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FULL ELASTICITY IN ATOMIC MONOIDS
AND INTEGRAL DOMAINS

SCOTT T. CHAPMAN, MATTHEW T. HOLDEN

AND TERRI A. MOORE

ABSTRACT. Let M be a commutative cancellative atomic
monoid and M∗ its set of nonunits. Let ρ(x) denote the
elasticity of factorization of x ∈ M∗, R(M) = {ρ(x) |
x ∈ M∗} the set of elasticities of elements of M , and ρ(M) =
supR(M) the elasticity of M . We say M is fully elastic if
R(M) = Q ∩ [1, ρ(M)]. We call an atomic integral domain
D fully elastic if its multiplicative monoid, denoted D•, is
fully elastic. We examine the full elasticity property in the
context of Krull monoids with finite divisor class groups,
numerical monoids and certain integral domains. For every
real number α ≥ 1, we construct a fully elastic Dedekind
domain D with ρ(D) = α. In particular, while we show that
noncyclic numerical monoids are never fully elastic, we do
verify that several large classes of Krull monoids, and hence
certain Krull domains, are fully elastic.

1. Introduction and definitions. Let M be a commutative
cancellative monoid with M∗ its set of nonunits and A(M) its set of
irreducibles (or atoms). We suppose M is atomic (i.e., every element
of M∗ is a sum of atoms). Much recent literature has been devoted
to the study of monoids in which elements fail to factor uniquely.
In particular, a central topic of this work has been the elasticity of
elements of M , which measures their failure to factor uniquely. While
much is known about the supremum of the set of elasticities, we study
here the complete set of elasticities in several important classes of
monoids and integral domains.

We begin with some definitions and notations. For x ∈ M∗, define

L(x) = {n | x = α1, . . . , αn with each αi ∈ A(M)}
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to be the set of lengths of factorizations of x into irreducibles and

L(M) = {L(x) | x ∈ M∗}
to be the set of lengths of M . Define

L(x) = supL(x), l(x) = inf L(x), and ρ(x) =
L(x)
l(x)

to be their quotient. ρ(x) is called the elasticity of x. Moreover, set

R(M) = {ρ(x) | x ∈ M∗}
to be the set of elasticities of nonunits in M , and ρ(M) = supR(M) to
be the supremum of this set. ρ(M) is called the elasticity of M . The
notion of elasticity was introduced by Valenza in [17] in the context of
rings of integers of algebraic number fields. A good general reference
on elasticity of factorizations is [1].

By a well-known result of Geroldinger [13], if M is a Krull monoid
with torsion divisor class group and x in M∗, then L(x) is an almost
arithmetical multiprogression (more information on Krull monoids can
be found in [8, Section 2] and an extended study of almost arithmetic
multiprogressions in [10]). The following surprising result shows that
Geroldinger’s structure theorem for sets of lengths cannot be extended
to Krull monoids whose divisor class groups are not torsion.

Theorem 1.1 (Kainrath [16]). Let M be a Krull monoid with
infinite divisor class group C(M) such that every divisor class of C(M)
contains a prime divisor of M . If S is any finite subset of N − {1},
then S ∈ L(M).

For M as described in Theorem 1.1, Kainrath’s result implies that
R(M) = Q ∩ [1,∞) and raises an interesting question. For an
arbitrary commutative cancellative atomic monoid M , is it true that
R(M) = Q ∩ [1, ρ(M)] (or R(M) = Q ∩ [1,∞) in the case where
ρ(M) = ∞)? We will show that the answer to this question is “no”
and hence make the following definition.

Definition 1.2. Let M be an atomic commutative cancellative
monoid. If ρ(M) < ∞, then M is fully elastic if

R(M) = Q ∩ [1, ρ(M)].
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If ρ(M) = ∞, then M is fully elastic if R(M) = Q∩ [1,∞). An atomic
integral domain D is fully elastic if its multiplicative monoid of nonzero
elements, denoted D•, is fully elastic.

Following Zaks in [18], we say the atomic monoid M is a half-
factorial monoid (HFM) if, for all nonunits x ∈ M , every irreducible
factorization of x has the same length. Note that an HFM is trivially
fully elastic. By the definition, if ρ(M) is rational, then a necessary
condition for M to be fully elastic is that the elasticity of M is accepted
(i.e., there exists a nonunit x in M with ρ(x) = ρ(M)).

Example 1.3. The existing literature can be used to provide
examples of some integral domains which are fully elastic and some
which are not. For instance, consider the domains D1 = Z[

√
8] and

D2 = Z[3ı] where ı =
√−1. By [15, Examples 3, 4], the elasticity of

each domain is 3/2 and L(D1) and L(D2) both consist of all sets of
the form {a, a + 1, . . . , b} where a and b are in N with a ≤ b ≤ (3/2)a.
Clearly both D1 and D2 are fully elastic.

