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ON HANKEL CONVOLUTION EQUATIONS
IN DISTRIBUTION SPACES

JORGE J. BETANCOR AND LOURDES RODRÍGUEZ-MESA

ABSTRACT. In this paper we study Hankel convolution
equations in distribution spaces. Solvability conditions for
Hankel convolution equations are obtained. Also we investi-
gated hypoelliptic Hankel convolution equations.

1. Introduction. The Hankel integral transformation is usually
defined by

hµ(φ)(x) =
∫ ∞

0

(xt)1/2Jµ(xt)φ(t) dt, x ∈ I = (0,∞),

where Jµ denotes the Bessel function of the first kind and order µ.
Throughout this paper µ always will be greater than −1/2, and we will
denote by I the real interval (0,∞).

Zemanian [25, 26 and 27] investigated the hµ transformation on
generalized function spaces. He introduced in [25] the space Hµ

constituted by all those complex valued and smooth functions φ defined
on I such that, for every m, k ∈ N,

γµ
m,k(φ) = sup

x∈(0,∞)

∣∣∣∣xm

(
1
x
D

)k

[x−µ−1/2φ(x)]
∣∣∣∣ <∞.

The space Hµ is Fréchet when it is endowed with the topology
generated by the family {γµ

m,k}m,k∈N of seminorms. It was established,
[25, Lemma 8] that hµ is an automorphism of Hµ. The Hankel
transformation is defined on H′

µ, the dual space of Hµ, as the adjoint of
the hµ-transformation of Hµ, and it is denoted by h′µ. More recently,
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Betancor and Rodŕıguez-Mesa [8] have studied hµ on new spaces of
functions and distributions. We defined the spaces Xµ and Qµ as
follows. A complex valued and smooth function φ defined on I is in Xµ

if and only if, for every m, k ∈ N,

ηµ
m,k(φ) = sup

x∈I

∣∣∣∣emx

(
1
x
D

)k

(x−µ−1/2φ(x))
∣∣∣∣ <∞.

Xµ is equipped with the topology associated to the system {ηµ
m,k}m,k∈N

of seminorms. Thus Xµ is a Fréchet space.

The space Qµ is constituted by all those complex valued functions Φ
satisfying the following two conditions

(i) s−µ−1/2Φ(s) is an even entire function, and

(ii) for every m, k ∈ N

wµ
m,k(Φ) = sup

|Im s|≤k

(1 + |s|2)m|s−µ−1/2Φ(s)| <∞.

Qµ is a Fréchet space when we consider the topology generated by
the family of seminorms {wµ

m,k}m,k∈N on Qµ.

We established [8, Theorem 2.1] that hµ is a homeomorphism from
Xµ onto Qµ. Moreover, hµ coincides with its inverse. The Hankel
transform is defined on the dual spaces X ′

µ and Q′
µ as the adjoint of

the hµ transformation and it is also denoted by h′µ.

The convolution for a Hankel type transformation closely connected
with hµ was investigated by Hirschman [13], Haimo [12] and Cholewin-
ski [9]. A straightforward manipulation in the convolution considered
by the above authors allows us to obtain the convolution for hµ that will
be denoted by # and that is defined as follows: for every measurable
function φ and ψ on I such that xµ+1/2φ and xµ+1/2ψ are absolutely
integrable on I, the convolution φ#ψ of φ and ψ is given by

(φ#ψ)(x) =
∫ ∞

0

φ(y)(τxψ)(y) dy, x ∈ I,

where (τxψ)(y) =
∫ ∞
0
Dµ(x, y, z)ψ(z) dz, x, y ∈ I and

Dµ(x, y, z) =
∫ ∞

0

t−µ−1/2(xt)1/2Jµ(xt)(yt)1/2Jµ(yt)(zt)1/2Jµ(zt) dt,

x, y, z ∈ I.
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The study of the # convolution in distribution spaces was started
by de Sousa-Pinto [23]. In a series of papers, Betancor and Marrero
[3, 4, 5, 6, 7] and [16] have investigated the Hankel convolution on
the Zemanian spaces. Also Betancor and González [1] studied the
generalized Hankel convolution. Recently, Betancor and Rodŕıguez-
Mesa [8] defined the # convolution on distributions of exponential
growth.

In this paper we analyze Hankel convolution equations. Solvability
conditions for the # convolution equations in H′

µ and X ′
µ are inves-

tigated in Section 2. Also in Section 3 we study hypoelliptic Hankel
convolution equations in H′

µ and X ′
µ.

Throughout this paper M will always denote a suitable positive
constant not necessarily the same in each occurrence.

2. Solvability of Hankel convolution equations of distribu-
tion. In this section, inspired by the papers of Sznajder and Zielezny
[21, 22] and Pahk and Sohn [19], we obtain necessary and sufficient
conditions to solve Hankel convolution equations in H′

µ and X ′
µ.

