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MULTIPLICITY RESULTS ON A FOURTH ORDER
NONLINEAR ELLIPTIC EQUATION

Q-HEUNG CHOI AND TACKSUN JUNG

ABSTRACT. We are concerned with a fourth order semi-
linear elliptic boundary value problem under Dirichlet bound-
ary condition A2u+cAu = but +sin Q, where  is a bounded
open set in R™ with smooth boundary. We investigate the
existence of solutions of the fourth order nonlinear equation
when the nonlinearity bu™ crosses eigenvalues of A2 + cA un-
der the Dirichlet boundary condition and s is constant.

0. Introduction. Let 2 be a bounded open set in R™ with smooth
boundary 0. In this paper, we are concerned with a fourth order
semilinear elliptic boundary value problem

Au+cAu=but +s in Q,
u=0, Au=0 on 09,
where ut = max{u, 0}, s is real, and c is not an eigenvalue of —A under
Dirichlet boundary condition. The operator A? denotes the biharmonic

operator. We assume that b is not an eigenvalue of A? + cA under
Dirichlet boundary condition.

(0.1)

The nonlinear equation with jumping nonlinearity has been exten-
sively studied by many authors [3, 4, 6, 7, 8]. They studied the
existence of solutions of the nonlinear equation with jumping nonlin-
earity for the second order elliptic operator [6], for one dimensional
wave operators [3, 4], and for other operators [7, 8] when the source
term is a multiple of the positive eigenfunction.

In [13], Tarantello considered the fourth order, nonlinear elliptic
problem under the Dirichlet boundary condition

A*u+cAu=b[(u+1)T -1 in Q,

(0.2)
©u=0, Au=0 on 9N.
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She showed by degree theory that if b > A;(A; — ¢) then (0.2) has a
solution u such that u(z) < 0 in Q. In [9, 10], Micheletti and Pistoia
also investigated the existence of solutions of the above equation.

In this paper we investigate the existence of solutions of the fourth
order nonlinear equation (0.1) when the nonlinearity bu™ crosses eigen-
values of A% 4 cA under the Dirichlet boundary condition.

In Section 1 we introduce the Banach space spanned by eigenfunctions
of A? + cA and investigate the existence of solutions of (0.1) when the
nonlinearity bu™ satisfies \; < ¢, b < A1(A\1 — ¢) and when it satisfies
c < Al, )\1()\1 — C) <b.

In Section 2 we investigate the multiplicity of solutions of (0.1) under
the following two conditions.

Condition (1). A1 < ¢ < A2, b < Ai(A —¢) and s > 0.

Condition (2) c< A, /\k()\k,c) <b< )\k—l—l()\k—l—lfc) (k =1,2,.. )
and s < 0.

We show by use of a variational reduction method that equation (0.1)
under each condition of the above has at least two solutions.

1. The Banach space and the existence of solutions. In this
section we introduce the Banach space spanned by eigenfunctions of
the operator A% 4 cA, and we investigate the existence of solutions of
the boundary value problem

Au+cAu=but +s in Q,
u=0, Au=0 on 09Q.
Here ¢ is not an eigenvalue of —A under the Dirichlet boundary

condition, and the nonlinearity bu™ satisfies A\; < ¢, b < A1(A; — ¢)
or ¢ < Ay, Ay(A —¢) <b.

Let Mg, k = 1,2,..., denote the eigenvalues and ¢, £ = 1,2...,
the corresponding eigenfunctions, suitably normalized with respect to
L?(£2) inner product, of the eigenvalue problem Au+Au = 0 in €, under
Dirichlet boundary condition, where each eigenvalue Ay is repeated as
often as its multiplicity. We recall that 0 < A\; < Ay < A3 < -+
Ai = 400 and that ¢1(z) > 0 for z € Q. The eigenvalue problem

A%u+cAu=pu in 9,
u=0, Au=0 on 00

(1.1)
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has infinitely many eigenvalues
ur = e (Ag — ), k=1,2,...

and corresponding eigenfunctions ¢ (x).

The set of functions {¢ki} is an orthogonal base for W;?(2). Let us
denote an element u of W;*(2) as

u:th¢k, Zhi<oo

Let ¢ not be an eigenvalue of —A, and define a subspace H of W, ()
as follows

H= {u eWEA(Q) : Y e — ¢)hf < oo}.

Then this is a complete normed space with a norm

[l = [ 30 Peve — aing]

Since A\, — 400 and c is fixed, we have the following simple properties.

Proposition 1.1. Let ¢ not be an eigenvalue of —A wunder the
Dirichlet boundary condition. Then we have

(i) A%u + cAu € H implies u € H.
(i) [[lull] > Cl|ul|L2(q)y for some C > 0.
(i) [[ull 20y = 0 if and only if |[[u]| = 0.