On the other hand, while a large class of Krull domains have accepted
elasticity, many do not. Let D be a Krull domain with divisor class
group Z and set S = {−m,−1, s1, s2, . . . } of divisor classes which
contain height-one prime ideals where infinitely many of the si’s are
congruent to 1 modulo m ≥ 2. By [6, Example 2.4], ρ(D) = m but
ρ(x) < m for every x ∈ D. Clearly D cannot be fully elastic.

We split our work into two sections. In Section 2, we show that
any numerical monoid S which requires more than one generator is
not fully elastic. We also show that for such an S, the set R(S) has
exactly one limit point. We then use these results to construct a class of
integral domains which are not fully elastic. In Section 3, we consider
the full elasticity property for certain Krull monoids. We construct an
example of an integral domain which is fully elastic but not integrally
closed. Moreover, for each real number α ≥ 1, we use block monoids
to mimic a construction of Anderson and Anderson in [1] to produce
a Dedekind domain D with ρ(D) = α which is fully elastic. We close
with a sequence of results which produces a large class of Krull monoids
which are fully elastic. This, in turn, allows us to conclude that certain
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Krull domains and certain rings of algebraic integers are fully elastic.
Finally, we list two open problems which we believe are of great interest.

Let M be an atomic commutative cancellative monoid. We will
use the following basic facts about elasticity freely throughout the
remainder of this paper.

(i) If x ∈ M∗, then 1 ≤ ρ(x) ≤ ρ(M) ≤ ∞.

(ii) If M is a bounded factorization monoid (or BFM) (i.e., the set
L(x) is bounded above for all x ∈ M∗), then ρ(x) is rational for all
x ∈ M∗.

(iii) If M is finitely generated, then ρ(M) = (m/n) ∈ Q and has
accepted elasticity [2, Theorem 7].

2. Full elasticity in numerical monoids. Let a1, . . . , at be posi-
tive integers. We define the numerical monoid generated by a1, . . . , at

to be

S = 〈a1, . . . , at〉 = {x1a1 + · · · + xtat | x1, . . . , xt ∈ N0},

which is a submonoid of N0. Every numerical monoid S has a minimal
set of generators, which are precisely the atoms of S. S is also
clearly commutative, cancellative, and atomic. For more information
on numerical monoids, see [11]. Our first result gives the elasticity of
an arbitrary numerical monoid.

Theorem 2.1. Let S = 〈a1, . . . , at〉 be a numerical monoid, where
a1 < a2 < · · · < at is a minimal set of generators for S. Then
ρ(S) = at/a1.

Proof. Let n ∈ S and suppose n = x1a1 + · · · + xtat. Then

n

at
=

a1

at
x1 + · · · + at

at
xt ≤ x1 + · · · + xt ≤ a1

a1
x1 + · · · + at

a1
xt =

n

a1
.

Thus L(n) ≤ n/a1 and l(n) ≥ n/at for all n ∈ S, from which
ρ(S) ≤ at/a1. Also, ρ(S) ≥ ρ(a1at) = at/a1, so we have equality.
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Note that if S = 〈a〉 is generated by a single element, then S is
a factorial monoid so S is trivially fully elastic. In the results that
follow, we will assume the minimal number of generators of S is t ≥ 2.

Theorem 2.2. Let S = 〈a1, . . . , at〉 be a numerical monoid, where
a1, . . . , at ∈ N minimally generate S and t ≥ 2. Then S is not fully
elastic.

Proof. Suppose without loss of generality that 1 < a1 < · · · < at.
Let n ∈ S with maximal length factorization n = x1a1 + · · · + xtat. If
xi ≥ ai−1 for any i ∈ {2, . . . , t}, then

n = x1a1 + · · · + (xi−1 + ai)ai−1 + (xi − ai−1)ai + · · · + xtat

is a factorization with longer length. Thus x2 < a1, . . . , xt < at−1 and
x2a2 + · · · + xtat < a1a2 + · · · + at−1at. Let s = a1a2 + · · · + at−1at.
Then

L(n) = x1 + · · · + xt ≥ x1 =
n − (x2a2 + · · · + xtat)

a1
>

n − s

a1
.

Now suppose n = y1a1+· · ·+ytat is a factorization of minimal length.
Then, by a parallel argument, we have y1 < a2, . . . , yt−1 < at, and so
y1a1 + · · · + yt−1at−1 < s. Thus,

y1 + · · ·+yt−1 ≤ a1

a1
y1 + · · ·+ at−1

a1
yt−1 =

y1a1 + · · · + yt−1at−1

a1
<

s

a1
.

