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ON HANKEL CONVOLUTION EQUATIONS
IN DISTRIBUTION SPACES

JORGE J. BETANCOR AND LOURDES RODRIGUEZ-MESA

ABSTRACT. In this paper we study Hankel convolution
equations in distribution spaces. Solvability conditions for
Hankel convolution equations are obtained. Also we investi-
gated hypoelliptic Hankel convolution equations.

1. Introduction. The Hankel integral transformation is usually
defined by

m(6)@) = [ (@) 2, (et)p(0) dt, x e I = (0,00),

0

where J,, denotes the Bessel function of the first kind and order pu.
Throughout this paper p always will be greater than —1/2, and we will
denote by I the real interval (0, c0).

Zemanian [25, 26 and 27] investigated the h, transformation on
generalized function spaces. He introduced in [25] the space H,
constituted by all those complex valued and smooth functions ¢ defined
on I such that, for every m, k € N,

™ (lp)k[xﬂl%(x)] < 0.

T

'Yfmk((ﬁ) = sup
z€(0,00)

The space H,, is Fréchet when it is endowed with the topology
generated by the family {77’; i tm,ken of seminorms. It was established,
[25, Lemma 8] that h, is an automorphism of H,. The Hankel
transformation is defined on HL, the dual space of H,,, as the adjoint of
the hy,-transformation of H,,, and it is denoted by h,. More recently,
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Betancor and Rodriguez-Mesa [8] have studied h, on new spaces of
functions and distributions. We defined the spaces &, and Q, as
follows. A complex valued and smooth function ¢ defined on I is in X},
if and only if, for every m,k € N,

em(lp)k(xw/%s(x))‘ < 0.

X

7751,16((15) = sup
xel

X, is equipped with the topology associated to the system {n!, , } . ren
of seminorms. Thus &), is a Fréchet space.

The space Q,, is constituted by all those complex valued functions ®
satisfying the following two conditions

(1) s #~1/2®(s) is an even entire function, and
(ii) for every m,k € N

wh (B) = sup (1+]s2)"]s ™ 2B(s)| < oc.
’ |Im s|<k

Q,, is a Fréchet space when we consider the topology generated by
the family of seminorms {wﬁl,k}m,keN on Q,.

We established [8, Theorem 2.1] that h, is a homeomorphism from
X, onto Q,. Moreover, h, coincides with its inverse. The Hankel
transform is defined on the dual spaces Xli and Q/u as the adjoint of
the h, transformation and it is also denoted by Aj,.

The convolution for a Hankel type transformation closely connected
with h,, was investigated by Hirschman [13], Haimo [12] and Cholewin-
ski [9]. A straightforward manipulation in the convolution considered
by the above authors allows us to obtain the convolution for h, that will
be denoted by # and that is defined as follows: for every measurable
function ¢ and ¢ on I such that z#t1/2¢ and x#t1/2¢ are absolutely

integrable on I, the convolution ¢# of ¢ and 1 is given by

o)) = [ o) () @) dy, we I,
0
where (1,0)(y) = [~ Dpu(2,y,2)¢(2) dz, z,y € I and
Dy (x,y,2) = / 2 ) 2.1, () (1) 2 T ) (1) 2 o)

0
z,y, 2z € 1.
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The study of the # convolution in distribution spaces was started
by de Sousa-Pinto [23]. In a series of papers, Betancor and Marrero
[3, 4, 5, 6, 7] and [16] have investigated the Hankel convolution on
the Zemanian spaces. Also Betancor and Gonzilez [1] studied the
generalized Hankel convolution. Recently, Betancor and Rodriguez-
Mesa [8] defined the # convolution on distributions of exponential
growth.

In this paper we analyze Hankel convolution equations. Solvability
conditions for the # convolution equations in ’HL and X/L are inves-
tigated in Section 2. Also in Section 3 we study hypoelliptic Hankel
convolution equations in 'HL and X ;/L

Throughout this paper M will always denote a suitable positive
constant not necessarily the same in each occurrence.