Marrero and Betancor studied in [16] the Hankel convolution op-
erators on H′

µ. They introduced, for every m ∈ Z, the space Oµ,m,#

constituted by all those complex valued and smooth functions φ defined
on I such that, for every k ∈ N,

δµ,m
k (φ) = sup

x∈I
|(1 + x2)mx−µ−1/2Sk

µφ(x)| <∞,

where Sµ denotes the Bessel operator x−µ−1/2Dx2µ+1Dx−µ−1/2. We
define Oµ,m,# as the closure of Hµ in Oµ,m,#.

Note that Oµ,m,# ⊃ Oµ,m+1,# for each m ∈ Z. The space
∪m∈ZOµ,m,# is denoted by Oµ,#. The Hankel convolution operators of
H′

µ are the elements of O′
µ,#, the dual space of Oµ,# [4]. Characteri-

zations of O′
µ,# were obtained in Proposition 4.2 [16]. The next result

was established in [5].

Proposition 2.1 [5, Theorem 3.1]. For S ∈ O′
µ,#, the following

conditions are equivalent

(i) To every k ∈ N there correspond m,n ∈ N and a positive
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constant M such that

max
0≤l≤m

sup
{∣∣∣∣

(
1
t
D

)l

[t−µ−1/2(h′µS)(t)]
∣∣∣∣ : t ∈ I, |x− t| ≤ (1 + x2)−k

}

≥ (1 + x2)−n,

whenever x ∈ I, x ≥M .

(ii) If T ∈ O′
µ,# and S#T ∈ Hµ, then T ∈ Hµ.

If S ∈ O′
µ,#, the existence of solution for the convolution equation

(1) u#S = v,

for every v ∈ H′
µ, implies conditions (i) and (ii) in Proposition 2.1.

Proposition 2.2. Let S ∈ O′
µ,#. If H′

µ#S = H′
µ, then conditions

(i) and (ii) in Proposition 2.1 hold.

Proof. It is sufficient to see that (ii) holds when H′
µ#S = H′

µ. Note
firstly that the mapping

F : H′
µ −→ H′

µ = H′
µ#S

u −→ u#S

is the transpose of the mapping

G : Hµ −→ Hµ ⊂ S#Hµ

φ −→ S#φ.

Then, by invoking [10, Corollary, p. 92] the mapping G is an isomor-
phism. In particular, the mapping G−1 : S#Hµ → Hµ is continuous.

Assume now that T ∈ O′
µ,# is such that T#S ∈ Hµ. Let (ϕk)∞k=1 be

a sequence of smooth functions such that the following three conditions
are satisfied

(i) c−1
µ

∫ ∞
0
xµ+1/2ϕk(x) dx = 1, where cµ = 2µΓ(µ+ 1),

(ii) 0 ≤ ϕk(x), x ∈ I,
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(iii) ϕk(x) = 0, x /∈ (1/(k + 1), 1/k),

for every k ∈ N.

According to [4, p. 1148], for each φ ∈ Hµ,

(2) ϕk#φ −→ φ, as k −→ ∞, in Hµ.

Moreover, by invoking [16, Proposition 4.7], we can write

(3) S#(T#ϕk) = (S#T )#ϕk = (T#S)#ϕk, for every k ∈ N.

Since T#ϕk ∈ Hµ, k ∈ N, by taking into account that G−1 is
continuous and by (2) and (3), we conclude that (T#ϕk)∞k=1 converges
in Hµ. Also by (2) again T#ϕk → T , as k → ∞, in H′

µ when we
consider in H′

µ the weak ∗ (or the strong) topology. Hence T ∈ Hµ.
Thus the proof is finished.

The authors in [8] have defined the Hankel convolution of distribu-
tions of exponential growth. We introduce [8, Section 3] a subspace
X ′

µ,# of X ′
µ consisting of S ∈ X ′

µ such that S#φ ∈ Xµ for every φ ∈ Xµ.

In the following we establish a condition that S ∈ X ′
µ,# satisfies when

the equation (1) admits a solution for every v ∈ X ′
µ.

Proposition 2.3. Let S ∈ X ′
µ,#. If X ′

µ#S = X ′
µ, then S verifies the

following property: T ∈ Xµ provided that T ∈ X ′
µ,# and T#S ∈ Xµ.

Proof. This result can be proved in a similar way to Proposition 2.2.
It is sufficient to see that if (ϕk)∞k=1 is a sequence of smooth functions
verifying the three conditions listed in the proof of Proposition 2.2 then,
for every φ ∈ Xµ,

(4) φ#ϕk −→ φ, as k −→ ∞, in Xµ.