Also,

yt =
n − (y1a1 + · · · + yt−1at−1)

at
≤ n

at
,

and, combining this with the previous result, we have

l(n) = y1 + · · · + yt <
s

a1
+

n

at
=

na1 + sat

a1at
.

Hence,

ρ(n) =
L(n)
l(n)

>
nat − sat

na1 + sat
.
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Let N be an integer greater than (2sat)/(at − a1) and define m =
(Nat − sat)/(Na1 + sat). Note by the choice of N that m > 1. If
n > N then

ρ(n) >
nat − sat

na1 + sat
>

Nat − sat

Na1 + sat
= m

since {(nat − sat)/(na1 + sat)}n∈N is an increasing sequence. Thus
there are at most N elements of S which have elasticity m or less.
Since there are infinitely many rationals in [1, m], this implies S is not
fully elastic.

The proof of Theorem 2.2 can be used to prove a result which is of
its own interest.

Corollary 2.3. Let a1 < a2 < · · · < at be a minimal set of
generators for the numerical monoid S = 〈a1, . . . , at〉, where t ≥ 2.
Then the only limit point of R(S) is at

a1
.

Proof. First, if n = k(a1at) + a1 for k ∈ N0, then ρ(n) = L(n)
l(n) =

kat+1
ka1+1 . It follows that ρ(n) < at/a1 for all k ∈ N and limk→∞ ρ(n) =
at/a1. Thus, at/a1 is a limit point of the set R(S).

We now show at/a1 is the only limit point of this set. Let r ∈
[1, (at/a1)), let s = a1a2 + · · · + at−1at and take N to be an integer
greater than ((r + 1)sat)/(at − ra1), which is positive by the restric-
tions on r. By the proof of Theorem 2.2, for all n > N ,

ρ(n) >
Nat − sat

Na1 + sat
.

The reader can verify that

N > ((r + 1)sat)/(at − ra1)

implies
(Nat − sat)/(Na1 + sat) > r

and so ρ(n) > r. Thus there are at most N elements of S which have
elasticity r or less. Since there are a finite number of elasticities less
than r there can be no limit points less than r. Since this is true of any
r ∈ [1, (at)/(a1)), there are no limit points other than (at)/(a1).
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We summarize our results concerning numerical monoids in the fol-
lowing corollary, whose proof is now obvious.

Corollary 2.4. Let S = 〈a1, . . . , at〉 be a numerical monoid, where
a1, . . . , at ∈ N minimally generate S. The following statements are
equivalent :

(a) S is a factorial monoid.

(b) S is a half-factorial monoid.

(c) S is fully elastic.

(d) S is cyclic (i.e., S = 〈a1〉).

Example 2.5. Theorem 2.2 can also be used to construct a class of
integral domains which are not fully elastic. Let K be any field, n ≥ 2
a positive integer, and consider

D = K[[Xn, Xn+1, . . . , X2n−1]] = K[[X; S]]

where S is the numerical monoid 〈n, n + 1, . . . , 2n − 1〉. If f(X) ∈ D,
then let ord(f(X)) represent the smallest nonnegative integer k such
that the coefficient of Xk in f(X) is nonzero. It is relatively easy to
argue that

(i) each nonzero element with ord(f(X)) = 0 is a unit of D,

(ii) each element with ord(f(X)) = n, n+1, . . . , 2n−1 is irreducible
in D and

(iii) each element with ord(f(X)) > 2n − 1 is not irreducible.

Let g(X) be a nonunit of D. Then in the UFD K[[X]], g(X) =
Xm · u1(X) where m ≥ n and u1(X) is a unit of K[[X]]. If g(X) =
u2(X) · f1(X) . . . ft(X) where the fi(X)’s are irreducible in D and
u2(X) is a unit of D, then m =

∑t
i=1 ord(fi(X)). By regrouping, this

can be rewritten as m =
∑n−1

j=0 ai·(n+i) where ai represents the number
of elements fj(X) with ord(fj(X)) = n+i. Hence, m =

∑n−1
j=0 ai ·(n+i)

represents an irreducible factorization of m in the numerical monoid S
with the same length as the given factorization of g(X) in D. Thus
L(g(X)) ⊆ L(m). On the other hand, let m =

∑n−1
j=0 ci · (n + i) be an

irreducible factorization of m in S and �0(X), �1(X), . . . , �n−1(X)
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any units of D. Assume that s is the first index with cs �= 0. Since
g(X) = Xm · u1(X) in K[[X]], we can write g(X) in D as

g(X) = (Xn+su1(X))(Xn+s�s(X))cs−1(Xn+s+1�s+1(X))cs+1 · · ·

(X2n−1�n−1(X))cn−1 · (�−1
s (X))cs−1

n−1∏
j=s+1

(�−1
j (X))cj .