Proof. (i) Suppose c is not an eigenvalue of —A, and let u = Y hy .
Then
A%y + cAu = Z )\k()\k — C)hk¢k.

Hence
00 > | [|A%u + cAull 2 =Y A(Ak — )| (Ae(Mk — ))h3
>CY Ik = IR = Jull %,
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where C' = infp{\e(Ax —¢) : k = 1,2,---}. (ii) and (iii) are trivial.
]

Lemma 1.1. Let d not be an eigenvalue of A? + cA and u € L?().
Then (A% + cA +d)‘ue H.

Proof. Suppose that d is not an eigenvalue of A2 +cA and finite. We
know that the number of elements of { (g —c) : |[Ax(Ax — )| < |d|} is
finite, where A\, (\x — c) is an eigenvalue of A% + cA. Let u = Y hydy.

Then
1

A2 4 cA+d) u=S by
(A% +eA+d) u Z)\k()\k—c)+dk¢k

Hence we have the inequality
1
AP+ eA+d) P =) (A — h;,
|||( +ecA+ ) U||| Z| k?( k C)|(>\k()\k70)+d)2 k
<CY h

for some C, which means that

(A2 + e + )| < Cllullpaay, C1=VC. B

With Lemma 1.1, we can obtain the following lemma.

Lemma 1.2. Let f € L*(Q). Let b be not an eigenvalue of A%+ cA.
Then all solutions in Wy *(Q) of

A%+ cAu=but + f(z) in Wy3(Q)

belong to H.

With the aid of Lemma 1.2, it is enough to investigate the existence
of solutions of (1.1) in the subspace H of W;?(Q), namely,
(1.2) A’u+cAu=0but+s in H.

Let A\, < ¢ < Agy1 and Ag(Ar — ¢), Ag+1(Ares1 — ¢) be successive
eigenvalues of A2 + cA such that there is no eigenvalue between
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)\k()\k — C) and )\k—l—l()\k—l—l — C). Then )\k()\k, — C) <0< >\k+1(>\k+1 — C)
and we have the uniqueness theorem.

Theorem 1.1. Suppose A\, < ¢ < A1 and Ag(Ar —¢) < b <
Me+1(Akt1—c). Then Equation (1.2) has exactly one solution in L*(£2)
for all real s. Furthermore Equation (1.2) has a unique solution in H.

Proof. We consider the equation
(1.3) —A%u—cAu+but =—s in L*Q).

Let 6 = {Ae(Ar — ¢) + Mer1(Ak41 — ¢)}/2. Then Equation (1.3) is
equivalent to

(1.4) u=(—A%—=cA+6)7'(6 —but —du” — s,

where (—A% — cA + §)~! is a compact, self-adjoint, linear map from
L?(Q) into L2(Q2) with norm 2/(Ak+1(Aks1 — ¢) — Ae(Ax — ¢)). We note
that

16— b)(ug —uy) — 8(ug —up)|
< max{[§ — b, |0 }uz — udl|

1
< g1 (k1 =€) = A(Ak — ) Hluz — wa-

It follows that the right-hand side of (1.4) defines a Lipschitz mapping
from L2(€2) into L2(2) with Lipschitz constant v < 1. Therefore, by the

contraction mapping principle, there exists a unique solution u € L?({2)
of (1.4).

On the other hand, by Lemma 1.2, the solution of (1.4) belongs to
H. O

We now examine Equation (1.2) when A\; < cand b < A;(A\; —c) < 0.
Theorem 1.2. Assume that A\; < ¢ and b < A\;(A; —¢) < 0. Then

we have

(i) If s < 0, then equation (1.2) has no solution.
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(ii) If s = 0, then equation (1.2) has only the trivial solution.

Proof. Assume s < 0. We rewrite (1.2) as
{=A% —cA+ 2 (M —)Yu+ {21 (M1 —¢) +b}ut
{1 —)u” =-s.

Multiply across by ¢; and integrate over Q. Since ({—A2—cA+\; (A —
¢)}u, ¢1) = 0, we have

(15) /Q (=M — ¢) + But — (A — )JuJby = —s /Q b1.

But {—X\1(A\1 —¢) + blu™ — {=X1(A1 — ¢)}u~ < 0 for all real valued
function u and ¢1(x) > 0 for x € Q. Therefore the left-hand side of
(1.5) is always less than or equal to zero. Hence, if s < 0, then there
is no solution of (1.2) and if s = 0, then the only possibility is u = 0.
O

For the case s > 0 in Theorem 1.2, we shall investigate the existence
of solutions of (1.2) in the next section.

If ¢ < M, AM(A1 —c¢) < band s > 0, then the left-hand side of (1.5) is
larger than or equal to zero and the right-hand side of it is negative.

