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TWO THETA FUNCTION IDENTITIES AND
SOME EISENSTEIN SERIES IDENTITIES
OF RAMANUJAN

ZHIGUO LIU

ABSTRACT. In this paper we prove two general theta
function identities by using the complex variable theory of
elliptic functions. As applications, we provide completely new
proofs of some Eisenstein series identities of Ramanujan by
these two theta function identities and one famous identity of
Ramanujan for the Rogers-Ramanujan continued fraction. We
also derive two remarkable theta function identities relating
to the modular equations of degree 5.

1. Introduction. We suppose throughout that ¢ = e2™7, Im 7 > 0;
this condition ensures that all the sums and products that appear here
converge. The Dedekind eta-function is defined by

(1L1) () =" g g)eo = T T (1= 27T,
n=1

where and throughout the paper

(12) (a;Q)oo = H(]- - aqn)’ ‘Q| <L
n=0

The Rogers-Ramanujan continued fraction R(q) is defined by

15 (60°) (667
43 Rla)=q (4% 6°)0(0® ¢°) o0

To prove several of Ramanujan’s claims on R(gq) that were made in
his first two letters to Hardy, Watson [16] first proved the following
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two identities about R(g) that can be found in Ramanujan’s second
notebook [15, pp. 265-267).

Theorem 1. Let R(q) be defined by (1.3). Then we have

L sy (@@ n(r)
(14 R RO = e T

1 1% S(r
15 N F@= q&;qq)% - :6<(57)>'

Recently, in [10], we derived a very general theta function identity,
which includes (1.4) and (1.5) as special cases. Our method is quite
different from Watson’s method.

Define the Eisenstein series L(7), M (7), and N(7) by

(1.6) L(T)—1—24§: ng”

. B n:ll_qn’
s n3qn

1.7 M(7) = 1+ 240

(1.7) (r)=1+ ;1_ ~,
0 n5qn

1. N(7) =1 — 504 .

(1.8) (r) 50 ;1_(1”

In [5], by the logarithmic differentiation of (1.4) and (1.5), the authors
gave short elegant proofs of the following two beautiful Eisenstein series
identities of Ramanujan.

Theorem 2. If we define
(1.9) A(r) =25L(257) — L(7) and B(r)=5L(51) — L(7),

then we have

5(57 2(r T i
(110)  A(r)=200D) {ng(z(;) " 2777(72(5% " 5}
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and

(1.11)  B(r) =4 { Z;Eg + 2204 (r)n (57) + 125

(57
172(7)} '

Equations (1.9) and (1.10) are entries 4(i) and 7(iii) in Chapter 21 of
Ramanujan’s second notebook [2, pp. 463, 475]. In his lost notebook
[14], Ramanujan recorded formulas for L(n7), M(nt) and N(n7),
for certain positive integers n, as sums of quotients of Dedekind eta-
functions. These particular quotients, called Hauptmoduls, frequently
arise in the theory and applications of modular forms and elliptic
functions. In particular, on pages 50-51 of his lost notebook [14],
Ramanujan claimed

Theorem 3. Let n(r), L(7), M(7) and N(7) be defined by (1.1),
(1.6), (1.7) and (1.8), respectively. Then we have

o M(r) = ) o5 ey (57) + 3125107
72 (57) n*(r)
o =2 o 5220
72 (57) ()
_ 07 B 4y (5 — n'°(57)
N(r) = {n2(57) 500y ()’ (57) = 156255 }
n(7) 40\, 4 n'(57) i
(1.14) X {772(57_) + 220 (7)n"(57) + 125 n2(7) } ’
) = n'(r) 4\ (57 _7710(57)
N = { D ant oo - L
10, 10051 /2
(1.15) x {22(éT; + 220" ()0 (57) + 125777722))} :

As usual, he gave no proofs. The first published proofs of these
four identities are due to Raghavan and Rangachari [13], who used the
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theory of modular forms with which Ramanujan was likely unfamiliar.
These proofs are very short but do not provide any insight into how
Ramanujan discovered the identities. Berndt, Chan, Sohn and Son [3]
recently found proofs of (1.12)—(1.15) based entirely on results found
in Ramanujan’s notebooks [15] and lost notebook [14]. In the present
paper, we present a third, quite different approach that uses the identity
(1.5) of Ramanujan and the complex theory of elliptic functions. The
Jacobi theta functions play a pivotal role in our investigation. And
they are defined by [17, p. 464]

