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u-INDEPENDENCE AND QUADRATIC u-INDEPENDENCE
IN THE CONSTRUCTION OF INDECOMPOSABLE

FINITELY GENERATED MODULES

PAOLO ZANARDO

ABSTRACT. Let R be a valuation domain having an ideal
I such that a maximal immediate extension S of R contains
four units u-independent over I. We construct a 4-generated
indecomposable R-module M with Goldie dimension g(M) =
2. We thus supplement a result by Lunsford who constructed
indecomposable finitely generated R-modules making use of
sets of quadratically u-independent elements of S.

1. Introduction. Let R be a valuation domain, and let S be a fixed
maximal immediate extension of R. There is a somewhat standard way
to define finitely generated R-modules M by generators and relations,
relating M to a set of units u1, . . . , un of S. Starting with [5] and
[8], an extensive use of this idea was made. See also the books by
Fuchs and Salce [2, Chapter 9] and [3, Chapter 5]. The notion of
u-independence of units u1, . . . , un of S over an ideal I of R was
introduced in [8] and investigated further in [9]. It was used to show the
existence of indecomposable finitely generated R-modules M (related
with u1, . . . , un) with minimal number of generators l(M) = n + 1
and Goldie dimension g(M) = n. This solved the problem of finding
indecomposable finitely generated R-modules with Goldie dimension
greater than one. However, it is worth noting that the argument
developed in [8] worked only in the case when l(M) = g(M) + 1.

Lunsford [4] in 1995 gave a natural generalization of u-independence,
defining quadratic u-independence of units u1, . . . , un of S over an ideal
I. Starting with a sufficiently large set of units of S, for any pair
of positive integers h, k he defined by generators and relations an R-
module M with l(M) = h + k and g(M) = h. Actually this type of
module had already been introduced in 1987 by Salce and Zanardo [7].
Using quadratic u-independence, Lunsford was able to prove that such
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an M is indecomposable. In fact, he proved much more, namely that
EndR(M) is a local ring. Let us recall that the endomorphism ring of
indecomposable R-modules is, in general, not local (see [8], [6]).

The above-mentioned constructions are also described in [2] and [3].
For the convenience of the reader we recall them in Section 1.

The notion of quadratic u-independence over an ideal I has a slight
inconvenience: it works only in case I is a prime ideal of R (necessarily
nonzero and nonmaximal in this setting). And, in general, even if I is a
prime ideal, one may have large sets of elements u-independent over I,
but none that are quadratically u-independent. Therefore, Lunsford’s
results cannot prove the existence of indecomposable finitely generated
modules M with 1 < g(M) < l(M) − 1 for large classes of valuation
domains R. For example, archimedean valuation domains, where the
only primes are the maximal ideal and zero.

In the present paper we show that the existence of a set of four units
of S which are u-independent over any nonzero ideal I is enough to
ensure the existence of an indecomposable R-module M with l(M) = 4
and g(M) = 2. The definition of M by generators and relations
is the same as in [4] (and in [6]). But, since the related units of
S are just u-independent and not quadratically u-independent, we
need a completely different, more direct argument to prove that M
is indecomposable.

1. Preliminaries. In what follows R will denote a valuation domain
and P will denote its maximal ideal. Let us recall some notions and
results on valuation domains and their finitely generated modules (see
[2] and [3] for a general exposition).

Let M be a finitely generated R-module. There exists a finite
ascending chain of submodules

(1) 0 = M0 < M1 < · · · < Mn−1 < Mn = M

such that

(i) every Mi is pure in Mi+1;

(ii) Mi+1/Mi is cyclic.

(Here and throughout, the symbol “<” denotes proper inclusion.)
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We may also choose (1) in such a way that, settingAi=Ann (Mi/Mi−1),
1 ≤ i ≤ n, we have

Ann (M) = A1 ≤ A2 ≤ · · · ≤ An.

A pure-composition series for M is any chain Mi of M , as in (1),
satisfying conditions (i) and (ii) as above. The sequences of ideals
Ai = Ann (Mi/Mi−1) is called the annihilator sequence of M . Any two
pure-composition series of M are isomorphic. Therefore, M determines
its annihilator sequence (up to the order).