2. Solvability of Hankel convolution equations of distribu-
tion. In this section, inspired by the papers of Sznajder and Zielezny
[21, 22] and Pahk and Sohn [19], we obtain necessary and sufficient
conditions to solve Hankel convolution equations in ’HL and X /i

Marrero and Betancor studied in [16] the Hankel convolution op-
erators on H;L. They introduced, for every m € Z, the space O, 4
constituted by all those complex valued and smooth functions ¢ defined
on [ such that, for every k € N,

6 (@) = sup|(1+ 2?)"a 28k ()] < oo,
Te

where S,, denotes the Bessel operator xF12 D2t Dy r=1/2 0 We
define O, » as the closure of H, in Oy 4.

Note that Oy my O Opmir,4 for each m € Z. The space
UmezOp,m,# is denoted by O, ». The Hankel convolution operators of
H;, are the elements of O, ,, the dual space of O, x [4]. Characteri-
zations of O], ,, were obtained in Proposition 4.2 [16]. The next result
was established in [5].

Proposition 2.1 [5, Theorem 3.1]. For S € (9;7#, the following
conditions are equivalent

(i) To every k € N there correspond m,n € N and a positive
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constant M such that
1 \!
J0ax sup { ‘ (;D) [f“*l/z(hLS)(t)] ctel|lv—t < (1+ mQ)k}
> (14277,

whenever x € I, x > M.
(i) If T € O}, 4 and S#T € H,,, then T € H,,.

IfSe (’)/’h#, the existence of solution for the convolution equation
(1) u#S = v,

for every v € H;,, implies conditions (i) and (ii) in Proposition 2.1.

Proposition 2.2. Let S € O, ,. If H,#S5 = H,,, then conditions
(i) and (ii) in Proposition 2.1 hold

Proof. 1t is sufficient to see that (ii) holds when M, #S = H,,. Note
firstly that the mapping

F:H, — H, =H,#S
u — u#S

is the transpose of the mapping

G: M, — M, C S#H,
¢ — S#o.

Then, by invoking [10, Corollary, p. 92| the mapping G is an isomor-
phism. In particular, the mapping G~! : S#H, — H, is continuous.

Assume now that 7' € O], , is such that T#S € H,,. Let ()72, be
a sequence of smooth functions such that the followmg three conditions
are satisfied

(i) it [y a1 2pp(x) do = 1, where ¢, = 2"T(u + 1),
(ii) 0 < pi(z), z € I,
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(ili) pp(z) =0, z ¢ (1/(k+1),1/k),
for every k € N.
According to [4, p. 1148], for each ¢ € H,,,

(2) or#d — ¢, ask — oo, inH,.
Moreover, by invoking [16, Proposition 4.7], we can write

() S#(TH#er) = (SHT)#er = (T#S)#pr, for every k € N.

Since T#¢r € H,, k € N, by taking into account that G! is
continuous and by (2) and (3), we conclude that (T#px)32, converges
in H,. Also by (2) again T#pyr, — T, as k — oo, in 'Hj, when we
consider in H,, the weak * (or the strong) topology. Hence T' € H,,.
Thus the proof is finished. u]

The authors in [8] have defined the Hankel convolution of distribu-
tions of exponential growth. We introduce [8, Section 3] a subspace
X/, 4 of X, consisting of S € X}, such that S#¢ € X, for every ¢ € X),.

In the following we establish a condition that S € X ;/L  satisfies when
the equation (1) admits a solution for every v € &).

Proposition 2.3. Let S € &) ,. If X;#S = X, then S verifies the
following property: T' € &), provided that T € Xllh# and T#S € &X,,.

Proof. This result can be proved in a similar way to Proposition 2.2.
It is sufficient to see that if (¢x)52, is a sequence of smooth functions
verifying the three conditions listed in the proof of Proposition 2.2 then,
for every ¢ € &,

(4) ¢#pr — ¢, ask — oo, in A,

By virtue of [8, Theorem 2.1] and by the interchange formula [13,
Theorem 2d] to show (4) it is equivalent to see that, for every ¥ € Q,,,

(5) s V2h, (0p) ¥ — U, ask — 0o, in Q,.
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We now prove (5). Let (y)72, be a sequence in the proof of
Proposition 2.2, and let ¥ € Q,. Since [~ t"+1/2p(t)dt = ¢, for
every k € N, where ¢, = 2*T'(u + 1), we can write

3_”_1/2hu(apk)(s) —1= / (st)_“JM(st)t”H/ka(t) dt —1
0

1/k 1
- / (st) ™ Ju(st) — — [t 2y (8) dt,
1/(k+1) Cu

for every k € N and s € C.