(1.16)
0, (z|7) = 2¢"/® 2:(—1)"(]"("“)/2 sin(2n + 1)z,
n=0
(1.17)
0y (z|7) = 2¢"/® Z "2 cos(2n 4 1)z,
n=0
(1.18)
Os(z|7) =1+2 Z q"/? cos 2nz,
n=0
(1.19)

Os(z|T)=1+2 Z(—l)"(g’L2/2 cos 2nz.
n=0

The remainder of this paper is organized as follows. In Section 2 we
briefly recall some basic facts of Jacobi’s theta functions. In Section 3
we prove two general theta function identities (3.1) and (3.2) below. In
Section 4 we prove (1.12)—(1.15) using (3.1), (3.2) and (1.5).

In Section 5 of the paper we prove the following two theta function
identities related to modular equations of degree 5.

Theorem 4. Let 05(z|7),03(z|T) and 04(2|7) be defined by (1.17),
(1.18) and (1.19), respectively. Then we have

99(0|57) B 63(0]57)  69(0|57)

(120) 5,0/~ 0500[7) " 6a(0]7)

= 44n(7)n" (57) + 40" (7)n(57),
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and
(1.21)

05(0[7)  63(0]r) , 62(0|7)
02(0‘5’7’) 03(0‘5’7’) 04(0‘5’7’)

= 2500n(7)n" (57) + 22007 (1)n(57).

Our proofs are constructive and may shed some light on the origin of
identities (1.12)—(1.15).

2. Some basic facts about the Jacobi theta functions. In this
section we will discuss some basic properties about the Jacobi theta
functions. Using the Jacobi triple product formula one can obtain the
infinite product representations for the Jacobi theta functions [17, p.
470],

(2.1)
01 (2[7) = 2¢"/3(sin 2)(; @)oo (7€~ %5 @)oo (76773 @) oo
(2.2)
02(2]7) = 2¢"/3(cos 2)(; q) oo (—ae > @) 0 (—7€**'; @) o0
(2.3)
05(2]7) = (43 @)oo (—a %€ 72 @)oo (—q"/2€**; @) oo,
(2.4)

04(2|7) = (4 0) oo (62721 ) 00 (¢"2€**; @) oo

By simple computations, we find that

1
(2.5) 61 (Z + 5”“) = b (2|7),
1 —1/8 —iz
(2.6) 0, (z + 5+ 7r7')|7') = ¢ V8120, (2]7),
1 .
(2.7) 0, (z + §w\7) = iqM3emi20, (2 |7).

From the definition of 8y (z|7), we can simply derive that, for any integer
n7

(2.8) 01(z + nw|T) = (=1)"01(2|7),
(2.9) 01(z + nar|r) = (=1)"q " 2250, (2|7).
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Taking n = 1 in (2.9) and then replacing 7 by 57 and finally letting
z = —n71 and z = —27T respectively, we derive that

(2.10)
0, (4n7|57) = ¢~%/%0,(n7)57) and 01 (3n7|57) = ¢~ V/20, (207 |57).
We use 0] (z|7) to denote the partial derivative with respect to the

variable z. Differentiating (2.1) with respect to z and then, putting
z = 0, we obtain

(2.11) 07(07) = 2¢"(q;9)3, = 2n*(7).

Differentiating (2.8) and (2.9) respectively with respect to z and then
setting z = 0, we find that

(2.12) 0} (nm|r) = (=1)"61(0]7),
(2.13) 0, (nmr|T) = (=1)"q~™ /20,(0|7).

Replacing T by 57 in (2.1) and then, taking z = 77 and 277 in the
resulting equation, respectively we find that

(2.14) 01(n7(57) = 10" 5(4: ¢°) oo (¢ 4°) o0 (63 4°) oo
(2.15)
01(277157) = iq*"3(6% 6% 00 (4% 0°) 00 (01 7 ) so-

It follows that
(2.16)

01 (n7(57)01(277]57) = —¢ (41 900 (65 0°) oo = —q~ 20 (T)0(57)
and

(2.17) jgw—'fs)) = ¢ R(g).

Similarly, from (2.2)—(2.4), we can derive that, see also [9, p. 133]

(2.18)  0;(wr|57)0;(2nT|57) = \/(%Z,Z;)EO \/99;((00”57—7'))’ J=2,3,4.
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The Jacobi imaginary transformation formulas [4, p. 76] are

(2.19) 02(0] — 1/7) = v/=7if4(0|7),
(2.20) 03(0] — 1/7) = v/—7if3(0|7),
(2.21) 04(0| — 1/7) = v/=7if5(0|7).