We denote by l(M) the minimal number of generators of M ; l(M) is
the common length of the pure-composition series of M . When we say
that M is n-generated, we mean that l(M) = n. The Goldie dimension
of M is the minimal number of generators of any direct sum of cyclics
which is essential in M ; it is denoted by g(M).

For an assigned valuation domain R, we denote by S a fixed maximal
immediate extension of R. Recall that S is not in general determined
as a ring, but it is determined as an R-module: S is the pure-injective
envelope of the R-module R.

Let u be a unit of S not in R. The breadth ideal B(u) of u is defined
by

B(u) = {a ∈ R : u /∈ R + aS}.
Since R is a valuation domain, it is readily checked that the above set
is in fact an ideal. Recall that I < R is a breadth ideal exactly if R/I
is not complete the topology of its ideals.

The units u1, . . . , un ∈ S \ R are said to be u-independent over the
ideal I of R if I = B(ui) for all i ≤ n and, for any given congruence
of the form a0 +

∑n
i=1 aiui ≡ 0 mod IS with a0, . . . , an ∈ R, we must

have a0, . . . , an ∈ P (see [8] or [2], [3]).

The notion of u-independence was used in [8] to construct indecom-
posable finitely generated R-modules as follows.

Assume that u1, . . . , un ∈ S \ R are u-independent over a suitable
nonzero ideal I of R. Let us choose 0 	= a ∈ I, and let A = aR. Let
us consider the ideal J = {r ∈ R : rI < A}. We set J∗ = J \ A;
by definition r−1A > I for all r ∈ J∗, and one can check that⋂

r∈J∗ r−1A = I.
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Since B(ui) = I, by the definition of breadth ideal for every i ≤ n,
there exists a family {ur

i : r ∈ J∗} of units of R satisfying the condition

ur
i − ui ∈ r−1AS, ∀r ∈ J∗.

As in [8] (see also [4]), we define by generators and relations a finitely
generated R-module M = 〈x0, x1, . . . , xn〉, where the generators xi are
subject to the conditions:

Ann (xi) = A; rx0 = r
n∑

i=1

ur
ixi, ∀r ∈ J∗.

Note that the above relations are consistent, since ur
i − us

i ∈ r−1A
whenever r, s ∈ J∗ and s divides r.

Since u1, . . . , un are u-independent over I, the module M turns out
to be indecomposable and (n + 1)-generated, in view of Theorem 6 of
[8]. The annihilator sequence of M is given by A = · · · = A < J . The
submodule B = 〈x1, . . . , xn〉 = 〈x1〉⊕· · ·⊕〈xn〉 is pure and essential in
M , whence g(M) = n. Note that B is a direct sum of cyclic submodules
since its annihilator sequence is of the form A = · · · = A (see [2]). Here
we recall that a direct sum of cyclics which is pure and essential in
M is said to be a basic submodule of M . All basic submodules are
isomorphic.

A set {u1, . . . , un} is quadratically u-independent over an ideal I of R
if B(ui) = I for all i ≤ n and, for every polynomial f ∈ R[X1, . . . , Xn]
of degree ≤ 2, f(u1, . . . , un) ≡ 0 mod IS implies f ∈ P [X1, . . . , Xn]
(see [4]).

Let us remark that, if the units u1, . . . , un are quadratically u-
independent over I, then I is necessarily a prime ideal ([4, Lemma
1]).

Suppose now that we have a set of units {uij : 1 ≤ i ≤ h; 1 ≤ j ≤ k}
quadratically u-independent over a nonzero ideal I. One defines a
finitely generated module related to {uij} as follows (see [4]; see also
[7]). Let the ideals A, J be as above. Since B(uij) = I, r−1A > I for
all r ∈ J∗ and ∩r∈J∗r−1A = I for all i, j there exist units ur

ij ∈ R such
that

ur
ij − uij ∈ r−1AS, ∀r ∈ J∗.
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We set M = Mh,k = 〈x1, . . . , xh, y1, . . . , yk〉, where the generators are
subject to the relations: Axi = 0, 1 ≤ i ≤ k, and

ryj = r
h∑

i=1

ur
ijxi, r ∈ J∗, 1 ≤ j ≤ k.