Let K be a compact subset of C, and let € > 0. There exists tg > 0
such that |(st)™#J,(st) — (1/c,)| < € for each 0 < t < tg and s € K.
Hence we can find kg € N such that, for every k > kg and s € K,

(s) 7" Tu(st) — — Y20, (t) dt
i

572y, (1) (s) — 1] < /

1/(k+1)
< éecy.

Moreover, from [15, Lemma 4], we deduce
s 2hyu(pn)(s) = 1] < / (I(st) T (st)] + 1)t 20 (8) dt
0

o0
gMe‘ImS|/ Y200 () dt
0

— ]\46\Ims|7
for every k € N and s € C.
Hence, for each m € N there exists a > 0 such that
1
1+|s|?
for every k € N, |Res| > a and [Im s| < m.

|7 2 hyu(pr)(s) — 1] <,

We can conclude that, for every m € N, there exists ky € N such that

—p—1/2 _
1_|_ |S|2 |S hﬂ(@k)(S) 1| <g,

for every k > ko and |Im s| < m.
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Now let m,n € N. We have, for every ¥ € Q,,,

Wl (U(5)[s™ 2y (01) (5) = 1))
< sup (L [sP) s T2 (s)]

|[Im s|<m

—p—1/2
- sup st ho(og)(s) — 1] — 0, as k — oo.
|Ims\§m1+|5|2| H( )( ) |

Thus (5) is established. u]

We now give a condition for S € X l: 4 that implies the solvability of
equation (1) for every v € &,.

Proposition 2.4. Let S € X;IL,#' If there exist N,r,C positive
constants such that

6)  swp |(E+ ) FPRL(S)E L 8)| > O ceR,

s€C,|s|<r (1+ |£‘2)N7

then X/ #S = X,

Proof. According to [10, Corollary, p. 92], we see X}, = X} #5S, it is
sufficient to prove that the linear mapping
G: X, — S#X, C X,
¢ — S#o
is a homeomorphism.
Note firstly that G is a continuous mapping. In effect, by invoking

[8, Proposition 3.4], we obtain

(7)  G(¢)=S#op= hu(sf“fl/QhL(S)hu(@), for every ¢ € X),.

Since s™#~1/2h! (S) is a continuous multiplier from Q,, into itself [8,
Theorem 3.1], from [8, Theorem 2.1] it infers that G is continuous.

Moreover, from (7), we can deduce that G is one-to-one. In fact, if
¢ € X, being G(¢) = 0 then s~ 1/2h/ (S)h,(¢) = 0. Since S # 0,
h,(¢) = 0 and hence ¢ = 0.



100 J.J. BETANCOR AND L. RODRIGUEZ-MESA

To finish the proof, we have to prove that the mapping
Gl S#X, — X,
S#Ho— ¢
is continuous, or equivalently, according to [8, Proposition 3.4 and
Theorem 2.1], we have to see that the mapping
F:s " 2h(8)Q, — Q,
sTHPH L (S) — @

is continuous. Let ® € Q,, and define ¥ = s‘“_l/zhL(S)CI). Let & € N.
By invoking a lemma of Hormander [14, Lemma 3.2], we obtain

(8) |sTM2e(s) < sup  |2THTVRR(S)(2)2 TR (2)
|z—s|<4(k+T)
SUP | g <a(ktr) |27~ 12h), (5)(2)|
[SUP|. s <hpr [27#7 20, (S)(2)]12
Also, according to (6), one has
sup [ H 2R (S)(2)| = sup (s 4 2) V2R (S) (s + 2)]
|z—s|<k+r |z|<k+r

> sup |(Res + 2) *1/21),(S)(Re s+ 2)|
|z|<r

se C.

> ¢

~ (14 [Res)N
C

>

T (L [sP)N

Moreover, according to [8, Theorem 3.1], there exists n € N such that

(9)

[Im s| < k.

sup  (1+ |Z\2)7"\z7“71/2h2(5)(z)\ < 00.