Therefore we have the following theorem.

Theorem 1.3. Assume that ¢ < Ay and 0 < M(A\1 —¢) < b,
b# (M —¢), k=2,3,.... Then we have

(i) If s > 0, then equation (1.2) has no solution.
(ii) If s = 0, then equation (1.2) has only the trivial solution.

Proof. Assume that s > 0. We rewrite (1.2) as
{A2 +cA 201 —)Yu+ MM —¢) = blut — A\ (A — c)u” =s.

Multiply across by ¢; and integrate over 2. Since ({AZ% +cA — X\ (A\ —
¢)}u, ¢1) = 0, we have

(1.6) /Q -0~ Bt~ M o Jér = s / b1.
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But [A1 (A1 —¢) —bJu™ — A1 (A1 —¢)u~ < 0 for any real valued function
u. Also ¢1(z) > 0 in Q. Therefore, if s > 0, then equation (1.2) has no
solution and if s = 0, then the only possibility is that u = 0. u]

For the case s < 0 in Theorem 1.3, we shall investigate the existence
of solutions of (1.1) in the next section.

2. Main results. In this section we investigate the multiplicity of
solutions of the problem

(2.1) Au+cA=but+s in H
under the following two conditions.

Condition (1). A1 < ¢ < A2, b < A1(A —c¢) and s > 0.

Condition (2) c< A, )\k()\k 70) <b< )\k—i-l()\k:—i-l 70), k=12,...,
and s < 0.

First we investigate the multiplicity of solutions of (2.1) under Con-
dition (1).

Theorem 2.1. Assume that A\; < ¢ < A2, b < A1(A\; —¢) and s > 0.
Then the problem (2.1) has at least two solutions.

One solution is positive, and the existence of the other solution will
be proved by critical point theory. For the proof of the theorem, we
need several lemmas.

Lemma 2.1. Let Ay, < ¢ < Agy1(k > 1) and b < A1 (A1 —¢). Then
the problem

(2.2) A*u+cAu=0but in H

has only the trivial solution.

Proof. We rewrite (2.2) as

{A%Z +cA A0 — o) Yu+ MM —¢) —blu™
- )\1()\1 — C)U_ =0 in H.
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Multiply across by ¢; and integrate over 2. Since ({AZ% +cA — X\ (A\; —
¢)}u, ¢1) = 0, we have

(2.3) /Q (O — ¢) — Blut — A (A — )u= Yy = 0.

But [A1(A1 —¢) —bJu™ — A1(A\1 — ¢)u™ > 0 for all real valued function
u and ¢1(z) > 0 for z € ). Hence the left-hand side of (1.4) is always
greater than or equal to zero.

Therefore the only possibility to hold (2.3) is that u = 0. u]
Now we study the existence of the positive solution of (2.1).

Lemma 2.2. Let Ay < ¢ < A2, b < Ai(\ —¢) and s > 0. Then the
unique solution ui of the problem

(2.4) A’u+cAu=bu+s in L3(Q)
18 positive.
Proof. Let A\; < ¢ < Ay and b < A1(A2 — ¢). Then the problem
A*u+ cAu—bu=pu in L*(Q)
has eigenvalues A\;(\x — ¢) — b and they are positive. Since the inverse
(A% + cA — b)~! of the operator A% + cA — b is positive, the solution

u = (A% 4+ ¢A — b)71(s) of (2.4) is positive. This proves the lemma.
o

An easy consequence of Lemma 2.2 is

Lemma 2.3. Let ¢ < A, b < A(A1 —¢) and s > 0. Then the
boundary value problem (2.1) has a positive solution u.

Proof. The solution u; of the linear problem (2.4) is positive, hence
it is also a solution of (2.1). u]
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Now, we investigate the existence of the other solution of problem
(2.1) under the condition A\; < ¢ < Az, b < A1(A; —¢) and s > 0 by the
critical point theory.

Let us define the functional corresponding to (2.1) in H X R
1 9 C 2 b 1
(2.6) Fy(u,s) = —|Au|® — | Vu|® = Z|u™|* — su| dz.
P 2 2

For simplicity, we shall write F' = F}, when b is fixed. Then F is
well-defined. The solutions of (2.1) coincide with the critical points of
F(u,s).

Proposition 2.1. Let b be fized and s € R. Then F(u,s) = Fy(u, s)
s continuous and Fréchet differentiable in H.