Then we have the following result

Theorem 1.1 [4]. In the above notation of the preceding module
M , we have l(M) = h + k, g(M) = h and, if {uij} is quadratically
u-independent over I, then EndR(M) is a local ring.

It is useful to note that the increasing annihilator sequence of the
preceding M is given by A = · · · = A < J = · · · = J with h copies of
A and k copies of J .

2. An indecomposable module M with l(M) = 4 and g(M) =
2. We will consider a 4-generated R-module M , with g(M) = 2, defined
in the same way as in Lunsford’s paper, but assuming that the units
involved are just u-independent and not necessarily quadratically u-
independent. We will prove that M turns out to be indecomposable,
even with this weaker assumption. Note that, in this particular case,
we will adopt a notation simpler than that in [4].

Theorem 2.1. Let us suppose that four units of S not in R
exist which are u-independent over a suitable nonzero ideal I of R.
Then there exists an indecomposable 4-generated module M with Goldie
dimension g(M) = 2.

Proof. Let u1, u2, v1, v2 be units of S u-independent over a suitable
nonzero ideal I of R. Let the ideals A, J be as in Section 1. Recall that
I =

⋂
r∈J∗ r−1A. Choose units ur

i , v
r
j of R such that, for 1 ≤ i, j ≤ 2,

(2) ur
i − ui ∈ r−1AS, vr

j − vj ∈ r−1AS, ∀r ∈ J∗.

Set M = 〈x1, . . . , xr〉, where the generators xi are subject to the
conditions: Ann (xi) = A for 1 ≤ i ≤ 4 and, for all r ∈ J∗,

(3) rx1 = r(ur
1x3 + vr

1x4), rx2 = r(ur
2x3 + vr

2x4).
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It is readily checked that l(M) = 4. Moreover, using Lemma 4 of [4] we
see that B = 〈x3, x4〉 = 〈x3〉⊕ 〈x4〉 is a basic submodule of M , whence
in particular g(M) = 2. Note that the increasing annihilator sequence
of M is as follows:

A = A < J = J.

We shall prove that M is indecomposable in two steps.

STEP 1. M does not admit cyclic summands.

By contradiction, let us assume that M = 〈y1〉 ⊕ 〈y2, y3, y4〉 =
〈y1〉 ⊕ N . Let us observe that, necessarily, Ann (y1) = A, since any
basic submodule of M is isomorphic to R/A ⊕ R/A. Let T = (aij) be
the 4 × 4 invertible matrix with entries in R such that Tx = y, where
x denotes the column whose entries are x1, . . . , x4, and similarly for y.

Our first aim is to manipulate the generators y1, . . . , y4 in such a way
that we may assume, without loss of generality, that the entries a11, a12

of T satisfy the condition: a11 ≡ a12 mod P .

Let us note that not all the entries ai1, ai2, 2 ≤ i ≤ 4 lie in P ;
otherwise |T | ∈ P in view of the Laplace rule. Therefore, there exist
s ∈ R and 2 ≤ k ≤ 4 such that either a11 − sak1 = 0 or a12 − sak2 = 0.
Thus, replacing y1 with y1 − syk we may assume that in T either a11

or a12 is zero; indeed, note that M = 〈y1 − syk〉 ⊕ 〈y2, y3, y4〉, since
Ann (y1) = Ann (M).

If now a11, a12 ∈ P we are done, since then a11 ≡ a12 ≡ 0 mod P .

Otherwise, let us assume that a11 is a unit and a12 = 0 (similar
arguments work in the symmetric case). Without loss of generality, let
a11 = 1.

We now have to distinguish various cases.

A) There exists an index k, with 2 ≤ k ≤ 4, such that ak1 is a unit
and ak2 ∈ P .

In this case we may replace y1 with z = y1 − a−1
k1 yk. We get

M = 〈z〉 ⊕ 〈y2, y3, y4〉 and z =
∑k

j=1 b1jxj , where b11, b12 ∈ P .
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B) The case A) is never satisfied and there exists an index k, with
2 ≤ k ≤ 4, such that ak2 is a unit and ak1 	≡ ak2 mod P .