From [1, pp. 24, 48, 69], we know that

(2.22) n(=1/7) = \/?77(7)7
(2.23) L(-1/7) = —6177 + 72L(71),
(2.24) M(=1/1) = 7*M (1),

(2.25) N(-1/7) = 7N(7r)

It follows that

(2.26) n(—=1/51) = v =5irn(7),
(2.27) B(-1/57) = =57%B(7),
(2.28) M(—1/57) = 5*7* M (57),
(2.29) N(—=1/57) = 5°7O N (57)

The trigonometric series expansion for the logarithmic derivative of
01(z|7) [17, p. 489] is

0

(2.30) ;

e n
(z|1) = cot z + 42 T q —sin2nz.
—q
n=1

The Bernoulli numbers By, are defined as the coefficients in the power
series

X > Ik
2.31 = B — 2.
(231) Fo1 = LBy bl <

It is easy to show that Bory1 = 0 for £ > 1, and the first few values of
By, are

1 1 1
B(]:l; Blz__7 B2:_7 B4:__a
(2.32) 2 6 30
: Bl p__ 1 5 5. 691
67 49 7B 300 T 660 TR T ar30
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The normalized Eisenstein series Foi(7) are defined by

Ak S n2k-lgn 4k &
233) Ea(r)=1- S 2 g S )
(2:33)  Bai() Ba & 1—¢" Bay &7 1",

where o (n) stands for the standard function and is defined as

(2.34) or(n) = d*,
d|n

and it is also understood that oj(x) = 0 if  is not an integer. The
first few Eor(7) are

(2.35)
Eo(r)=L(r)=1~— 24231 1”_‘1;
(2.36)
Eu(r) = M(r) =1+ 240 i

=1-24 Z o1(n)q",
n=1

+ oz(n
1 n § 3 q,

n=1

(2.37)

o 5 n oo
E¢(r)=N(r)=1-504 1”_qqn =1-504 o5(n)g".
n=1 n=1

The Laurent series expansion of cot z about z = 0 is

(2.38) 3 45 945
' J— 22k By,
I _1 k 2k—1
2t ;( A
Substituting this and
e 2k—1
2.39 ny=3 (1)1 2
(2:39) S ;( T yE

into (2.30) and inverting the order of summation, we find that

/ 1 1 1 2
. 9—1( 3 — gL(T) — EM(T)z3 — —945N(T)25 +
. o0 2k
- LY g B
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From (2.1) by some elementary calculation, we obtain

(2.41) 61(z + 77|57)01 (2 — wT|57)61 (2 + 277|57)01 (2 — 277 |57)
_ (@%50°)3 0i(zln)
(4:q)oc 01(2[57)

For brevity, we define
(2.42) H(z|7) = L(2|7).

Taking the logarithmic derivative of both sides of (2.41) with respect
to z, we find that

(2.43)
H(z+ n7|57) + H(z — w7|57) + H(z 4 277|57) + H(z — 277|57)
= H(z|t) — H(z|57).

Using (2.40) in the right side of this equation, we obtain

(2.44)
H(z+ n7|57) + H(z — w7|57) + H(z 4 277|57) + H(z — 277|57)
1 1
= (L) - L)z~ (M) - M(57)
2
- %(N(T) — N(1)2° 4 - -

Differentiating this equation with respect to z and then setting z = 0
gives

(245)  H'(xr|57) + H'(2n7|57) = —%(L(T) _ L(57).

Similarly we have

(2.46)
H"(erfsr) + B (2m7l57) = = 22 (M(r) = M(57)),

(2.47)
HO) (xr(57) + HE) (27 [57) = — 5 (N(r) — N(57)).
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3. Two theta function identities. The starting point of this
section is the following fundamental theorem of elliptic function theory
[4, p. 22].

Theorem 5. The sum of all the residues of an elliptic function at
the poles inside a period-parallelogram is zero.

It should be pointed out that in [6-12] this fact has been used to
derive many wonderful theta function identities. In this section we will
use Theorem 5 to prove the following two theorems.