Proof. Let u € H. For s € R, to prove the continuity of F(u,s), we
consider

F(u+wv,s) — F(u,s) = /

1
[u - (A% + cAv) + V- (A%v + cAv)
Q

b
— §(|(u+ v)+|2 — \u+\2) — 50] dx.
Let u=> hgdp, v=">, hi¢r. Then we have

/u-(sz—}-cAv)d:v
Q

= | S MO — il < [l |-
2
1 2
‘/—v-(Av+cAv)dw .
Q2

— ST MO — R < | ful
On the other hand,
[(u+0) P = [wf?] < 20" o] + [vf?

and hence we have

[0 e

< 2llut |l 2@ lvllzz @) + vll72 ()

< @Il - Tl T+ ol 1)
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for some C > 0. With the above results, we see that F(u,s) is
continuous at u. Now we prove that F(u, s) is Fréchet differentiable at
u € H with

DF(u,s)v = / (A?%u 4 cAu — but — s)v dz.
Q

To prove the above equation, it is enough to compute the following:

|F(u+v,s) — F(u,s) — DF(u, s)v|

/ %v (A% + cAv) — gﬂ(u +0)T)? = ju 2 = 2ut] dz
Q

1 b
<ol P+ [ as
1

< SA+PIO) ol

for some C, since 0 < |(u +v)T|> — Jut|? = 2uTv < |v|% o

Let V be the one-dimensional subspace of L?(£2) spanned by ¢; whose
eigenvalue is A;(A\; — ¢). Let W be the orthogonal complement of V
in H. Let P : H — V be the orthogonal projection of H onto V' and
I — P : H — W denote that of H onto W. Then every element u € H
is expressed by v = v + z, where v = Pu, z = (I — P)u. Then problem
(2.1) is equivalent to

A2y + cAv = Plb(v + 2)" + 5],
A%z +cAz = (I —P)bv+2)T +s].

We look on the above equations as a system of two equations in two
unknowns v and w.

Lemma 2.4. Let A\ < ¢ < g, b < A\j(A\; —¢) and s > 0. Then we
have

(i) There ezists a unique solution z € W of the equation

(2.7) A2+ cAz—(I-P)pv+2)T+s]=0 in W
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If, for fized s € R, we put z = 0(v, s), then 0 is continuous on V. In
particular, 0 satisfies a uniform Lipschitz condition in v with respect to
the L? norm (also the norm ||| - || |).

(ii) If F : V — R is defined by ﬁ’(vls) = F(v+6(v,s),s), then F
has a continuous Fréchet derivative DF with respect to v and

DF(v,s)(h) = DF(v+6(v,s),s)(h) =0 forall helV.

If vy is a critical point of F, then vy + O(vo, ) is a solution of the
problem (2.1) and conversely every solution of (2.1) is of this form.

Proof. Let A\j < ¢ < Xy, @« < b < A;(A\ —¢) and s > 0. Let
§ = (b/2) < 0 and g(&) = bET. If g1 (&) = g(&) — 6¢, then Equation
(2.7) is equivalent to

(2.8) z= (A% +cA 61— P)(g1(v+2)" +5).

Since (A% + cA — §)~Y(I — P) is a self-adjoint, compact, linear map
from (I —P)L?(2) onto itself, the eigenvalues of (A% +cA—4)~1 (I —P)
are (\(\ —¢) — )71, where \;(\; — ¢) > A2(A\2 — ¢). Therefore its L?
norm is 1/(A2(A2 — ¢) — §). Since

|91(&2) — 91(&1)| < max{|b— 4|, |0]}|&2 — &,

it follows that the right-hand side of (2.8) defines, for fixed v € V, a
Lipschitz mapping of (I — P)L?(2) into itself with Lipschitz constant
v =bl/2- (1/(A2(A2 — ¢) — (b/2))) < 1.

Therefore, by the contraction mapping principle, for given v € V,
there exists a unique z € (I — P)L?(Q) which satisfies (2.8).

Since the constant § does not depend on v and s, it follows from
standard arguments that, if 6(v, s) denotes the unique z € (I —P)L?*($)
which solves (2.8), then 6 is continuous with respect to v. In fact, if
z1 = 0(v1,s) and z2 = (v, 8), then we have

|1z — 22|l | = (A% + cA = 6) "1 (I = P)(g1(v1 + 21) — g1 (v2 + 22) |
=7[l(v1 + 21) — (v2 + 22)]
<A(llvr =2 + |21 = 22]))-
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Hence we have

21 = 22l < Clloy —val, C=——,

11—~

which shows that 6(v,s) satisfies a uniform Lipschitz condition in v
with respect to L?-norm. With the above inequality we have

[z = z2l[ | = [ (A% + cA = 6) 71T = P)(g1(v1 + 21) — g1(v2 + 22) ||
< CLI(I — P)(g1(v1 + 22) — g2(va + 22) ||

<O+ 22) — (02 + 2
< i (s — ]l + 11 - =)
< Ciy 1+ O)lor —
for some C; > 0. Hence we have
(2.9) |21 = 22|l | < Caf lvr — vall|

for some C > 0. This shows that 6(v, s) satisfies a uniform Lipschitz
condition in v with respect to the norm ||| || |.