By virtue of [8, Theorem 2.1] and by the interchange formula [13,
Theorem 2d] to show (4) it is equivalent to see that, for every Ψ ∈ Qµ,

(5) s−µ−1/2hµ(ϕk)Ψ −→ Ψ, as k −→ ∞, in Qµ.
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We now prove (5). Let (ϕk)∞k=1 be a sequence in the proof of
Proposition 2.2, and let Ψ ∈ Qµ. Since

∫ ∞
0
tµ+1/2ϕk(t) dt = cµ, for

every k ∈ N, where cµ = 2µΓ(µ+ 1), we can write

s−µ−1/2hµ(ϕk)(s) − 1 =
∫ ∞

0

(st)−µJµ(st)tµ+1/2ϕk(t) dt− 1

=
∫ 1/k

1/(k+1)

[
(st)−µJµ(st) − 1

cµ

]
tµ+1/2ϕk(t) dt,

for every k ∈ N and s ∈ C.

Let K be a compact subset of C, and let ε > 0. There exists t0 > 0
such that |(st)−µJµ(st) − (1/cµ)| < ε for each 0 < t < t0 and s ∈ K.
Hence we can find k0 ∈ N such that, for every k ≥ k0 and s ∈ K,

|s−µ−1/2hµ(ϕk)(s) − 1| ≤
∫ 1/k

1/(k+1)

∣∣∣∣(st)−µJµ(st) − 1
cµ

∣∣∣∣tµ+1/2ϕk(t) dt

< εcµ.

Moreover, from [15, Lemma 4], we deduce

|s−µ−1/2hµ(ϕk)(s) − 1| ≤
∫ ∞

0

(|(st)−µJµ(st)| + 1)tµ+1/2ϕk(t) dt

≤Me|Im s|
∫ ∞

0

tµ+1/2ϕk(t) dt

= Me|Im s|,
for every k ∈ N and s ∈ C.

Hence, for each m ∈ N there exists α > 0 such that

1
1 + |s|2 |s

−µ−1/2hµ(ϕk)(s) − 1| < ε,

for every k ∈ N , |Re s| > α and |Im s| ≤ m.

We can conclude that, for every m ∈ N, there exists k0 ∈ N such that

1
1 + |s|2 |s

−µ−1/2hµ(ϕk)(s) − 1| < ε,

for every k ≥ k0 and |Im s| ≤ m.
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Now let m,n ∈ N. We have, for every Ψ ∈ Qµ,

wµ
n,m(Ψ(s)[s−µ−1/2hµ(ϕk)(s) − 1])

≤ sup
|Im s|≤m

(1 + |s|2)n+1|s−µ−1/2Ψ(s)|

· sup
|Im s|≤m

1
1 + |s|2 |s

−µ−1/2hµ(ϕk)(s) − 1| −→ 0, as k −→ ∞.

Thus (5) is established.

We now give a condition for S ∈ X ′
µ,# that implies the solvability of

equation (1) for every v ∈ X ′
µ.

Proposition 2.4. Let S ∈ X ′
µ,#. If there exist N, r, C positive

constants such that

(6) sup
s∈C,|s|≤r

|(ξ + s)−µ−1/2h′µ(S)(ξ + s)| ≥ C

(1 + |ξ|2)N
, ξ ∈ R,

then X ′
µ#S = X ′

µ.

Proof. According to [10, Corollary, p. 92], we see X ′
µ = X ′

µ#S, it is
sufficient to prove that the linear mapping

G : Xµ −→ S#Xµ ⊂ Xµ

φ −→ S#φ

is a homeomorphism.

Note firstly that G is a continuous mapping. In effect, by invoking
[8, Proposition 3.4], we obtain

(7) G(φ) = S#φ = hµ(s−µ−1/2h′µ(S)hµ(φ)), for every φ ∈ Xµ.

Since s−µ−1/2h′µ(S) is a continuous multiplier from Qµ into itself [8,
Theorem 3.1], from [8, Theorem 2.1] it infers that G is continuous.

Moreover, from (7), we can deduce that G is one-to-one. In fact, if
φ ∈ Xµ being G(φ) = 0 then s−µ−1/2h′µ(S)hµ(φ) = 0. Since S 
= 0,
hµ(φ) = 0 and hence φ = 0.
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To finish the proof, we have to prove that the mapping

G−1 : S#Xµ −→ Xµ

S#φ −→ φ

is continuous, or equivalently, according to [8, Proposition 3.4 and
Theorem 2.1], we have to see that the mapping

F : s−µ−1/2h′µ(S)Qµ −→ Qµ

s−µ−1/2h′µ(S)Φ −→ Φ

is continuous. Let Φ ∈ Qµ and define Ψ = s−µ−1/2h′µ(S)Φ. Let k ∈ N.
By invoking a lemma of Hormander [14, Lemma 3.2], we obtain

(8) |s−µ−1/2Φ(s)| ≤ sup
|z−s|<4(k+r)

|z−µ−1/2h′µ(S)(z)z−µ−1/2Φ(z)|

· sup|z−s|<4(k+r) |z−µ−1/2h′µ(S)(z)|
[sup|z−s|<k+r |z−µ−1/2h′µ(S)(z)|]2 , s ∈ C.