Theorem 6. Let H(z|T) be defined by (2.42) and x,y be two different
complex numbers that are not integral multiples of m. Then we have
(3.1)
8M(7) + 3H" (z|7) + 3H" (y|r) — 2{2L(7) + 3H' (z|7) + 3H' (y|7)}*

_ 144" (7)0% (2[7) 6% (y|7) {9?(29”) B 9%(2y|7)}
Or(z —ylr)or(z +ylr) | 67(zlr)  OF(yl7) |

Theorem 7. Let H(z|T) be defined by (2.42) and x,y be two complex
numbers that are not integral multiples of w. Then we have

(3.2)
64N (7)—9H®) (z|7)—9H® (y|7)
=20 {2L(7)+3H'(z|r)+3H' (y|7)}>
—6{2L(7)+3H' (x|7)+3H'(y|7)} {8M (1) —15H"" (x|7) —15H" (y|T)} .

Proof. To prove Theorem 6, we introduce the function

B 03 (2217)
33)  f(2) = 05 (2|7)01 (2 + x|7)01 (2 — z|7)01 (2 + y|7)01 (2 — y|7)’

where 0 < z, y < 7 and x # y.

By using (2.8) and (2.9), we can directly verify that f(z) is an elliptic
function with periods m and 7w7. It has five poles in the fundamental
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period parallelogram and these poles are =, y, m — x, m — y and 0.
Moreover, x, y, ® — x, ® — y are its simple poles and 0 is a pole of
order 5. Let res(«) denote the residue of f(z) at «. Now we begin to
compute the residue of f(z). It is evident that

res (x) = lim (z — z) f(2)

Z—X

(3.4) b 01(z — z|7)

It is plain that

. 03 (2z|7)
(85) M e 0o+ 211 (= + 51700 (= — 917)
- 62 (22/7)
=05 (201 (z + yT)01(z — y|T)”

By first using L’ Hopital’s rule and then using (2.11), we have

1 1

im (z ) =
(3.6) DN P 01(0]7) — 2p3(7)

Combining these two equations, we deduce that

0% (2z7)
20 (1) 05 (2|7) 01 (x + y| )01 (x — ylT)°

(3.7) res (x) =

Direct computation shows that

0% (2z|7)
203 ()03 (x|7)01(z + y|7)01 (x — y|7)

(3.8) res(m—x)=res(x) =

In the same, way we have

0% (2y|7)

(89) resly) =res (T —y) = — 5 S G L T (@ + 41TV @ = 91)
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It is plain that

1 [d*(2°f(z
(3.10) res (0) = - {%} -
To compute res (0), we set
(3.11) F(z)=2"f(z) and ¢(z)= %

By an elementary evaluation, we find that

d*F(z)

G12) B F(:){64(2) + 667(2)0'(2)

+4(2)8" () + 30/ (=) + 9" (2) }.
It is obvious that

. 1
(3.13) F(0) = lim 2° f(2) = An15(1)03 (x]7)03 (y|7)”

Using (2.40) and (2.42), we find that

P(2) = g + 6H(2z|7) — 8H(z|t) — H(z + z|T)
(3.14) — H(z —z|r) = H(z +y|7) — H(z = y|7)

_ _gL(T)z — 2M(7)2% — H(z + a|7)

8
9
—H(z—z|1)—H(z+y|r) — H(z —y|T) + 0(25).

Therefore we have

319)  60)=0, ¢(0) =~ {L(r)+ 3 i) + 3H i)}

and
(3.16)

#0)=0. ¢ =~ {blr) + TH" el + SH i)}
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Combining (3.10), (3.12), (3.13), (3.14), and (3.15), we obtain
(3.17)

res (0) = 3 F(0) (36/(0)2 + ¢(0))

1 3, 3, ?
TG () 5+ 38 6)

- M(r) - $H"(alr) - SH"0l7) .

From Theorem 5 we have
(3.18)  res(z)+res(m —z) +res(y) + res (7w —y) + res (0) = 0.

Substituting (3.8), (3.9) and (3.17) into this identity we know that
(3.1) holds for 0 < z, y < m and = # y. By analytic continuation, we
complete the proof of Theorem 6.

To prove Theorem 7, we consider the function

(319) f(Z) _ 01 (2Z|7-)91(Z + 217|T)91 (/Z?_(j;—))el(z + y|7’)6‘1(2 — y|7') ,

where 0 < z, y < 7.