Since (�−1
s (X))cs−1

∏n−1
j=s+1(�

−1
j (X))cj is a unit in D, this irreducible

factorization of g(X) in D has the same length of the original factor-
ization of m in S. Thus L(m) ⊆ L(g(X)) and we have shown that
L(m) = L(g(X)). From this it easily follows that L(S) = L(D) and
R(S) = R(D). Since S is not fully elastic, neither is D.

3. Full elasticity in Krull monoids. Throughout this section
G ∼= Zn1 ⊕ · · · ⊕ Znk

will denote a nontrivial finite abelian group
of rank k with 1 < n1| · · · |nk. A zero-sequence of G is a sequence
{g1, . . . , gt} of, not necessarily distinct, nonzero elements of G such that∑t

i=1 gi = 0. A zero-sequence is called minimal if it contains no proper
zero-subsequence. The length of the zero-sequence B = {g1, . . . , gt},
denoted by |B|, is defined to be t.

Define B(G) to be the set of zero-sequences of G, without regard to
the ordering of the sequence elements. Under the operation

{g1, . . . , gn} · {h1, . . . , hm} = {g1, . . . , gn, h1, . . . , hm}

B(G) forms a commutative atomic monoid called the block monoid of
G. B(G) is a Krull monoid with divisor class group G. Let U(G) denote
the subset of B(G) consisting of minimal zero-sequences of G. Then
the elements of U(G) are precisely the irreducibles of B(G). For ease
of notation, we write our blocks multiplicatively in the form gx1

1 · · · gxt
t ,

where the xi are nonnegative integers and g1, . . . , gt are distinct group
elements. If S is a nonempty subset of G, then define

B(G, S) = {gx1
1 · · · gxt

t ∈ B(G) | gi ∈ S for all 1 ≤ i ≤ t}.

Then B(G, S) is a submonoid of B(G) with atoms A(B(G, S)) =
B(G, S) ∩ U(G). The importance of block monoids in our current
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discussion is reflected in the following result, which first appeared in
[13] (an alternate proof can be found in [8, Lemma 3.2]).

Theorem 3.1 (Geroldinger [13]). If M is a Krull monoid with divi-
sor class group C(M) such that S is the set of divisor classes in C(M)
which contain prime divisors of M , then L(M) = L(B(C(M), S)).
Thus, M is fully elastic if and only if B(C(M), S) is fully elastic.

Theorem 3.1 is especially applicable to Krull and Dedekind domains,
since their multiplicative monoids are Krull monoids.

The Davenport constant of G, denoted by D(G), is defined to be the
maximum length of an irreducible in B(G). It is easy to argue that
D(G) ≤ |G| and if G ∼= Zn then D(G) = n. For G ∼= Zn1 ⊕ · · · ⊕ Znk

we define

M(G) = 1 +
k∑

i=1

(ni − 1).

In general, we have D(G) ≥ M(G), and D(G) = M(G) if G is a p-
group, a group of rank less than 3, or |G| < 96. It is also known that
ρ(B(G)) = (D(G))/2. For a survey of known results concerning the
Davenport constant and their relation to factorization theory, consult
[7].

Let S be a nonempty subset of G − {0}. Following [4], we define
DS(G) to be the maximum length of an irreducible in B(G, S). It
is easy to verify that DS(G) ≤ D(G) and DG(G) = D(G). We will
subsequently use the next result and omit the simple proof.

Lemma 3.2. Let G be an abelian group, H a subgroup of G and S
a nonempty subset of H. Then R(B(H, S)) ⊆ R(B(G)).

Example 3.3. Consider the following interesting contrast to Exam-
ple 2.5. Let K be a field of characteristic 0. Then by the main result of
[5], ρ(K[X2, X3]) = ∞. For a set S, let PF (S) represent the set of all
finite subsets of S. The irreducible polynomials in K[X] can be broken
into three classes.

(i) Those irreducibles f(X) prime in K[X] which remain prime in
K[X2, X3]. We will denote such irreducibles with the notation pi(X).
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(ii) The polynomial f(X) = X and its associates.

(iii) Irreducible polynomials of the form f(X) = f0 + f1X + f2X
2 +

· · · + ftX
t where both f0 and f1 are not zero. We will denote such

irreducibles with the notation gi(X).