Also, according to (6), one has

sup
|z−s|<k+r

|z−µ−1/2h′µ(S)(z)| = sup
|z|<k+r

|(s+ z)−µ−1/2h′µ(S)(s+ z)|

≥ sup
|z|<r

|(Re s+ z)−µ−1/2h′µ(S)(Re s+ z)|

≥ C

(1 + |Re s|2)N
(9)

≥ C

(1 + |s|2)N
, |Im s| ≤ k.

Moreover, according to [8, Theorem 3.1], there exists n ∈ N such that

sup
|Im z|≤5k+4r

(1 + |z|2)−n|z−µ−1/2h′µ(S)(z)| <∞.

Then

sup
|z−s|<4(k+r)

|z−µ−1/2h′µ(S)(z)| = sup
|z|<4(k+r)

|(s+ z)−µ−1/2h′µ(S)(s+ z)|

≤M sup
|z|<4(k+r)

(1 + |s+ z|2)n

≤M(1 + |s|2)n, |Im s| ≤ k.(10)
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Hence, from (8), (9) and (10), we conclude that

|s−µ−1/2Φ(s)| ≤M(1 + |s|2)n+2N

· sup
|z|<4(k+r)

|(z + s)−µ−1/2Ψ(z + s)|, |Im s| ≤ k.(11)

Now let m ∈ N. By (11) one has

sup
|Im s|≤k

(1 + |s|2)m|s−µ−1/2Φ(s)|

≤M sup
|Im s|≤k

(1 + |s|2)n+2N+m

· sup
|z|<4(k+r)

|(z + s)−µ−1/2Ψ(z + s)| ≤M sup
|Im s|≤k

· sup
|z|<4(k+r)

(1 + |z + s|2)n+2N+m|(z + s)−µ−1/2Ψ(z + s)|

≤M sup
|Im s|≤5k+4r

(1 + |s|2)n+2N+m|s−µ−1/2Ψ(s)|.

Thus we prove that F is continuous, and we conclude that G is a
homeomorphism.

Remark 1. It is an open problem whether the conditions presented in
Propositions 2.3 and 2.4 are equivalent. We conjecture that the answer
is affirmative.

3. Hypoelliptic Hankel convolution equations. Sampson and
Zielezny [20], Zielezny [28] and [29] and Pahk [17] and [18], amongst
others, have investigated hypoelliptic (usual) convolution equations in
certain spaces of generalized functions.

In this section we investigate hypoelliptic conditions for the Hankel
convolution equations in H′

µ and X ′
µ.

Let S ∈ O′
µ,#. We say that S (or the Hankel convolution equation

u#S = v) is hypoelliptic in H′
µ if all solutions u ∈ H′

µ of u#S = v are
in Oµ,# whenever v ∈ Oµ,#.

Note that, conversely, v ∈ Oµ,# provided that the equation u#S = v
admits a solution u ∈ Oµ,#.
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Proposition 3.1. If f ∈ Oµ,# and S ∈ O′
µ,#, then f#S ∈ Oµ,#.

Proof. A straightforward modification in the proof of [16, Proposi-
tion 4.2] allows us to see that, for every m ∈ N, there exist k = k(m)
and continuous functions fp on I, 0 ≤ p ≤ k, such that

S =
k∑

p=0

Sp
µfp

and
(1 + x2)mx−µ−1/2fp is bounded on I, 0 ≤ p ≤ k.

Claim 1. Let l ∈ Z, and let f be in Oµ,l,#. If S ∈ O′
µ,#, then

f#S =
k∑

p=0

Sp
µ(f#fp)

where (fp)k
p=0 is a family of continuous functions on (0,∞) such that

(12) S =
k∑

p=0

Sp
µfp

and (1+x2)mx−µ−1/2fp is bounded on I, for every p = 0, 1, . . . , k, and
being m > |l| + µ+ 1.

Proof. Let φ ∈ Hµ. By (12) we can write

〈f#S, φ〉 = 〈f, S#φ〉 =
∫ ∞

0

f(x)
k∑

p=0

∫ ∞

0

fp(y)(τxSp
µφ)(y) dy dx

=
k∑

p=0

∫ ∞

0

(Sp
µφ)(x)

∫ ∞

0

fp(y)(τxf)(y) dy dx.
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Since m > |l| + µ+ 1, it follows for every p = 0, 1, . . . , k,

∫ ∞

0

∫ ∞

0

|fp(y)||f(x)|
∫ ∞

0

Dµ(x, y, z)|Sp
µ,zφ(z)| dz dx dy

=
∫ ∞

0

∫ ∞

0

|fp(y)||Sp
µ,zφ(z)|

·
∫ z+y

|z−y|
Dµ(x, y, z)xµ+1/2x−µ−1/2|f(x)| dx dy dz

≤M

∫ ∞

0

∫ ∞

0

|fp(y)||Sp
µ,zφ(z)|(1 + (z + y)2)|l|(zy)µ+1/2 dz dy

≤M

∫ ∞

0

yµ+1/2(1 + y2)|l||fp(y)| dy

·
∫ ∞

0

zµ+1/2(1 + z2)|l||Sp
µ,zφ(z)| dz <∞,

and the interchange in the order of integrations is justified.