Let us set t = a−1
k2 and s = 1 − ak1t. Let us note that s /∈ P , since

otherwise ak1 ≡ ak2 ≡ t−1 mod P . Replacing y1 with z = sy1 + tyk,
we have, as above, M = 〈z〉 ⊕ 〈y2, y3, y4〉. Now z =

∑k
j=1 c1jxj , where

c11 ≡ c12 ≡ 1 mod P .

C) Neither A) nor B) is satisfied so that, for all 2 ≤ i ≤ 4, the
entries ai1, ai2 are either both in P or (without loss of generality)
ai1 ≡ ai2 ≡ 1 mod P .

Our purpose is to show that this last case C) cannot occur.

Recall that, as observed above, it is not possible that ai1, ai2 ∈ P for
all 2 ≤ i ≤ 4. Thus we may assume, without loss of generality, that
a21 ≡ 1 ≡ a22 mod P . Now for i = 3, 4, let us replace yi with yi − y2

exactly if ai1 ≡ ai2 ≡ 1 mod P . After these modifications of T , we may
assume that a31 ≡ a32 ≡ a41 ≡ a42 ≡ 0 mod P .

Thus we get the following congruence

|T | ≡

∣∣∣∣∣∣∣

1 0 a13 a14

1 1 a23 a24

0 0 a33 a34

0 0 a43 a44

∣∣∣∣∣∣∣
mod P.

Since |T | is a unit, it follows that
∣∣ a33 a34

a43 a44

∣∣ is a unit.

We deduce that N must contain elements of the form

p(ax1 + bx2) + x3; p(cx1 + dx2) + x4,

for suitable p ∈ P and a, b, c, d ∈ R. Since A is a principal ideal, we may
choose t ∈ p−1A \A. Then we have tp(ax1 + bx2) = 0 = tp(cx1 + dx2),
and we get N ⊇ 〈tx3〉 ⊕ 〈tx4〉 = tB. But tB is an essential submodule
of M and so it cannot be contained in a proper direct summand. This
is the desired contradiction which shows that case C) cannot occur.

From examination of cases A), B) and C), we conclude that it is not
restrictive to assume that a11 ≡ a12 mod P .

For every r ∈ J∗, let

br
−1 = (br

1, . . . , b
r
4) = (−1,−1, ur

1 + ur
2, v

r
1 + vr

2)T
−1.
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Then we get

rbr
−1y = rbr

−1Tx = −rx1 − rx2 + r(ur
1 + ur

2)x3 + (vr
1 + vr

2)x4 = 0.

From the above relation and Ry1 ∩ N = 0, we deduce that rbr
1y1 = 0

so that br
1 ∈ r−1A for all r ∈ J∗. On the other hand, by the definition

of br
1, we have

br
1|T | = −c1 − c2 + c3(ur

1 + ur
2) + c4(vr

1 + vr
2),

where the ci are the cofactors of the first row of T . Thus the second
member of the above relation lies in r−1A. From the relations (2) and
since I =

⋂
r∈J∗ r−1A, we get

−c1 − c2 + c3(u1 + u2) + c4(v1 + v2) ≡ 0 mod IS.

Then the u-independence of u1, u2, v1, v2 gives c1 + c2, c3, c4 ∈ P . Now
the assumption on a11, a12 gives

|T | =
4∑

i=1

a1ici ≡ a11(c1 + c2) + a13c3 + a14c4 ≡ 0 mod P.

This is the desired contradiction which shows that M cannot admit
cyclic direct summands.

STEP 2. M does not contain 2-generated direct summands.

We argue by contradiction, assuming that M = N1 ⊕ N2 where the
Ni are 2-generated. In view of Step 1, we may assume without loss of
generality that the Ni are indecomposable. By the uniqueness of the
annihilator sequence of M , we deduce that the annihilator sequence of
each Ni is given by: A < J . Let N1 = 〈y1, y2〉, N2 = 〈y3, y4〉 and let
T = (aij) be the invertible matrix such that Tx = y (notations as in
Step 1).