Let v € V and z = 6(v, s). If w € W, then from (2.7) we see that

(2.10) /Q[Az-Aw—cVz-Vw—(I—P)[b(v+z)++s]]-wdac:0.

Since
/Av-szO and /Vv-VwZO,
Q Q
we have
(2.11) DF(v+6(v,s),s)(w) =0 for weW.

From Proposition 2.1, F' (v, s) has a continuous Fréchet derivative DF,
and

(2.12) DF(v,s)(h) = DF(v+6(v,s),s)(h), heV.
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Suppose that, for some fixed s > 0, there exists vy € V such that
DF(vg,s) = 0. Then it follows (2.12) that

DF(vy + 6(vg,s),s)(v) =0 foral velV.

Since (2.11) holds for all w € W and H is the direct sum of V and W,
it follows that
DF(vg + 6(vg,s),s) =0 in H.

Since (2.11) holds for all w € W and H is the direct sum of V and W,
it follows that
DF(vy + 6(vo,s),s) =0 in H.

Therefore u = vg + 6(vg, s) is a solution of (2.1).

Conversely, our reasoning shows that if u is a solution of (2.1) and
v = Pu, then DF(v,s) =0in V. u]

Let \1 < ¢ < )\2, b < )\1()\1 — C),)\1(>\1 — C) <0< )\2()\2 — C) and
s > 0. From Lemma 2.3, we see that (2.1) has a positive solution u; (z).
From Lemma 2.4, uy(z) is of the form u; (z) = vy + 6(vy, s).

Lemma 2.5. Let A\; < ¢ < A2, b < A1(A\ —c¢) and s > 0. Then there
exists a small open neighborhood~B of v1 in V such that v = vy is a
strict local point of minimum of F'.

Proof. Let s > 0. Then Equation (2.1) has a positive solution u; (z)
which is of the form u; (z) = v1+6(v1,s) > 0, 6(v1,s) € W. Since I+,
where I is an identity map on V, is continuous on V, there exists a small
open neighborhood B of vy in V such that if v € B, then v+6(v, s) > 0.
Therefore, if z = 0(v, s), 21 = 0(v1,s) and v+ z = (v; + 21) + (T + 2),
then we have

F(v,s)=F(v+z,5)
:/Q[%|A(v+z)|2%V(v—l—z)|2§|v+z|25(v+z)] de
:/ B|A(v1+z1)+A(f)+2)|2—gV(v1+zl)+V(6+2)2
Q

= Gl 1)+ 4 2 = sl(on 1) + (54 2} o
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1 b
= / [§|A(’U1 + 21)|2 - §|V(U1 +Zl)|2 - §|’U1 + 21|2
Q
—s(v1 + zl)} dz
+ / [A(vr +21) - AS +3) — V(01 + 21) - V(5 + 2)
Q
— b(Ul + 21) .
1
+/ {—m(@ + AP - V(E+ ) -
P 2
Here
1 2 ¢ 2 b 2
—|A(v1 + 21)|* — =|V(v1 + 21) [ — S |1 + 217 — s(v1 + z1) | dz
P 2 2
= F(vy +21,8) = F(v1,5)
and
/[A(m +21) A(D+2) — V(v +21) - V(0 + 2)
Q
—b(vy +21) - (5 + 2) — s(0+ 2)] dar

- /Q[AZ(U1 +21) + A1 + 1) — b(vr + 21) — 8] - (54 3) do = 0,

since vy + 2 is a positive solution of (2.1). Since ¥+ Z can be expressed
by 04 Z = e1¢1 + e2¢p2 + - - -, we have

F(v,s)—ﬁ(vl,s):/ﬂBA(a+z)2—g|vw+z)|2—g@+22 do
= SO0~ Ble} + Da(ha—0) —Ble} + -} > 0,

since b < A\;(A; —c¢) and A\; < ¢ < Ag. Therefore v = v; is a strict local
point of minimum of F. This proves the lemma. ]

We now define the functional on H as

* 1 c b
F*(u) = F(u,0) = /Q [§|Au|2 ~ SV — S| de.
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Then the critical points of F*(u) coincide with solutions of the equation
(2.13) A?u+ cAu=0but in H.

If &1 < ¢ < Az and b < A(A1 — ¢), then (2.13) has only the trivial
solution, and hence F*(u) has only one critical point © = 0. Given
v eV, let 8*(v) = 60(v,0) € W be the unique solution of the equation

A*2 4+ cAz— (I -P)pv+2)T]=0 in W.

Let us define the reduced functional F*(v) on V, by F*(v+6*(v)). We
note that we can obtain the same result as Lemma 2.4 when we replace

6(v,s) and F(v,8(v,s)) by 6*(v) and F*(v). We also note that F*(v)
has only one critical point v = 0.