Im z|<5k+4r
Then
sup [z TPRL(9)(2) = sup [(s+2)TH 2R (S)(s + 2)]
|z—s|<4(k+r) |z|<4(k+T)
<M sup (14 |s+z*)"
|z[<4(k+T)

(10) < M(1+1s]*)", |Ims| < k.
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Hence, from (8), (9) and (10), we conclude that

|s7#H20(s)| < M(L+ [s]?)" 2N

() s |48 ),
|z|<4(k+T)

Im s| < k.

Now let m € N. By (11) one has

sup (14 [s[*)™[s 7120 (s)]
|Im s|<k

SM sup (1+‘S‘2)n+2N+m
[Im s|<k

sup  |(z4s)FV2U(z4+5)| <M sup
|z|<4(k+7r) |Im s|<k

sup (L4 |2+ )" P2V (2 4 5) #1202+ 5)|
[z|<4(k+r)
<M sup (14 |S|2)"+2N+m\s*“*l/Q\IJ(s)L
|Im s|<5k+4r

Thus we prove that F is continuous, and we conclude that G is a
homeomorphism. ]

Remark 1. 1t is an open problem whether the conditions presented in
Propositions 2.3 and 2.4 are equivalent. We conjecture that the answer
is affirmative.

3. Hypoelliptic Hankel convolution equations. Sampson and
Zielezny [20], Zielezny [28] and [29] and Pahk [17] and [18], amongst
others, have investigated hypoelliptic (usual) convolution equations in
certain spaces of generalized functions.

In this section we investigate hypoelliptic conditions for the Hankel
convolution equations in ), and X).

Let S € (’)/'h#. We say that S (or the Hankel convolution equation
u#S = v) is hypoelliptic in H, if all solutions u € Hj, of u#S = v are
in O, 4 whenever v € O, 4.

Note that, conversely, v € O, 4 provided that the equation u#S = v
admits a solution v € O, 4.
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Proposition 3.1. If f € Oy x and S € O, ,, then f#S € O 4.

Proof. A straightforward modification in the proof of [16, Proposi-
tion 4.2] allows us to see that, for every m € N, there exist k = k(m)
and continuous functions f, on I, 0 < p <k, such that

k
S=>_50f,
p=0

and
(14 x2)mz=#=Y2f, isbounded on I, 0<p<Ek.

Claim 1. Letl € Z, and let f be in O, 4. If S € (9;7#, then

k
F#S = SE(f#1)

p=0

where (fp)k_q is a family of continuous functions on (0,00) such that

k
(12) S=>"Sif,
p=0

and (1+$2)mx_”_1/2fp s bounded on I, for everyp =0,1,... k, and
being m > |l| + p + 1.

Proof. Let ¢ € H,,. By (12) we can write
o0 k o0
= = P
#5.0) = (1540 = [ o3 | 5t m dyda

k o o
=3 [ o [ hien s
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Since m > |I| + u + 1, it follows for every p =0,1,... , k,

[ [ 15@I@] [ Dutey. 218} 00) dz ey
0 0 0

-/ N / IS0

zt+y
~ / D (z,y, 2)eh /20 h V2| f(2) | dar dy d
|

z—y|

SM/o /0 [ @IISE -0(2)|(1+ (2 + 9)*) (z9)" /2 dz dy
<M/Oooy”+l/2(1+y2)|l|fp(y)|dy

/ 2 (1 4+ 22)H|SP g(2)|dz < oo,
0

and the interchange in the order of integrations is justified.

Thus the claim is established. O

Claim 2. Letl € Z. If g is a continuous function on I such that
(14 z2)*z=1=12g(x) is bounded on I, for some o > || + p + 1, and
f €014 then fH#g€ Oy p.

Proof. Let 3 € N. Since, by proceeding as in the proof of [1,
Lemma 3.1], we can see that the operators 7, and S, commute on
O, %, for each = € I, we can write

S5 (f#g)(x) = / T ) (SP) W) dy, z el

For every z,y € I one has

z+y

mSINWI< [ DuewAISINE) d:

lz—y|
< M(L+ (2 +y)?)! (@y)r /2
< M(zy)" 21+ 2?1+ )1
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Hence we obtain that

S, (F#9)(2)| < /OOO 9725 F)(y)] dy

< MaP Y21 4 22l

ssup(1 4 2%) 212180 £ (2))|
zeIl

 / V(1 ) g(y) dy, el
0

(13)

Then f#g (S Ou’,m’#.

