Z actions can be applied to it. Since

N—
= — ((ka)z,a)
Nk:

when N is a positive integer, by the individual ergodic theorem

lim hiz, Na) = h*(z,a)
N—o0

p-almost everywhere and h*(,a) € Ly (p).
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Because Z™ is countable, there exists a set Fy(h) of u measure one
such that, for all a € Z™,

. h(z,Na)
am =y = h@a)

when z € Ey(h). Notice that, from the equation,
h(bz, Na) = h(z, Na) — h(z,b) + h(Naz,a)
and the continuity of A, it follows that
h*(bz,a) = h*(z,a).

Thus, we may assume without loss of generality that the set Eq(h) is
invariant under Z™.

Proposition 1. Given u € M and h € C, there exists a set E(h) of
u measure one such that, for all v € E(h) and a,b € Z™,

h*(z,a+b) = h*(z,a) + h*(z,b).

Proof. For any pair of positive integers K and M, set

h(z,£Ne;
A(K,M) = {x € Ey(h) : % — h*(z, te;)
< L forall N > K
77 fora > ,
where {ey,ea, ..., en} is the standard set of generators for Z™. Clearly

A(K, M) C A(K +1, M)

and

and, consequently,
lim p(A(K,M))=1.

K—oo
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Now set

B(K, M)
={zc AK,M):Ya€e Z"&YL >03k>L> (ka)x € A(K,M)}.

It follows that u(B(K,M)) = u(A(K,M)) by applying the Poincaré
recurrence theorem to each transformation x — az. Also note that

B(K,M) C B(K +1, M).

Define the set E(h) by

Clearly, u(E(h)) = 1.
To complete the proof it suffices to show that

h*(z,ate;) = h*(z,a) £ h*(z,e;)
for x € E(h). First

B (oot o) — lim MoVt )

N—o00 N
.. hx,Na) h((NA)z,Ne;)
B = N

. h((Na)z,Ne;)
=h* lim ——2— 2,
@0+ Jim =y
In particular, the limit as NV goes to infinity of h((Na)z, Ne;)/N exists
and the problem is to compute its value.

Because z € E(h), given a positive integer M, there exists another
positive integer k(M) such that z € B(k(M),M). It follows from the
construction of B(K, M) that there exists n(M) > k(M) satisfying
n(M)azx € A(k(M), M). Therefore,

h(n(M)ax,n(M)e;)
n(M)

. 1
—h*(n(M)az,e;)| < i
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and, by the invariance of h*(-,¢;),

h(n(M)az,n(M)e;)
n(M)

. 1
—h*(z,€;)| < U

A similar argument shows that
h*(z,a —e;) = h*(z,a) + h"(z, —e;).
Finally, 0 = h*(z,0) = h*(z, —e; + €;) = h*(x, —e;) + h*(z, e;) implies
h*(z,—e;) = —h*(z, €;)

to finish the proof. a

Proposition 2. For every p € M there exists a set F(u) of u
measure one such that, for all h € C, v € F(u) and a,b € Z™,

. h(z,Na) .
m =N =k

and

h*(z,a+b) = h*(z,a) + h*(z,b).

Proof. Let h,, n =1,2,..., be a countable dense subset of C, and set

For h € C and = € F(u),

h(z,Na) h(z,Ma)

< ‘h(m,Na) hi(z, Na)

N M N N
hig(z,Na)  hg(z, Ma)
‘ N M
hi(z,Ma) h(z,Ma)
‘ M M

hi(z,Na)  hg(z, Ma)
< — _
<2l - o + | 5 =
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from which it follows that h(z, Na)/N is a Cauchy sequence. Further
use of the triangle inequality shows that the limit satisfies

h*(z,a+b) = h*(z,a) + h*(z,b)

and completes the proof. o

Corollary 1. For every ergodic p € M there exists a set F(u) of p
measure one such that, for all h € C, x € F(u), and a,b € Z™

N
lim h(z, Na) :/ h(z,a) dp
N X

N —oc0

/Xh(a:,a—l—b)du:/Xh(w,a)du—l—/xh(x,b)dp

Proof. If u is ergodic, then, because of the invariance of h*(, a),

and

h*(x,a):/Xh(x,a)du

on a set of u measure one. Thus, without loss of generality, k) (z,a) =
Jx hn(z,a) dp on the sets E(hy,), as described in the proof of Proposi-
tion 1 Because

[ ooy da = MEND <o o

+‘/h”(x’a)dﬂw

N

it follows that h*(x,a) = [y h(x,a)dp on F(u) for all h € C. u]

Proposition 3. There exists a Borel set Q of invariant measure one
and for each x € Q a linear map L, : C — L such that when h € C and
rTEeEQR

h(z, N
lim 7(% %)

R
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for all a € Z™.

Proof. First note that, for each h € C, the set

Q(h):{x:EILEEB lim WZL(a)VaEZm}

N —o00

is a Borel set. Set

Q=) Qhn)

where h,, n =1,2,..., is a countable dense subset of C.

Arguing as in the proof of the previous proposition, it follows that
Q C Q(h) for all h € C and @ = N{Q(h) : h € C}. Since F(u) C Q(h)
for all h, F(u) C Q and u(Q) = 1 for every invariant measure which
finishes the proof. a

We conclude with the proof of the main theorem. The proof involves
the topological component of our argument, and for this we will need
to extend h to X x R™ as follows. Using the standard triangularization
of R™ with Z™ as vertices, see Spanier [10, page 109], let H(z,v) be
the piecewise linear extension of h(z,a) to X x R™. It is easy to check
that, for a € Z™ and v € R™

H(z,a +v) = h(z,a) + H(az,v).
Moreover, there exists B > 0 such that

|H (2,0) — H(z,w)| < Blv—ul.

Proof of main theorem. Let @ be given by Proposition 3, let h € C
and construct H, the piecewise linear extension, as just described. For
r real

H(z,ra) h(z

_ I, H([r]az, (r — [r])a)
T [r] T r
where [r] denotes the integer part of r, and thus

lim H(z,ra)
r—00 r

= Lz (h)(a)
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because H(y,ta) is bounded for 0 <t < 1.

Now consider v € Q™, the subset of R™ with rational coordinates.
There exists ¢ € Z such that qu € Z™. Then

H(z,rv) _ 1 H(z, (r/q)qv)

r q r/q
which implies that
im &) L qe) = L (B)w)
ey 00 r - q T q — Lz

The family of functions

is equicontinuous because

‘H(m,rv)  H(z,rw)

1
< =BJ|rv — rw| = Blv — w]|.
r r

Similarly, for fixed v,

fHEm) )

r

is bounded. Applying Ascoli’s lemma, it follows that H(z,rv)/r
converges uniformly on compact subsets of R™ to L,(h)(v) when
T € Q.

In particular, H(z,rv)/r converges uniformly to L,(h)(v) on {v :
|v| = 1}. Therefore,

i |E@1alla/la)) p gy aiap| = 0.

|a]—o0 |a|
The proof is completed by noting that

h(z,a) ~ Ly(h)(@) _ H(lal(@/la)) | onany. o
a o m |
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