Thus the claim is established.

Claim 2. Let l ∈ Z. If g is a continuous function on I such that
(1 + x2)αx−µ−1/2g(x) is bounded on I, for some α > |l| + µ + 1, and
f ∈ Oµ,l,# then f#g ∈ Oµ,#.

Proof. Let β ∈ N. Since, by proceeding as in the proof of [1,
Lemma 3.1], we can see that the operators τx and Sµ commute on
Oµ,#, for each x ∈ I, we can write

Sβ
µ(f#g)(x) =

∫ ∞

0

g(y)τx(Sβ
µf)(y) dy, x ∈ I.

For every x, y ∈ I one has

|τx(Sβ
µf)(y)| ≤

∫ x+y

|x−y|
Dµ(x, y, z)|(Sβ

µf)(z)| dz

≤M(1 + (x+ y)2)|l|(xy)µ+1/2

≤M(xy)µ+1/2(1 + x2)|l|(1 + y2)|l|.



104 J.J. BETANCOR AND L. RODRÍGUEZ-MESA

Hence we obtain that

(13)

|Sβ
µ(f#g)(x)| ≤

∫ ∞

0

|g(y)||(τxSβ
µf)(y)| dy

≤Mxµ+1/2(1 + x2)|l|

· sup
z∈I

(1 + z2)lz−µ−1/2|Sβ
µf(z)|

·
∫ ∞

0

yµ+1/2(1 + y2)|l||g(y)| dy, x ∈ I.

Then f#g ∈ Oµ,−|l|,#.

Moreover, f#g ∈ Oµ,−|l|,#. In effect, if (φn)∞n=0 ⊂ Hµ and φn → f ,
as n → ∞, in Oµ,l,#, then from (13) we can infer that φn#g → f#g,
as n → ∞, in Oµ,−|l|,#. Also, according to [6, Proposition 2], there
exists an s ∈ Z such that φn#g ∈ Oµ,s,# for every n ∈ N. Hence, since
Oµ,# is complete, [6, Corollary 3], f#g ∈ Oµ,#.

Now, by taking into account that, for every φ ∈ Hµ and f ∈ Oµ,#,∫ ∞

0

f(x)Sµφ(x) dx =
∫ ∞

0

Sµf(x)φ(x) dx,

Claims 1 and 2 allow us to conclude that f#S ∈ Oµ,#.

We say that S ∈ O′
µ,# has the property (HE) if and only if there exist

B,C > 0 such that |h′µ(S)(y)| ≥ y−B for every y ≥ C.

We now prove that the property (HE) is a necessary and sufficient
condition in order that S ∈ O′

µ,# is hypoelliptic in H′
µ.

The following result will allow us to prove the necessity of the
condition (HE).

Proposition 3.2. Assume that ξ1 > 1, ξj − ξj−1 > 1 for every
j = 2, 3, . . . , and (aj)∞j=1 ⊂ C such that |aj | = O(ξγ

j ), as j → ∞, for
some γ > 0. Denote by δµ the element of H′

µ defined by

〈δµ, φ〉 = cµ lim
x→0+

x−µ−1/2φ(x), φ ∈ Hµ,

being cµ = 2µΓ(µ + 1). Then
∑∞

j=1 ajτξj
δµ ∈ H′

µ. Moreover, if
T = h′µ(

∑∞
j=1 ajτξj

δµ), then T ∈ Oµ,# if and only if |aj | = O(ξ−ν
j )

as j → ∞, for each ν ∈ N.
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Proof. The series
∑∞

j=1 ajτξj
δµ converges in H′

µ, when we consider
in H′

µ the weak ∗ topology. In effect, for every φ ∈ Hµ and ξ ∈ I
according to [5, (2.1)], one has

(14)

〈τξδµ, φ〉 = cµ lim
x→0+

x−µ−1/2(τξφ)(x)

= cµ lim
x→0+

hµ[(xt)−µJµ(xt)hµ(φ)(t)](ξ)

= φ(ξ).

Hence for each n ∈ N,

〈 n∑
j=1

ajτξj
δµ, φ

〉
=

n∑
j=1

ajφ(ξj), φ ∈ Hµ,

and since |aj | = O(ξγ
j ) as j → ∞, for some γ > 0, the last sequence

converges as n→ ∞, for every φ ∈ Hµ. Therefore
∑∞

j=1 ajτξj
δµ ∈ H′

µ.