Moreover, f#g € O, _jj,%. In effect, if (¢,)52g C H, and ¢, — f,
as n — 00, in O, %, then from (13) we can infer that ¢,#g — f#yg,
as n — 00, in O, _y.%. Also, according to [6, Proposition 2], there
exists an s € Z such that ¢, #g € O, s« for every n € N. Hence, since
O, # is complete, [6, Corollary 3|, f#g € O, 4.

Now, by taking into account that, for every ¢ € H, and f € O, 4,

/mﬂm&mquz/m&meuwa
0 0

Claims 1 and 2 allow us to conclude that f#S € O, «. O

We say that S € O, ,, has the property (HE) if and only if there exist
B, C > 0 such that |}, (S)(y)| >y~ " for every y > C.

We now prove that the property (HE) is a necessary and sufficient
condition in order that S € O, , is hypoelliptic in H;,.

The following result will allow us to prove the necessity of the
condition (HE).

Proposition 3.2. Assume that & > 1, § — &1 > 1 for every
J=2,3,..., and (a;)52; C C such that |a;| = O(f;y), as j — oo, for
some v > 0. Denote by d,, the element of 'H;L defined by

<5m ¢) = Cu xlirgﬂr x7“71/2¢(90), € Hy,

being ¢, = 2¢T(u + 1). Then 372, a;7¢;0, € H,;,. Moreover, if
T = hy (3252, aj7e;04), then T € O, if and only if |a;| = O(&;™)
as j — oo, for each v € N.
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Proof. The series Z;o a;jTe, 0, converges in H , when we consider
in HL the weak * topology. In effect for every (b € Hyand { € 1
according to [5, (2.1)], one has

(7edu, @) = e lim o™ 2(70) (x)
(14) =¢, lim h,[(at)*J,(zt)hu(0)()](E)

rz—0t

= ¢(8).

Hence for each n € N,

<Zaj7—§j5ﬂ7¢> :Zaj¢(§j)v ¢€H;L;
j=1 j=1

and since |a;| = O(]) as j — oo, for some vy > 0, the last sequence
converges as n — 0o, for every ¢ € H,,. Therefore Zj’;l a;jTe; 6, € H,.

Moreover, from (14) we deduce

(T, ¢) = < i a;jTe; O hu¢>
j=1
=3 ash (&)

-
l
—

|
.Mg

Il
-

<

Thus it is established that T' = "2, a;(x&;)"/?J,,(x€;).

'(xfj)1/2‘]u($€j)v¢($)>7 ¢€Hu-

J

It is not hard to see that, if |a;| = O(|§;|7") as j — oo, for each
v € N, then by invoking well-known properties of the Bessel function
[27, Section 5.1, (6) and (7)] for every 8 € N the series

SET(x Za] )P (x&5) Y2 T, (x€5),

converges uniformly in = € I and z~#~/288T is bounded on I. Hence,
T € 04,4 = UnezOpum 4. Moreover, by proceeding as in the proof of
[1, Lemma 2.1] we can conclude that T' € O, 4.



106 J.J. BETANCOR AND L. RODRIGUEZ-MESA

Assume now that T € O, ». Let kK € N and ¢ € H,. According to
[5, (2.1)] and by (14) we can write

(w12 (2h) 20, (eh) ST (), d(x))
= (ST (), hy(Thyud) (@)
= ((h,T)(2), (=2*)" 7h(hy.0) ()

= Z a; <5l“ U3 ((—$2)k7'h(hu¢)(x))>

_Za‘j T£J u¢)( )

= / OO(xh)l/zJH(:ch)(Sl’jT)(x)x‘”‘”%(a:) dr, hel.
0

Since 2 #~1/2¢(z) (SET)(z) is absolutely integrable on I, the Riemann-
Lebesgue lemma for the Hankel transform [24, Section 14.41], leads to

(15) Zaj )¥7e, (hu@)(h) — 0, as h — oo.

We choose a function ¢ € H,, such that ¢ # 0, h,(¢)(z) = 0 for every
x> 1, and h,(¢) > 0. It is not hard to see that such a function ¢ can
be found.