If f(X) is a nonunit nonzero element of K[X2, X3], then in the UFD
K[X] the polynomial f(X) factors uniquely in the form

(∗) f(X) = u · Xk · g1(X) · · · gt(X) · p1(X) · · · pr(X)

where u is a unit of K and each gi(X) and pj(X) has constant term 1.
When using the representation in (∗), for each 1 ≤ i ≤ t we will set

gi(X) = gi,0 + gi,1X + · · · + gi,ji
Xji .

If f(X) is an irreducible element of K[X2, X3], then f(X) has exactly
one of the following (∗) forms.

(i) f(X) = u · p1(X) is a prime element of K[X].

(ii) f(X) = u · X2 or f(X) = u · X3.

(iii) f(X) = u · g1(X) · · · gt(X) where S = {g1,1, g2,1, . . . , gt,1} is a
minimal zero-sequence of the abelian group K.

(iv) f(X) = u · Xn · g1(X) · · · gt(X) where n = 2 or 3 and S =
{g1,1, g2,1, . . . , gt,1} is a zero-free sequence of the abelian group K.

We claim that

L(K[X2, X3]) = PF (N− 1) ∪ {{1}}.

To see this, note that since K[X2, X3] is bounded factorization domain
we have L(K[X2, X3]) ⊆ PF (N − 1) ∪ {{1}}. Let S = {n1, . . . , nt}
be an element of PF (N− 1) ∪ {{1}}. By Theorem 1.1 there is a block
B = {m1, . . . , mr} in B(Z) such that L(B) = S. Let ni be in S.
Then there is a decomposition of B as B1 · · ·Bni

where each Bj is
irreducible in B(Z). Write Bj = {bj,1, . . . , bj,tj

} where each bs,r is a
nonzero element of Z. By our comments above,

fj(X) =
tj∏

c=1

(X + bj,c)
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is an irreducible element of K[X2, X3]. If f(X) =
∏ni

d=1 fd(X), then
ni ∈ L(f(X)). Hence, L(f(X)) ⊇ S and equality easily follows. Thus,
K[X2, X3] is fully elastic and not root closed as a monoid nor integrally
closed as an integral domain.

Example 3.4. For each rational β ≥ 1, we construct an example of
a fully elastic block monoid B(G, S) such that ρ(B(G, S)) = β. Let
G = Zn ⊕ · · · ⊕ Zn = (Zn)k, with n and k ≥ 2. Let e1, . . . , ek

be the canonical basis vectors of G, let e∗ = (n − 1)(e1 + · · · + ek),
and take S = {e1, . . . , ek, e∗}. It’s easy to see that the irreducibles
of B(G, S) are {en

1 , . . . , en
k , (e∗)n, e1 · · · eke∗}. If n = k + 1, then all

irreducibles have the same length. In this case, B(G, S) is an HFM and
it’s trivially fully elastic, so assume n �= k + 1. By [9, Corollary 1.11],
ρ(B(G, S)) = max{n/(k + 1), (k + 1)/n}.

Suppose k +1 > n. Let p, q ∈ N with 1 < p/q ≤ (k + 1)/n. Consider
the block

B = (e1 · · · eke∗)αn(en
1 )β,

where α, β ∈ N0. Since the only lengths of irreducibles in B(G, S) are n
and k + 1, and this factorization of B clearly has the greatest possible
number of irreducible factors of length k + 1, it follows that l(B) =
αn + β. Also, the factorization B = (en

1 )α+β(en
2 )α · · · (en

k )α((e∗)n)α

clearly has maximal length since all irreducible factors have minimal
length. Thus, L(B) = (k + 1)α + β and so

ρ(B) =
(k + 1)α + β

αn + β
.

One readily verifies that, setting α = p−q and β = (k+1)q−np (which
are both nonnegative integers), yields

ρ(B) =
(k + 1)(p − q) + ((k + 1)q − np)

(p − q)n + ((k + 1)q − np)
=

(k + 1 − n)p
(k + 1 − n)q

=
p

q
.

Thus, we have shown that every rational number in [1, ρ(B(G, S))] is
obtained as an elasticity and B(G, S) is fully elastic. The argument for
the case where n > k + 1 is nearly identical.

Using the last example and a construction from [1], we can produce
a fully elastic Dedekind domain of every possible elasticity.
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Proposition 3.5. If α > 1 is any real number or α = ∞, then there
exists a fully elastic Dedekind domain D with ρ(D) = α.

Proof. If α = ∞, then by Theorem 1.1 D can be chosen to be any
Dedekind domain with class group Z such that every ideal class of D
contains a prime ideal (such a D exists by [14, Corollary 1.6]).