Lemma 2.6. Ford >0, F*(dv)=d?F*(v).

Proof. Tf v € V satisfy
A?z+cAz— (I —P)bv+6*(w)T)=0 in W,
then for d > 0,
A2(dz) + cA(dz) — (I — P)(b(dv + d6*(v))T) =0 in W.

Therefore 6*(dv) = df*(v) for d > 0. From the definition of F*(u) we
see that

F*(du) = d*F*(u) for we H and d>0.
Hence, for v € V and d > 0,
F*(dv) = F*(dv + 0*(dv)) = d*F*(v+ 6*(v)) = d*F*(v). O
Now we remember the notation Fj, which was defined in Equation

(2.6). Until now, the notations F, F* and F'* denoted Fj, Fy and F~b*,
respectively. In the following lemma we use the latter notations.
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Lemma 2.7. Let A\; < ¢ < A2 and b < A\;(A1 — ¢). Then there exist

vy and vy in V such that F(v1) > 0 and EFy(vs) < 0.

Proof. First, we choose v € V such that vy + 6(v1,0) > 0. In this
case z = 0(v1,0) = 0. Hence v; + z = d1¢1, and we have

Fg‘(m):/ﬂ_
-,
-,

_ % [{Al(M . b}dﬂ > 0.

Next, we choose vy € V such that vy + 6(v2,0) < 0. In this case
z = 0(v3,0) = 0. Hence if we write vy + z = e1 ¢y, then we have

Fy (02) :/Q [%A(vg—i—z)Q - £V +z)|2] da

b
A+ 2 - 5190 + 2P - gl + )7 de

b
A+ 2 = S0+ 2~ o+ zF] da

r 1 1T
N = DN = N =

(A +cA)(vy + 2) - (v + 2) — g(vl +2)- (v —l—z)] dx

:/Q [%(A2+CA)(v2+z)-(v2+z)] do

1
= 5[Al(Al —¢)e?] <0,

since b < A1 (A1 —¢) <0< A2(A2 —0). u]

Lemma 2.8. Let \j <c< A2 andb < A1(A1 —¢) and s > 0. Then
Fy(v, s) is neither bounded above nor below on V.

Proof. From Lemma 2.7, Fy*(v) has negative (positive) value. Sup-
pose that F*(v) assumes negative values and that F3(v, s) is bounded
below. Let vy denote a fixed point in V with |lvg|| = 1. Let
zn = nvy + O(nvg,s), and let zX = vg + (6(nvg,s)/n) = vy + w.
Since 6 is Lipschitzian, the sequence {z}}$° is bounded in L?(2). We
have DF(zy,s)(y) = 0 for all n and arbitrary y € W. Dividing this
equation by n gives

2.14 Azr - Ay —cVzh - Vy —bzi Ty — iy dzr = 0.
( n n n n
Q
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Setting y = 2, we know that {z}}32, is bounded in L?(Q2). Hence
{w?}$° is bounded in L?(Q) so we may assume that it converges weakly
to an element w* € W. If z* = w* 4+ vy and we let n — oo in (2.14),
we obtain

(2.15) / [Az* - Ay —cVz* - Vy —bz*Ty]dz =0
Q

for arbitrary y € W. Hence w* = 6(vy, 0). If we set y = w,, in 2.14 and
dividing by n, then we have

(2.16) / [|Awfb|2 —c|Vw}|? - <b|:/::L|Jr + %)w:] dz = 0.
Q
Letting n — oo in (2.16), we obtain
lim [ [|Aw}|? — |V} [*]dz = lim / [b<|:/:::|+ + i)w:}] dz
n—oo [ n—oo [ n
= / blz*|Tw* dz
Q
= / [Az" - Aw* — ¢Vz" - Vw'|dz
Q

:/[|Aw*\2—c|Vw*|2]dx,
Q

where we have used (2.15). Hence

n— oo

lim [ [|Az:]? — V25 |H] de = /[\Az*|2 —c|V2* | da.
Q Q

The assumption that F (v, s) is bounded below implies the existence of
a constant M such that

Fy(nwg, s)/n? > M/n?.
Letting n — oo, our previous reasoning shows that

Ef (vo) = Fy(v0,0) = lim Fy(nwvy, s)/n? > 0.

n—o0
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Since vo was an arbitrary member of V with ||vo]| = 1 and Fy(kv,0) =
k2F}(v,0), this contradicts the assumption that F}(v) is negative for
some value of v € V. Hence Fj(v,s) cannot be bounded below. The
proof that Fj(v, s) cannot be bounded above if £ (v) assumes positive
values is essentially the same. O

Proof of Theorem 2.1. Let A\ < ¢ < A2, b < A1(A1 —¢) and s > 0.
By Lemma 2.3, (2.1) has a positive solution u;(z) = vy + 6(v1, s). By
Lemma 2.5, there exists a small open neighborhood B of v; in V' such
that v = vy is a strict local point of minimum of F,. Since Fj(v,s)
is not bounded below, there exists a point vy € V with v; # vs and
Fy(v1,8) = Fy(va,s). The Rolle’s theorem and the fact that Fj(v,s)
has a continuous Fréchet derivative imply that there exists a strict
local point of maximum Fy. Thus F}, has at least two critical points.
Therefore (2.1) has at least two solutions. O

Next, we investigate the multiplicity of solutions of (2.1) under
Condition (2).