Then, if z,y € [ and z —y > 1, we have

Tty
T () (9) = / (hud)(2) Do, 9, 2) d2

-y

_ /loo(h#qb)(z)D#(x,y, 2)dz =0,



HANKEL CONVOLUTION EQUATIONS 107

Moreover, if z > 1/2 from (3) [24, Section 13.45] it infers

2x
@) = [ () Dy,
.’[172/1’
T 1T (u+ 1/2) V7
. /0296 ,2“_1/2(4:1:2 - 22)“_1/2(hu¢)(2) dz
1
TP (u+ 1/2)Vr

_/01 12 <4 _ <§)2>H_1/2(hu¢)(z) dz

Hence,

T, T Pl 1/2
@) — o [ 002

(17) as x — o0.

Note that fol 2Y2(h,0)(2) dz € 1.
By virtue of (16), for every [ € N,

Zaj 5%7'&( n®)(&) = ar(-1 )k ZZkaz(hu¢)(§l)~

Therefore, (15) and (17) imply that a;¢?* — 0 as | — oo, and the proof
is complete. ]

In the following we establish that (HE) is necessary and sufficient in
order that S € O], ,, be hypoelliptic in Hj,.

Proposition 3.3. Let S € O, 4. Then S is hypoelliptic in H,, if
and only if S satisfies (HE).

Proof. Assume firstly that S does not verify (HE). Then, for every
J € N there exists §; € I for which

V2L (S)(€)| < &7
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and & — &1 >1,7=2,3,... and & > 1.

We now consider u € M, such that hj,(u) = 3272, 7¢,0,. According
to Proposition 3.2, u ¢ O, 4. Moreover, by invoking [16, Proposition
4.5]

h, (u#tS) = P2 R ()R (9) = 64T (9) ()T, O
j=1

and Proposition 3.2 implies that u#S € O, %. Hence S is not
hypoelliptic in H],.

Consider now that S satisfies (HE), and let ¢ be a smooth function
defined on I such that

2 for 0 <z < C,
o(x) =
0 forx>C+1,

where C' is the positive constant that appears in property (HE). Note
that ¢ € H,.
Also we define

P(z) — 0 for0 <2 <C,
)= { (@#H12 — g(a)) /(@ 2h,(S)(x)) for z > C.

According to [16, Proposition 4.2], z=#~/2h/ (S)(z) is a multiplier
of H,. Hence, since S satisfies (HE), P is smooth on I. Moreover,
x~H~1/2P is a multiplier of H,.. In effect, according to [2, Theorem 2.3],
for every k € N there exists an n; € N such that

42ty (1) o)

is bounded on I. Hence, since S verifies (HE) by virtue of Theorem 2.3
[2], z7#~1Y/2P is a multiplier of H,,.

We have that

(18) a P 2P(@),(S)(z) = 2TV — g(x), we
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By applying the Hankel transformation to (18), it obtains
Q#S =0y — 1

where Q = h;,(P) € O,, 4, [16, Proposition 4.2], and ¢ = h,(¢) € H,,,
[25, Lemma 8§].

Suppose now that u#S = v where u € 'HL and v € O, 4. Then,
according to [16, Proposition 4.7], we can write

u = utdy = uf(Q#S) + usty = (u#S)#Q + uth = v#Q + uFHY.

Proposition 3.1 implies that v#@Q € O,, % and [6, Proposition 2] leads
to u# € O, . Thus, the hypoellipticity of S is proved. O

Remark 2. Note that, by proceeding as in the proof of Proposition 3.3,
we can also prove that if S € O], , and there exist Q@ € O, , and
R € 'H,, such that

Q#S=6,—R
then S is hypoelliptic in H],.

In [8] we introduced for every m € Z the space X, ,,, 4 that is formed
by all those complex valued and smooth functions ¢ defined on I such
that for every k € N,

K (@) = sup |e" e TS ()] < oo
xel

It is clear that X, ,,4+1,% is contained in X, ,, ». By &, 4 we
denote the closure of X}, into X, ;, . The space X, 4 = Umez Xy m,#
is endowed with the inductive topology.

Let S € X ,. We say that S (or the Hankel convolution equation
u#S = v) is hypoelliptic in Xl; when v € &), » implies that any solution
u € X, of u#S = v belongs to X}, 4.

The following property is analogous to the one presented in Proposi-
tion 3.1.