If 1 ≤ α < ∞, then the construction parallels the construction of [2,
Theorem 3.2]. First, if α is rational, then let Gα and Sα be a group and
subset from Example 3.4 such that ρ(B(Gα, Sα)) = α and B(Gα, Sα)
is fully elastic. Since 〈Sα〉 = Gα, by [14, Corollary 1.5] there exists a
Dedekind domain D with class group Gα whose prime ideals lie in the
ideal classes Sα of Gα. By Theorem 3.1, ρ(D) = α and is fully elastic.

If α is irrational, then let {qi}∞i=1 be an increasing sequence of
rationals greater than one which converge to α. Let Gα =

∑∞
i=1 Gqi

and for each qi, let ıqi
be the projection which maps an element g ∈ Gqi

to the element ĝ ∈ Gα which equals g in the qi coordinate and zero
elsewhere. Set Sα = ∪i∈N{ıqi

(x) |x ∈ Sqi
}. Since each Sqi

generates
Gqi

, it follows that 〈Sα〉 = Gα. Again, by [14, Corollary 1.5] there
exists a Dedekind domain D with class group Gα whose prime ideals lie
in the ideal classes Sα of Gα and ρ(D) = ρ(B(Gα, Sα)). That ρ(D) = α
follows in a manner analogous to the proof of [2, Theorem 3.2, part
(VIII)]. We complete the argument by asserting that B(Gα, Sα) is fully
elastic. Choose a rational q′ with 1 ≤ q′ ≤ α. Let i be a positive
integer such that qi > q′. Then, in the block monoid B(Gqi

, Sqi
), there

is a block B = g1 . . . gt with ρ(B) = q′ and g1, . . . , gt not necessarily
distinct elements from Sqi

. It clearly follows that B∗ = ıqi
(g1) · · · ıqi

(gt)
in B(Gα, Sα) has L(B∗) = L(B). By Theorem 3.1, there is a nonunit
x ∈ D• with L(x) = L(B∗), which yields that ρ(x) = q′.

We first approach the general case by considering Krull monoids M
where C(M) is cyclic.

Lemma 3.6. Let M be a Krull monoid with divisor class group
C(M) = Zn where n ≥ 2 such that S is the set of divisor classes in
C(M) which contain prime divisors of M . If there is an element g ∈ S
of order n such that −g ∈ S, then M is fully elastic. In particular, if
S = Zn, then M is fully elastic.
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Proof. By Theorem 3.1, we can consider the block monoid B(Zn, S).
If n = 2 then B(Zn, S) is an HFM and hence is fully elastic. Now
suppose n > 2. By [4, Proposition 3] and the remarks preceding
it, ρ(B(Zn, S)) = (DS(G))/2 = n/2. Let x ∈ Q ∩ [1, (n/2)]. Then
it suffices to show that ρ(B) = x for some B ∈ B(Zn, S). Suppose
u ≤ v and consider the block B = (gn)u((−g)n)v. The only possible
irreducible divisors of B are gn, (−g)n, and g ·(−g), which have lengths
n or 2. Since the given factorization of B contains only maximal length
irreducibles, it has minimal length and l(B) = u + v. Since the only
irreducible of length 2 contains the element g, of which there are nu
total in B, it follows that the factorization B = (g · (−g))nu((−g)n)v−u

has maximal length and L(B) = (n − 1)u + v. Now let p/q = x for
p, q ∈ N. Take u = p − q and v = (n − 1)q − p. That u ≤ v follows
from p/q ≤ n/2. With these choices of u and v we have

ρ(B) =
(n − 1)u + v

u + v
=

(n − 1)(p − q) + ((n − 1)q − p)
(p − q) + ((n − 1)q − p)

=
p

q
= x,

so B(Zn, S) is fully elastic.

To see that B(Zn) is fully elastic, take S = {1, n − 1}. By the above
result, B(Zn, S) is fully elastic, and by Lemma 3.2, B(Zn) is also.

The next lemma will allow us to prove a general result concerning
the set S.

Lemma 3.7. Let G be a finite abelian group and S a nonempty
subset of G. Let α = gx1

1 · · · gxt
t be an irreducible in B(G, S) of length

DS(G), where the gi are all distinct. Suppose −g1, . . . ,−gt ∈ S and
x1 = |g1| − 1. Then R(B(G, S)) = Q ∩ [1, (DS(G))/2] so B(G, S) is
fully elastic.