Condition (2). ¢ < A (in this case 0 < A\;(A; —¢)), de(Ax —¢) <b <
Met1(Akr1 —¢), k=1,2,---, and s < 0.

Theorem 2.2. Assume that ¢ < Ay, 0 < A1(A —¢), Me(Ae —¢) <
b < Ap+1(Ak+1 —¢), k>0 and s < 0. Then the problem (2.1) has at
least two solutions.

One solution is a negative solution, and the existence of another
solution will be shown by critical point theory.

To prove Theorem 2.2, we need several lemmas.

Lemma 2.9. Let ¢ < A, b> 0 and b # A1 (A1 —c). Then the problem
(2.18) A’u+cAu=0but in H

has only the trivial solution.

Proof. For ¢ < A1, 0 < A1(A1—c) < b, the result follows from Theorem
1.3 (ii). We prove the lemma for the case 0 < b < A\;(A\; — ¢). From
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(2.1) we have

(2.19) MO —)ful? < / Auf? — o Vul? = b/ wt - w < blfull?,

Q Q
where || || is the L? norm is Q. It follows from (2.19) that bul|?> >
A1(A1 — ¢)||ul|?, which yields u = 0. u]

Now we investigate the existence of the negative solution of (2.1)
under Condition (2).

Lemma 2.10. Assume that ¢ < A1, Ag(Ax—c¢) < b < A1 (Apt1—c),
k> 1, ands < 0. Then the problem (2.1) has a negative solution uz(x).

Proof. If u is a smooth function satisfying

A%u+cAu>0 in
u=0, Au=0 on 09

and ¢ < A1, then u > 0 in Q or v = 0. This immediately follows by
first applying standard (strong) maximum principle to w = Au and
consequently to u. Subsequently, for ¢ < A\; and s < 0, it follows that
if ug is the unique solution for

A%uy +cAus =s in Q,

(2.20)
uz =0, Auz=0 on 099,

then we < 0 in Q. The unique negative solution us solution of (2.20) is
also a negative solution of (2.1). O

Now we investigate the existence of the other solution of the problem
(2.1) under the condition ¢ < A1, A\g(Ax —¢) < b < App1(Aky1 — ©),
k > 1, and s < 0 will be shown by critical point theory. Now we
consider the functional

1 c b
Fy(u,s) = / [—Au|2 — 2| Vu? = Z|ut|? - su| dz,
P 2 2

which is well defined in H x R, continuous and Fréchet differentiable
in H (by Proposition 2.1).



160 Q-H. CHOI AND T. JUNG

Let V be the k-dimensional subspace of H spanned by eigenfunctions
o1, 02, -+ , 0. Let W be the orthogonal complement of V' in H. We
note that Lemma 2.4 holds under Condition (2). From Lemma 2.10,
we see that (2.1) has a negative solution ug(z). By Lemma 2.4, ug is
of the form us = vy + (v, 3).

Lemma 2.11. Let ¢ < Aj, Me(Ag —¢) < b < Mep1(Agy1 — ), k> 1,
and s < 0. Then there exists a small open neighborhood D of va in V
such that v = vg is a strict local point of minimum of Fy.

Proof. Let s < 0. Then the problem (2.1) has a negative solution
ug(z) which is of the form wuqs(z) = ve + 6(v2,8) < 0. Since I + 6,
where [ is an identity map on V, is continuous, there exists a small
open neighborhood D of vg in V such that if v € D, v + 8(v,s) < 0.
Therefore if z = 0(v, s), 22 = 0(va, s) and v+ z = (v2 + 22) + (0 + ),
then we have

Fb(vas) = Fb(U+Z,S)

= [ 3186428 - S90+ P oo+ ds
— [ 5180+ 20) + A+ 2)F - §V(ea +22) + V(o + )P
QL

—s{(va+ 22) + (0 + 2)}} dx

= /Q _%\A(vg + z2)|2 - §|V(v2 + z2)|2 — s(ve + Z2):| dx
+ A[A(vg +22) - A(D+ 2)
—cV(vg 4 22) - V(0 + 2) — s(0+ 2)] da
+/Q Bm(f; + 22— §|V(f; + z)|2] da.
Here
1 A 2 € 2 d
/Q [§| (va + 22)|° — §‘V(’U2 + 22)]° — s(ve +22):| i