Moreover, from (14) we deduce

〈T, φ〉 =
〈 ∞∑

j=1

ajτξj
δµ, hµφ

〉

=
∞∑

j=1

ajhµ(φ)(ξj)

=
〈 ∞∑

j=1

aj(xξj)1/2Jµ(xξj), φ(x)
〉
, φ ∈ Hµ.

Thus it is established that T =
∑∞

j=1 aj(xξj)1/2Jµ(xξj).

It is not hard to see that, if |aj | = O(|ξj|−ν) as j → ∞, for each
ν ∈ N, then by invoking well-known properties of the Bessel function
[27, Section 5.1, (6) and (7)] for every β ∈ N the series

Sβ
µT (x) =

∞∑
j=1

aj(−ξ2j )β(xξj)1/2Jµ(xξj),

converges uniformly in x ∈ I and x−µ−1/2Sβ
µT is bounded on I. Hence,

T ∈ Oµ,# = ∪m∈ZOµ,m,#. Moreover, by proceeding as in the proof of
[1, Lemma 2.1] we can conclude that T ∈ Oµ,#.
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Assume now that T ∈ Oµ,#. Let k ∈ N and φ ∈ Hµ. According to
[5, (2.1)] and by (14) we can write

〈x−µ−1/2(xh)1/2Jµ(xh)Sk
µT (x), φ(x)〉

= 〈Sk
µT (x), hµ(τhhµφ)(x)〉

= 〈(h′µT )(x), (−x2)kτh(hµφ)(x)〉

=
∞∑

j=1

aj〈δµ, τξj
((−x2)kτh(hµφ)(x))〉

=
∞∑

j=1

aj(−ξ2j )kτξj
(hµφ)(h)

=
∫ ∞

0

(xh)1/2Jµ(xh)(Sk
µT )(x)x−µ−1/2φ(x) dx, h ∈ I.

Since x−µ−1/2φ(x)(Sk
µT )(x) is absolutely integrable on I, the Riemann-

Lebesgue lemma for the Hankel transform [24, Section 14.41], leads to

(15)
∞∑

j=1

aj(−ξ2j )kτξj
(hµφ)(h) −→ 0, as h −→ ∞.

We choose a function φ ∈ Hµ such that φ 
≡ 0, hµ(φ)(x) = 0 for every
x ≥ 1, and hµ(φ) ≥ 0. It is not hard to see that such a function φ can
be found.

Then, if x, y ∈ I and x− y > 1, we have

(16)
τx(hµφ)(y) =

∫ x+y

x−y

(hµφ)(z)Dµ(x, y, z) dz

=
∫ ∞

1

(hµφ)(z)Dµ(x, y, z) dz = 0.
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Moreover, if x ≥ 1/2 from (3) [24, Section 13.45] it infers

τx(hµφ)(x) =
∫ 2x

0

(hµφ)(z)Dµ(x, x, z) dz

=
x1−2µ

23µ−1Γ(µ+ 1/2)
√
π

·
∫ 2x

0

zµ−1/2(4x2 − z2)µ−1/2(hµφ)(z) dz

=
1

23µ−1Γ(µ+ 1/2)
√
π

·
∫ 1

0

zµ−1/2

(
4 −

(
z

x

)2)µ−1/2

(hµφ)(z) dz.

Hence,

τx(hµφ)(x) −→ 2−µ

Γ(µ+ 1/2)
√
π

∫ 1

0

zµ−1/2(hµφ)(z) dz,

as x −→ ∞.(17)

Note that
∫ 1

0
zµ−1/2(hµφ)(z) dz ∈ I.

By virtue of (16), for every l ∈ N,
∞∑

j=1

aj(−1)kξ2k
j τξj

(hµφ)(ξl) = al(−1)kξ2k
l τξl

(hµφ)(ξl).

Therefore, (15) and (17) imply that alξ
2k
l → 0 as l → ∞, and the proof

is complete.

In the following we establish that (HE) is necessary and sufficient in
order that S ∈ O′

µ,# be hypoelliptic in H′
µ.

Proposition 3.3. Let S ∈ O′
µ,#. Then S is hypoelliptic in H′

µ if
and only if S satisfies (HE).

Proof. Assume firstly that S does not verify (HE). Then, for every
j ∈ N there exists ξj ∈ I for which

ξ
−µ−1/2
j |h′µ(S)(ξj)| ≤ ξ−j

j
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and ξj − ξj−1 > 1, j = 2, 3, . . . and ξ1 > 1.

We now consider u ∈ H′
µ such that h′µ(u) =

∑∞
j=1 τξj

δµ. According
to Proposition 3.2, u /∈ Oµ,#. Moreover, by invoking [16, Proposition
4.5]

h′µ(u#S) = x−µ−1/2h′µ(u)h′µ(S) =
∞∑

j=1

ξ
−µ−1/2
j h′µ(S)(ξj)τξj

δµ,

and Proposition 3.2 implies that u#S ∈ Oµ,#. Hence S is not
hypoelliptic in H′

µ.