By using (2.8) and (2.9), we can verify that f(z) is an elliptic function
with periods 7 and 77. It has only one pole in the fundamental period
parallelogram and this pole is 0. Furthermore 0 is a pole of order 7. Let
F(2) = 2" f(2) and ¢(2) = F'(2)/F(z). By an elementary calculation,
we find that

(3.20)

res (0) = % {dﬁcgiZ)L 0

- %F (0){¢6(0) + 15¢*(0)¢'(0) + 208%(0)¢" (0)

+15¢%(0)¢" (0) + 45¢°(0)¢' (0)* + 60¢(0)¢' (0)¢” (0)
+6¢(0)0M(0) + 15¢/(0)* + 15¢'(0)¢" (0)

+10¢"(0)? + ¢<5>(0)}.
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From the definition of F(z), we immediately have

2 xlr 2 T

By (2.40) and (2.42),

o(z) = g —8H(z|T) + 2H(2z|7) + H(z + z|7)

(3.22) +H(z—=z|1)+ H(z+y|T) + H(z — y|T)

= gL(T)Z - %M(T)Z?’ - %N(T)ZB + H(z + z|7)
+ H(z—x|t)+ H(z +y|7) + H(z — y|7) + O(27).

Hence we have

323) 60)=0. #0) =3 {1+ Sl + 31 I ).

2 2
(3.24)
16 15 15
00 =0, (0 = 2 {arr) = Frtaln) - T}
and
(3.25) oW (0) =0, ¢®(0) = —%N(T) +2H®) (2|7) 4+ 2H®) (y|7).

From the fundamental theorem of elliptic functions, Theorem 5, we
have
(3.26) res (0) = 0.

Substituting (3.21), (3.23), (3.24) and (3.25) into (3.20) and combining
(3.26) we readily obtain (3.2) for 0 < z, y < 7. By analytic continuation
we know that Theorem 7 holds.

4. The proofs of Ramanujan’s identities. Replacing 7 by 57
and then choosing z = 77 and y = 277 in (3.1), we obtain
(4.1)
8M (57) + 3H" (n7|57) + 3H" (277 |57)
— 2{2L(57) + 3H'(r7|57) + 3H' (2n7|57)}
02 (rr|57)0% (277 |57) {0%(271’7’57’) 02 (4n7|57) }

0,(w7[57)0, (3n7|57) | 05(nr|5T)  65(2m7[57)

= —144n**(57)
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By (2.45), we have
(4.2)

2L(57) + 3H'(w7|57) + 3H' (27w7|57) = %(5L(57’) —L(1)) = %B(T).
Using (2.46), we obtain
(4.3) 8M(57) + 3H" (n7|57) + 3H" (277|57) = é(41M(57) — M(1)).

From (2.10), (2.16), (2.17) and (1.5), we find that the left-hand side of
(4.1) equals

—144¢"/?n'?(57) 03 (27 7|57) 3 03 (77|57)
02 (rr|57)02 (277 |57)

4.4 —
(44) B3 (nrlsr) 1 62(2nr]5T)

B 144015 (57)
n?(1)n?(57)

= —144n* (1)n*(57) — 1584

{R™%(q) - R°(q)}

n'(57)
nA(r)

Substituting (4.2), (4.3) and (4.4) into (4.1) gives

10
5
(4.5) 2M (1) —82M (57) = 1440n* (7)n* (57) + 15840 TIUQET;) —5B%(7).
Writing 7 as —1/57 and then using (2.26), (2.27) and (2.28), we
obtain

(4.6)

10
82M (1) — 1250M (57) = —360001* (1)n* (57) — 316822 (éT)) +125B%(7).
T

From (4.5) and (4.6), we find that

(4.7)

_ 201y _ n'(r) . 4t (57) — n'(57)
32M () = 125B%(1) 1968772(57_) 360000 (7)n*(57) 15000—772(7_> ,
(4.8)

— 5B2(r) — n'(r) . 4t (57) — n'(57)
32M(57) = 5B*(7) 487]2(57') 1440n*(7)n*(57) — 9840 2
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Substituting (1.11) into (4.7) and (4.8), we obtain (1.12) and (1.13)
respectively.

Now we begin to derive (1.14) and (1.15). By (2.46) and (2.47), we
have

(4.9) 8M(57) — 15H" (w7|57) — 16H" (277|57) = M (1) + TM (57)

and
(4.10)

GAN (57) — 9H) (x7|57) — 9O (277 [57) = § (N(7) + 55N (57)} .