= Fy(v2 + 22, 8) = Fy(v2, s)
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and

/Q[A(vg +22) A0+ 2) —cV(va+ 22) - V(0 + 2) — s(0 + 2)] dz

= /Q[AQ(Uz +22) + cA(v2 + 22) — 8] - (0 + Z) dz = 0,

since vg + 22 is a negative solution of (2.1). Since ¥+ Z can be expressed
by o+ 2= .-, eip;, we have

Fo,9) - Foonss) = [ 5186+ 22 - 51900+ 9P ds

1
= 5 = el + Xa(he —)eg + o0} >0,
since 0 < A;(\; — ¢). Therefore Fy(v, s) has a strict local minimum at

v = vy. This proves the lemma. ]

Lemma 2.12. Let ¢ < A, Ag(Ax —¢) <b < Apgp1(Mp1 —¢), k

1.
Then there exist v, and v, in V such that Fy (v,) < 0 and Fy" (vy) > 0.

Proof. First we choose v, € V such that v, + 6(vp,0) > 0 and
0(vp,0) =0. If v, +2 = Zle fi¢i, where 0(vp, 0) = 0, then we have

~ % l C b
B () = [ |5180p + 2 = 51V + 2 = Sl(up +2)*| do

1 b
= [ 51802 = S[Vo,? = 2oy [?| da
P 2 2
= l(A2+CA)U -V —9|v 1| dz
Q 2 P p 2 p

= SO =) B 4+ D — ) — B} <0,

Next, we choose v, € V such that v, + 6(vg,0) < 0. Let z = 6(v,,0).
If vy + 2 =) .2, gips, then we have

*

7 (v) :/Q B|A(vq+z)2—g|V(vq+z)|2] da
= /Q B(A2 +cA)(vg + 2) - (vg + z)] dx

1
= 5[)\10\1 —e)gi + -+ M(Ae — )gr] > 0,
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since 0 < A\j(\ — ¢). O

Lemma 2.13. Let ¢ < A1, A\p(Ap —¢) <b < Apy1(Apg1 — ), k > 1,
and s < 0. Then Fy(v, s) is neither bounded above nor below on V.

The proof of the lemma is the same as the proof of Lemma 2.8.

Lemma 2.14. Let ¢ < A, (A —¢) < b < Apg1(Mp1 — ©),
k= 1,2,... and s < 0. Then the functional ﬁ’b(v, s), defined on
V', satisfies the Palais-Smale condition: Any sequence {vn,} C V for
which Fy(v,,s) is bounded and DEy(v,,s) — 0 possesses a convergent
subsequence.

Proof. Suppose that Fy(v,,s) is bounded and DF(v,,s) — 0 in V,
where {v,} is a sequence in V. Since V is a k-dimensional subspace
spanned by @1, ... , ¢k, we have, with u, = v, + 0(v,, s),

A?u, + cAu, — bu = s+ DFy(up, s).
Assuming [P.S.] condition does not hold, that is, ||v,| = oo, |||va]|| =
0o, we see that ||u,|| — oo. Dividing by ||u,| and taking w, =
|tun|| " Lun, we have
(2.17) Aswy, + cAwy, — bw,l = [Jun|| " (s + DFy(un, s)),
since DFy(uyn,s) — 0 as n — oo and |ju,|| — oo. Moreover, (2.17)
shows that ||A%w, + cAw,| is bounded. Since (A% + cA)7! is a
compact operator, passing to a subsequence we get that w, — wp.
Since ||w,|| = 1 for all n = 1,2,... it follows that ||wg| = 1. Taking
the limit of both sides of (2.17), we find
A%wy + cAwy — bwa' =0
with [Jwgl|| # 0. This contradicts the fact that the equation
A%y + cAu = bu™

has only the trivial solution. O
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Proof of Theorem 2.2. By Lemma 2.10, (2.1) has a negative solution
uz(x) = vg + 6(v2,8). By Lemma 2.11, there exists a small open
neighborhood D of vy in V' such that v = vy is a strict local point
of minimum of F,. Also F, € C1(V,R) satisfies the Palais-Smale
condition. Since Fy(v,s) is neither bounded above nor below on V,
Lemma 2.13, we can choose v3 € V\D such that

F‘b(vg,s) < Is'b(vz,s).

Let I be the set of all paths in V joining vz and v2. The mountain pass
theorem, cf. [3], implies that

c= ;Ielg sgp Fy(v,s)

is a critical value of F}. Thus, F), has at least two critical values, and
(2.1) has at least two solutions. O
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