Proposition 3.4. If f € X, » and S € X 4, then f#S € X, »
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Proof. This result can be proved in a similar way to Proposition 3.1.
]

After establishing the following proposition (similar to Proposition
3.2) we will prove that (HE) is also a necessary condition for the
hypoellipticity of S in A},

Proposition 3.5. Let pu > 1/2. Assume that & > 2&;_1, j
2,3,..., and & > 1. Let (a;j)72, be a complex sequence such that
laj| = O(&]) as j — oo, for some v > 0. Then 327, a;¢,0, € Q).
Moreover, if T = hL(Z;L a;j7e;0u), then T € X, 4 if and only if
laj| = O(&; ") as j — oo, for every v € N.

Proof. Since Q,, C H,, [8, Corollary 2.1] from Proposition 3.2 it is
inferred that the series 7% | a;7¢, 6, converges in Q), when we consider
in @), the weak * topology. Then, by [8, Theorem 2.1]

= a;(xg;) 2 J.(x85) € X,
j=1

Moreover, if |a;| = O(§;"), as j — oo, for each v € N, then it is easy
to see that if T € X, ». Suppose now that ' € &), ». Let k € N and
¢ € X,. We have

_Z a;(—&5) 7e, (huo) (h)
19 00
19) = / (xh)' /21, (xh) (SET) (z)a ™2 ¢(x) dz — 0,
0
as h — oo.

Define ¢(z) = =% #+1/2 2 € I. According to (10) [11, Section 8.6],

Hence, since h,(¢) € X,, ¢ € Q,, [8, Theorem 2.1]. Note that
h,.(6)(y)y=*"1/2 > 0 for every y € 1.
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Let m € N. We can write

Tty
72 (hyd) (4) = / Dy (2., 2)hy (8)(2) dz

z—y|
< M(ay)" VP |z -y

(20)
, xz,y€l.

Moreover, for each x € I,

(o) = | " Dy 2 (6)(2) dz

21T (3 + 1/2) /7

A e C IO
= Tt i/ve

. /Ozm i1/2 (1 _ (%) 2) M_l/zhﬂ(qb)(z) dz.

Hence

@) — o [ 2 ) ds

(21) as r — 00.

Let [ and k € N. From (20) we deduce

Z 1 & (re; hud) (&)

> |arl€2% (e, hyu) (&) ngz e, hu) (&)

111

T
> [ag|€7* (7e,hud) (&)
(22) — MY oy R (1 g - )

j=1
J#l
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> a2 (e, hud) (&)
““/22\ a &P e — g,

Jj=1
7l

Since |a;| = 0(5]7), as j — oo, with 4 > 0, one has

Z| a; |25 Pl — g m<MZ£2’“+”+““/2|f —&alm

J#l J#l

By taking into account that

6,] - é-jfl 2 2§j*1 _gjfl = gjfl 2 2j_17 j = 2737 ey
we can obtain

& — &| > 271, for each j € N — {i}.

Hence, by choosing m € N such that m > 2(2k + v + u + 3/2) it
follows

Z€?k+’y+u+1/2|§j —&4I™m < Z |§g - £l|71

j=1 j=1
J#l J#l
¢ —(2k+y+p+1/2)
(24) ‘1 . E_l ‘gg . £l|f(2k+“y+p«+3/2)
J
< M27L

By combining (22), (23) and (24), we conclude

Za] 5% T£J hu9) (&)
J#l
> V2 (a7 P (huo) (&) — M271) — 0,

[ — 0.
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Hence, from (19), (21) and (25), we deduce that |q, |§2k n-1/2 o,
as [ — o0o. Thus the desired result is established. ]

The following proposition can be proved as Proposition 3.3.

Proposition 3.6. Let u >1/2 and S € X, . If S is hypoelliptic in
X!, then S satisfies the property (HE).

Remark 3. Flnally we want to remark that, as in H’
and there exist Q € X # and R € &), such that

ifSex,

wo

(26) Q#S =0, —

then S is hypoelliptic in X,. ’. However, we do not know how to define
Q€ X, , and R € X, satlsfylng (26) when S verifies (HE). We
think that the Condltlon (HE) must be replaced by other analogous
but stronger conditions than (HE) involving complex values. This is
still an open problem.
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