Replacing 7 by 57 in (3.2) and then substituting (4.2), (4.9) and
(4.10) in the resulting equation, we obtain

(4.11) 16N(7) + 880N (57) = 35B>(7) — 42B(7)(M (1) + TM(57)).

Replacing 7 by —1/57 and then using (2.27), (2.28) and (2.29) in the
resulting equation, we get

(4.12)
88N (7) + 25000N (57) = —1750B3(7) + 21B(7)(TM (1) + 625M (57)).

From (4.11) and (4.12), we infer that

(4.13)
32N (1) = 125B3(7) — 3B(7)(39M (1) 4+ 625M (57)),
(4.14)
160N (1) = —5B3(7) + 3B(7)(M (1) 4+ 39M (57)).

Substituting (1.11), (1.12) and (1.13) into (4.13) and (4.14), we obtain
(1.14) and (1.15) respectively. Therefore we complete the proofs of
Ramanujan’s identities (1.12)—(1.15).

5. Two new theta function identities. We start this section by
proving the following theta function identity.
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Theorem 8. Let x £y not be integral multiples of w. Then we have

BOn 80 05 (0})
e o 9 e e Ve o A O
) 4 {emm Bl }
0le a0 (e + o) \ B 2alr) Ryl )

Proof. We consider the function

0% (zI7)
(22]7)01(z — 2|7)01 (2 + 2|7)01(2 — yl7)01 (2 + y|T)’

62 f()=7

where 0 < z, y < 7 and x # y.

It is easy to check that f(z) is an elliptic function with periods = and
w7. It has seven poles in the fundamental period parallelogram and
these poles are x, 7 —x, y, 7 —y, ©/2, (r +77)/2, 77/2, and all these
poles are simple poles. From Theorem 5, we have

(5.3) res(z) + res(m — x) + res (y) + res (7 — y)

+res (m/2) + res (ﬂ- —1—27”) + res (%) = 0.

By using I’ Hépital’s rule and (2.11), we have

(5.4)
0% (x|7)
203 ()07 (22|7)01 (x — y|7)01 (x + y|7)’

res(z) =res(m —z) =

(5.5)
03 (y|7)
203 (7)07 (2y|7)01(x — y|7)01 (2 + y|7)

res (y) =res(m —y) = —

By using I’ Hopital’s rule, (2.5) and (2.12), we have

N (s
(5.6) res(2)— 43 (7)03 (x| 7)03 (y|T)"
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In the same way, we find that

THATY\ 65(0|7)
(5.7) res( B) ) A3 (1)03(z| )02 (y|T)’
TT, 03(0]7)
(5.8) res (7) = _4n3(7)0§(a¢"|7')92(y|7).

Substituting (5.4)—(5.8) into (5.3), we find that (5.1) holds for 0 < =z,
y < 7 and = # y. Using analytic continuation we complete the proof
of the Theorem.

Replacing 7 by 57 in (5.1) and then taking x = 77 and z = 277 in
the resulting equation, we obtain

(5.9)
65(0[57) 65(0]57) 68(0[57)
02 (w7|57)03(277|57) B 02(w7|57)03(277|5T) 03 (mT|57T)0% (27T |5T)
B 4 0% (m7|7) 0% (2rr|T)
T (77)57)01(377|57) {6‘%(27”'57') B 9%(47TT5T)}
) g7 Barlr) ,85nrir)
N _01(7TT|5T)91(27TT|57') {9%(27r7’57’) —4 9%(7r7'57’)}

0% (7|7 03 (277|T)
— —4q¢'/?63 (w7 |57)67 (27 7(57) {9522(7”:51) —d 0é2w7|57) }
? 1

= 4¢*03 (n7|57)01 (277 |57) (R™°(q) — R°(q)).
Using (1.5), (2.16) and (2.18) in the equation, we obtain (2.20). Re-

placing 7 by —1/57 in (1.20) and then using (2.19)—(2.22), we obtain
(1.21). We complete the proof of Theorem 4.

It is worthwhile to point out that if we let y — x in (5.1), we obtain
65(0lr) _ 65(0l7)  63(0IT)
O3(xlr)  O5(zlr)  Oi(xlr)

803 (z|T)

= 773(7.)9%(2%“_) (2H(.’L‘|T) - H(QJ?‘T)%

(5.10)

where H(x|7) is defined by (2.42). Letting  — 0 in this equation and
using (2.40), we derive the Jacobi quartic identity, see for example [9,
p. 136],

(5.11) 03(0|7) + 03(0|7) = 65(0|7).
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