Let us first examine N1 (we refer to [6] for a thorough description of
2-generated indecomposable R-modules). We may assume without loss
of generality that Ry2

∼= R/A is basic in N1 and that, for all r ∈ J∗,

(4) ry1 = rwry2,
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for suitable units wr in R. A unit w exists in S such that w − wr ≡ 0
modulo r−1AS for all r ∈ J∗. Since N1 is indecomposable, necessarily
w /∈ R. Using (3) and (4), from yi =

∑4
j=1 aijxj , we get for all r ∈ J∗,

r(a11u
r
1 + a12u

r
2 + a13 − wr(a21u

r
1 + a22u

r
2 + a23))x3

+ r(a11v
r
1 + a12v

r
2 + a14 − wr(a21v

r
1 + a22v

r
2 + a24))x4 = 0.

Now Rx3 ∩ Rx4 = 0 and I =
⋂

r∈J∗ r−1A whence, using (2) and
w − wr ∈ r−1AS, we get the following congruences modIS:

a11u1 + a12u2 + a13 ≡ w(a21u1 + a22u2 + a23)
a11v1 + a12v2 + a14 ≡ w(a21v1 + a22v2 + a24).

From the above congruences we finally reach the following relation
which does not depend upon w:

(5) (a11u1 + a12u2 + a13)(a21v1 + a22v2 + a24)
≡ (a21u1 + a22u2 + a23)(a11v1 + a12v2 + a14) mod IS.

Let us now consider the minors of the first two rows of T , λij =∣∣∣ a1i a1j

a2i a2j

∣∣∣, 1 ≤ i < j ≤ 4. Developing (5) we obtain

(6) λ34 + u1λ14 + u2λ24 − v1λ13 − v2λ23

+ (u1v2 − u2v1)λ12 ≡ 0 mod IS.

Let us now repeat our argument replacing N1 with N2 and, consid-
ering the minors of the third and fourth rows of T , µij =

∣∣∣ a3i a3j

a4i a4j

∣∣∣,
1 ≤ i < j ≤ 4. We obtain a relation corresponding to (6), namely,

(7) µ34+u1µ14+u2µ24−v1µ13−v2µ23+(u1v2−u2v1)µ12 ≡ 0 mod IS.

Let us now examine the various possible cases, comparing λ12 with µ12.

A) λ12 and µ12 are associated elements of R. In this case we may
assume without loss of generality that λ12 = µ12.

Subtracting (7) from (6) and, using the u-independence of u1, u2, v1, v2,
we get

λij ≡ µij mod P,
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for all i, j with (i, j) 	= (1, 2). Moreover, λ12 ≡ µ12 mod P , by
hypothesis. But then, applying the generalized Laplace rule, we get

|T | =
∑

(λijµhk − λhkµj)(−1)i+j

≡
∑

(λijλhk − λhkλij)(−1)i+j ≡ 0 mod P,

which is impossible.

B) λ12 = pµ12, for some p ∈ P .

Let us multiply relation (7) by p and subtract the result from (6).
Making use of the u-independence, we get

λij − pµij ≡ 0 mod P,

for all i, j with (i, j) 	= (1, 2). Moreover, obviously λ12 ∈ P . But then
|T | ∈ P , since all the minors of the first two rows of T are in P , which
is impossible.

C) qλ12 = µ12 for some q ∈ P .

In this case we get a contradiction with an argument similar to that
in B).

We have thus seen that from M = N1 ⊕ N2 it always follows that
|T | ∈ P . This is the desired contradiction which implies that M cannot
contain two-generated direct summands.

We have already observed in the Introduction that there are no
quadratically u-independent sets over a nonzero ideal I when the
valuation domain R is archimedean. Results in a paper by Facchini and
Zanardo [1] show the existence of other interesting valuation domains
with no quadratically u-independent sets. Namely, for all n > 0, there
is a valuation domain R having a nonzero prime ideal I such that
S contains n units u-independent over I and satisfying the following
property: for all η ∈ S we have η2 ∈ R. Therefore, any quadratic
u-independence is out of the question.
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