Proof. First note that if DS(G) = |g1| and g
|g1|−1
1 g2 is an irreducible

of length DS(G), then we must have g2 = −(g|g1|−1
1 ) = g1 so g1 and g2

are not distinct. Thus, the hypotheses imply that DS(G) > |g1|.
Let ᾱ = (−g1)x1 · · · (−gt)xt , β = g

|g1|
1 , and β̄ = (−g1)|g1|. Then

α, ᾱ, β, and β̄ are irreducible in B(G, S). Let u, v be nonnegative
integers not both zero and consider the block

B = αuᾱuβvβ̄v.
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We claim the given factorization of B has minimal length. Suppose F
is a factorization of B of length at most 2u + 2v. For all γ ∈ B(G, S),
let vĝ1(γ) denote the total number of the elements g1 and −g1 in γ.
Note that if γ is irreducible, then vĝ1(γ) ≤ |g1|. Let δ be the number of
irreducible factors γ in F with vĝ1(γ) < |g1|, and let σ be the number
of such factors with vĝ1(γ) = |g1|. Then

δ(|g1| − 1) + σ|g1| ≥ vĝ1(B) = 2u(|g1| − 1) + 2v|g1|.
Since the length of the factorization F is δ + σ ≤ 2u + 2v, it follows
that σ ≥ 2v. Note that all factors counted by σ have length |g1|, and
those counted by δ have length at most DS(G). Thus,

δDS(G) + σ|g1| ≥ |B| = 2uDS(G) + 2v|g1|.
Since δ+σ ≤ 2u+2v, it follows that δ(DS(G)−|g1|) ≥ 2u(DS(G)−|g1|),
whence δ ≥ 2u. Hence, δ + σ ≥ 2u + 2v, and the given factorization of
B is minimal as claimed (i.e., l(B) = 2u + 2v).

The factorization B = (g1(−g1))ux1+v|g1|(g2(−g2))ux2 · · · (gt(−gt))uxt

has maximal length since all factors have minimal length 2. Thus,
L(B) = u(x1 + · · · + xt) + v|g1| = uDS(G) + v|g1|.

Now let p/q ∈ Q ∩ [|g1|/2, (DS(G))/2], and take u = 2p − |g1|q and
v = DS(G)q−2p. Note that the restrictions on p/q ensure that u, v are
nonnegative and not both zero. With this choice of u and v, we have

ρ(B) =
uDS(G) + v|g1|

2u + 2v
=

(2p − |g1|q)DS(G) + (DS(G)q − 2p)|g1|
2(2p − |g1|q) + 2(DS(G)q − 2p)

=
2(DS(G) − |g1|)p
2(DS(G) − |g1)q

=
p

q
.

Thus, R(B(G, S)) ⊇ Q ∩ [|g1|/2, (DS(G))/2].

Now let n = |g1|. Then 〈g1〉 ∼= Zn is a subgroup of G. Using
Lemmas 3.2 and 3.6, R(B(G, S)) ⊇ Q ∩ [1, n/2] = Q ∩ [1, |g1|/2],
and so R(B(G, S)) ⊇ Q ∩ [1, (DS(G)/2)]. By [4, Proposition 3],
ρ(B(G, S)) = (DS(G))/2 so R(B(G, S)) = Q ∩ [1, ρ(B(G, S))] and
B(G, S) is fully elastic.

Theorem 3.8 will imply that a large class of Krull monoids is fully
elastic.
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Theorem 3.8. Let M be a Krull monoid with finite divisor class
group C(M) such that each divisor class of C(M) contains a prime
divisor of M . Then

R(M) ⊇ Q ∩
[
1,

M(C(M))
2

]
.

Proof. By Theorem 3.1, we can consider the block monoid B(C(M)).
For convenience, set C(M) = G. Let G = Zn1 ⊕ · · · ⊕ Znk

, where
1 < n1| · · · |nk. Let

e1 = (1, 0, . . . , 0), . . . , ek = (0, 0, . . . , 1)

be the standard basis elements of G, and let e∗ = (1, 1, . . . , 1). Let

S = {e1, . . . , ek, e∗,−e1, . . . ,−ek,−e∗}.

We next show DS(G) = M(G).

First note that if G is a finite cyclic group then DS(G) = D(G) =
M(G), so suppose G has rank k ≥ 2. Since the block en1−1

1 · · · enk−1
k e∗

has length M(G), we know DS(G) ≥ M(G). We show DS(G) ≤
M(G). Suppose B is an irreducible of length DS(G). Then B cannot
contain both e and −e for any e ∈ S. Without loss of generality, we can
assume B contains e∗ but not −e∗. So suppose B = ê1

x1 · · · êk
xkex∗∗ ,

where êi ∈ {ei,−ei} for all 1 ≤ i ≤ k, and x1, . . . , xk, x∗ ∈ N0.