Consider now that S satisfies (HE), and let φ be a smooth function
defined on I such that

φ(x) =
{
xµ+1/2 for 0 < x < C,
0 for x ≥ C + 1,

where C is the positive constant that appears in property (HE). Note
that φ ∈ Hµ.

Also we define

P (x) =
{

0 for 0 < x ≤ C,
(xµ+1/2 − φ(x))/(x−µ−1/2h′µ(S)(x)) for x > C.

According to [16, Proposition 4.2], x−µ−1/2h′µ(S)(x) is a multiplier
of Hµ. Hence, since S satisfies (HE), P is smooth on I. Moreover,
x−µ−1/2P is a multiplier of Hµ. In effect, according to [2, Theorem 2.3],
for every k ∈ N there exists an nk ∈ N such that

(1 + x2)−nk

(
1
x
D

)k

[x−µ−1/2h′µ(S)(x)]

is bounded on I. Hence, since S verifies (HE) by virtue of Theorem 2.3
[2], x−µ−1/2P is a multiplier of Hµ.

We have that

(18) x−µ−1/2P (x)h′µ(S)(x) = xµ+1/2 − φ(x), x ∈ I.
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By applying the Hankel transformation to (18), it obtains

Q#S = δµ − ψ

where Q = h′µ(P ) ∈ O′
µ,#, [16, Proposition 4.2], and ψ = hµ(φ) ∈ Hµ,

[25, Lemma 8].

Suppose now that u#S = v where u ∈ H′
µ and v ∈ Oµ,#. Then,

according to [16, Proposition 4.7], we can write

u = u#δµ = u#(Q#S) + u#ψ = (u#S)#Q+ u#ψ = v#Q+ u#ψ.

Proposition 3.1 implies that v#Q ∈ Oµ,# and [6, Proposition 2] leads
to u#ψ ∈ Oµ,#. Thus, the hypoellipticity of S is proved.

Remark 2. Note that, by proceeding as in the proof of Proposition 3.3,
we can also prove that if S ∈ O′

µ,# and there exist Q ∈ O′
µ,# and

R ∈ Hµ such that
Q#S = δµ −R

then S is hypoelliptic in H′
µ.

In [8] we introduced for every m ∈ Z the space Xµ,m,# that is formed
by all those complex valued and smooth functions φ defined on I such
that for every k ∈ N,

βµ,m
k (φ) = sup

x∈I
|emxx−µ−1/2Sk

µφ(x)| <∞.

It is clear that Xµ,m+1,# is contained in Xµ,m,#. By Xµ,m,# we
denote the closure of Xµ into Xµ,m,#. The space Xµ,# = ∪m∈ZXµ,m,#

is endowed with the inductive topology.

Let S ∈ X ′
µ,#. We say that S (or the Hankel convolution equation

u#S = v) is hypoelliptic in X ′
µ when v ∈ Xµ,# implies that any solution

u ∈ X ′
µ of u#S = v belongs to Xµ,#.

The following property is analogous to the one presented in Proposi-
tion 3.1.

Proposition 3.4. If f ∈ Xµ,# and S ∈ X ′
µ,#, then f#S ∈ Xµ,#.
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Proof. This result can be proved in a similar way to Proposition 3.1.

After establishing the following proposition (similar to Proposition
3.2) we will prove that (HE) is also a necessary condition for the
hypoellipticity of S in X ′

µ.

Proposition 3.5. Let µ ≥ 1/2. Assume that ξj > 2ξj−1, j =
2, 3, . . . , and ξ1 > 1. Let (aj)∞j=1 be a complex sequence such that
|aj | = O(ξγ

j ) as j → ∞, for some γ > 0. Then
∑∞

j=1 ajτξj
δµ ∈ Q′

µ.
Moreover, if T = h′µ(

∑∞
j=1 ajτξj

δµ), then T ∈ Xµ,# if and only if
|aj | = O(ξ−ν

j ) as j → ∞, for every ν ∈ N.

Proof. Since Qµ ⊂ Hµ, [8, Corollary 2.1] from Proposition 3.2 it is
inferred that the series

∑∞
j=1 ajτξj

δµ converges in Q′
µ when we consider

in Q′
µ the weak ∗ topology. Then, by [8, Theorem 2.1]

T =
∞∑

j=1

aj(xξj)1/2Jµ(xξj) ∈ X ′
µ.

Moreover, if |aj | = O(ξ−ν
j ), as j → ∞, for each ν ∈ N, then it is easy

to see that if T ∈ Xµ,#. Suppose now that T ∈ Xµ,#. Let k ∈ N and
φ ∈ Xµ. We have

(19)

∞∑
j=1

aj(−ξ2j )kτξj
(hµφ)(h)

=
∫ ∞

0

(xh)1/2Jµ(xh)(Sk
µT )(x)x−µ−1/2φ(x) dx −→ 0,

as h −→ ∞.