Now let j be the smallest index such that nj = nk. If êi = ei for
any i ≥ j, then we can assume by some isomorphism that êk = ek. It
follows that xk = nk − x∗, and so

|B| = x1 + · · · + xk + x∗ = x1 + · · · + xk−1 + (nk − x∗) + x∗
≤ (n1 − 1) + · · · + (nk − 1) + 1 = M(G).

Now assume êi = −ei for all i ≥ j. Then xi = x∗ for all i ≥ j. If
j = 1 then we must have x1 = · · · = xk = x∗ = 1 since B is irreducible,
so |B| = k + 1 ≤ M(G). So suppose j > 1.

Since xk = x∗,

|B| = x1 + · · · + xk−1 + 2x∗ ≤ (n1 − 1) + · · · + (nk−1 − 1) + 2x∗.
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Suppose |B| > M(G). It follows from the last equation that
x∗ > nk/2 ≥ nj−1. By the minimality of B, we must have B =
(−ej)nj−1 · · · (−ek)nj−1e∗nj−1 since this is a zero-subsequence of B.
Thus |B| = (k − j + 2)nj−1, and hence

M(G) = (n1 − 1) + · · · + (nj−1 − 1) + (k − j + 1)(nk − 1) + 1
≥ nj−1 + (k − j + 1)(2nj−1 − 1)
= (k − j + 2)nj−1 + (k − j + 1)(nj−1 − 1) ≥ (k − j + 2)nj−1

= |B|.
This is a contradiction, so in all cases DS(G) = |B| ≤ M(G).

Now let α = en1−1
1 · · · enk−1

k e∗. Then α is an irreducible in B(G, S)
of length DS(G). By Lemma 3.7, R(B(G)) ⊇ R(B(G, S)) = Q ∩
[1, (DS(G))/2] = Q ∩ [1, (M(G))/2].

Our main result now follows directly from Lemmas 3.6, 3.7 and
Theorem 3.8.

Theorem 3.9. Let M be a Krull monoid with finite divisor class
group C(M) such that each divisor class of C(M) contains a prime
divisor of M . If

(i) D(C(M)) = M(C(M)), or

(ii) there exists a maximal length irreducible in B(C(M)) which
contains g|g|−1 for some g ∈ C(M),

then M is fully elastic.

Proof. By Theorem 3.1, we can consider the block monoid B(C(M)).
For (i), if D(G) = M(G), then it follows immediately from Theorem 3.8
that B(G) is fully elastic.

For (ii), suppose G ∼= Zn1 ⊕· · ·⊕Znk
, where 1 < n1| · · · |nk. Suppose

α ∈ A(B(G)) has length D(G) and contains g|g|−1. If α contains g|g|

then D(G) = |g| ≤ nk, and so M(G) = 1+
∑k

i=1(ni−1) ≤ D(G) ≤ nk.
Thus,

∑k−1
i=1 (ni − 1) ≤ 0 so G is cyclic, and hence fully elastic by

Lemma 3.6.

Now suppose α contains g|g|−1 and no higher power of g. Write
α = g|g|−1gx2

2 · · · gxt
t . Letting S = G and applying Lemma 3.7, we have
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R(B(G)) = Q ∩ [1, (DG(G))/2] = Q ∩ [1, (D(G))/2] so B(G) is fully
elastic.

Condition (ii) in Theorem 3.9 is satisfied by divisor class groups with
“large exponent,” see [12, Section 8]. We close our results by noting
that Theorem 3.9 can be applied in several different ways.

Corollary 3.10. Let M be a Krull monoid with divisor class group
C(M) such that each divisor class of C(M) contains a prime divisor.

1. If rank (C(M)) < 3, then M is fully elastic.

2. If |C(M)| = pk where p is a prime integer and k ∈ N, then M is
fully elastic.

3. If C(M) = G′⊕Zmn where G′ is a direct summand with exp(G′)|m
and n ≥ 4|G′| > 4(m − 2), then M is fully elastic.

In particular, if D is a ring of integers in finite extension of Q with
class number pk where p is prime, then D is fully elastic.

Proof. 1 and 2 follow since groups of these types satisfy D(G) =
M(G), see [7, Theorem 1.8]. For 3, groups of this form satisfy condition
(ii) of Theorem 3.9 by [12, Theorem 8.2]. The remaining assertion
follows directly from 1, 2 and 3 and Theorem 3.1.

Our work in Section 3 clearly raises two interesting problems.

Problem 1. Let M be a Krull monoid with divisor class group
C(M) such that each divisor class of C(M) contains a prime divisor. If
|C(M)| < ∞, then must M be fully elastic?

Problem 2. Let M be a Krull monoid whose divisor class group
C(M) is finite and satisfies D(C(M)) = M(C(M)). Must M be fully
elastic?
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