Define φ(x) = e−x2
xµ+1/2, x ∈ I. According to (10) [11, Section 8.6],

hµ(φ)(y) =
yµ+1/2

2µ+1
e−y2/4, y ∈ I.

Hence, since hµ(φ) ∈ Xµ, φ ∈ Qµ, [8, Theorem 2.1]. Note that
hµ(φ)(y)y−µ−1/2 > 0 for every y ∈ I.
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Let m ∈ N. We can write

(20)
τx(hµφ)(y) =

∫ x+y

|x−y|
Dµ(x, y, z)hµ(φ)(z) dz

≤M(xy)µ+1/2(1 + |x− y|2)−m, x, y ∈ I.

Moreover, for each x ∈ I,

τx(hµφ)(x) =
∫ 2x

0

Dµ(x, x, z)hµ(φ)(z) dz

=
x1−2µ

23µ−1Γ(µ+ 1/2)
√
π

·
∫ 2x

0

zµ−1/2((2x)2 − z2)µ−1/2hµ(φ)(z) dz

=
2−µ

Γ(µ+ 1/2)
√
π

·
∫ 2x

0

zµ−1/2

(
1 −

(
z

2x

)2)µ−1/2

hµ(φ)(z) dz.

Hence

τx(hµφ)(x) −→ 2−µ

Γ(µ+ 1/2)
√
π

∫ ∞

0

zµ−1/2(hµφ)(z) dz,

as x −→ ∞.(21)

Let l and k ∈ N. From (20) we deduce

∣∣∣∣
∞∑

j=1

aj(−1)kξ2k
j (τξj

hµφ)(ξl)
∣∣∣∣

≥ |al|ξ2k
l (τξl

hµφ)(ξl) −
∞∑

j=1
j �=l

|aj |ξ2k
j (τξj

hµφ)(ξl)

≥ |al|ξ2k
l (τξl

hµφ)(ξl)

−Mξ
µ+1/2
l

∞∑
j=1
j �=l

|aj |ξ2k+µ+1/2
j (1 + |ξj − ξl|2)−m(22)
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≥ |al|ξ2k
l (τξl

hµφ)(ξl)

−Mξ
µ+1/2
l

∞∑
j=1
j �=l

|aj |ξ2k+µ+1/2
j |ξj − ξl|−m.

Since |aj | = O(ξγ
j ), as j → ∞, with γ > 0, one has

(23)
∞∑

j=1
j �=l

|aj |ξ2k+µ+1/2
j |ξj − ξl|−m ≤M

∞∑
j=1
j �=l

ξ
2k+γ+µ+1/2
j |ξj − ξl|−m.

By taking into account that

ξj − ξj−1 ≥ 2ξj−1 − ξj−1 = ξj−1 ≥ 2j−1, j = 2, 3, . . . ,

we can obtain

|ξj − ξl| ≥ 2l−1, for each j ∈ N− {l}.

Hence, by choosing m ∈ N such that m ≥ 2(2k + γ + µ + 3/2) it
follows

∞∑
j=1
j �=l

ξ
2k+γ+µ+1/2
j |ξj − ξl|−m ≤

∞∑
j=1
j �=l

|ξj − ξl|−1

·
∣∣∣∣1 − ξl

ξj

∣∣∣∣
−(2k+γ+µ+1/2)

|ξj − ξl|−(2k+γ+µ+3/2)(24)

≤M2−l.

By combining (22), (23) and (24), we conclude

(25)
∣∣∣∣

∞∑
j=1
j �=l

aj(−1)kξ2k
j (τξj

hµφ)(ξl)
∣∣∣∣

≥ ξ
µ+1/2
l (|al|ξ2k−µ−1/2

l τξl
(hµφ)(ξl) −M2−l) −→ 0,

l −→ ∞.
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Hence, from (19), (21) and (25), we deduce that |al|ξ2k−µ−1/2
l → 0,

as l → ∞. Thus the desired result is established.

The following proposition can be proved as Proposition 3.3.

Proposition 3.6. Let µ ≥ 1/2 and S ∈ X ′
µ,#. If S is hypoelliptic in

X ′
µ, then S satisfies the property (HE).

Remark 3. Finally we want to remark that, as in H′
µ, if S ∈ X ′

µ,#

and there exist Q ∈ X ′
µ,# and R ∈ Xµ such that

(26) Q#S = δµ −R,

then S is hypoelliptic in X ′
µ. However, we do not know how to define

Q ∈ X ′
µ,# and R ∈ Xµ satisfying (26) when S verifies (HE). We

think that the condition (HE) must be replaced by other analogous
but stronger conditions than (HE) involving complex values. This is
still an open problem.
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