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COMPACT ORBITS OF SMOOTH KILLING
VECTOR FIELDS ON RIEMANNIAN MANIFOLDS

MIROSLAV LOVRIĆ

ABSTRACT. Orbits of a family F of smooth vector fields
on a manifold M partition M into connected, immersed sub-
manifolds, not necessarily of the same dimension. Each orbit
N is partitioned further into zero-time orbits (sets reachable
from a point in zero total time). Compact orbits of a family of
smooth, Killing vector fields on a Riemannian manifold M are
studied in this paper. It is shown that zero-time orbits form
a Riemannian foliation on N ; in particular, the distance be-
tween the leaves, i.e., the zero-time orbits, is locally constant.
Furthermore, zero-time orbits are isometric to each other and
are either dense submanifolds of N or constitute fibers of a lo-
cally trivial fibration over the circle S1. Since reachable sets
of a family F of vector fields are translates of zero-time orbits
along flows generated by vector fields from F , analogous con-
clusions hold for a foliation of a compact orbit by reachable
sets.

1. Introduction. Let F denote a family of smooth vector fields
on a smooth manifold M . The orbit N of F through x ∈ M is the
set of points that can be reached from x by piecewise smooth integral
curves of vector fields from F . Orbits of F form a partition of M
into connected, immersed submanifolds, not necessarily of the same
dimension, in other words, they form a singular foliation on M [1,
4, 5, 6, 7]. The zero-time orbit N0 through x is the set of points
reachable from x by moving along piecewise smooth integral curves of
F either forward or backward (moving backward is the same as moving
along an integral curve for some negative time) so that the total time is
zero, see [9], where zero-time orbits are first introduced and used. All
zero-time orbits belonging to the same orbit (are of the same dimension
and hence) define a regular foliation on that orbit. A vector field X is
called Killing if its (local) flow exp(tX) consists of (local) isometries of
M . In this paper orbits of a family of smooth, Killing vector fields on
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a Riemannian manifold (M,γ) are studied. It is shown that zero-time
orbits foliate a compact orbit in a special way; the distance between
them is locally constant (in the language of foliations, they define a
Riemannian foliation on N). Furthermore, only two possibilities can
occur: either all zero-time orbits are dense in N or they constitute
fibers of a locally trivial fibration N → S1.

From the proof of the theorem, it will follow that the zero-time orbits
inside a single compact orbit are isometric to each other. Since the sets
reachable in some time from a point x are translates of zero-time orbits
along flows of vector fields from F , the properties of the foliation of N
by its zero-time orbits hold for a foliation of N by accessible sets (at
positive times).

Statements of the main result and its corollaries appear in Section 2.
In Section 3 the languages of orbit theory and foliations are brought
closer, and Section 4 specializes in the case of Killing vector fields
and Riemannian foliations. The proof of the theorem is presented in
Section 5.

An effort has been made to keep notation as simple as possible. The
symbol M will always denote a manifold, N an orbit of a family of
vector fields F andN0 a zero-time orbit. Upper-case calligraphic letters
F ,K, etc., are used for families (ideals, Lie algebras) of vector fields,
and F(x),K(x), etc., denote their evaluations at x. A point x appears
as a subscript in the notation for tangent spaces and orbits, e.g., TxN
and Nx. The same symbols are used for families of vector fields and
corresponding foliations since the context will keep the meaning clear.

2. Result. Let F denote a family of smooth vector fields on a
smooth manifold M . The orbit Nx of F through the point x ∈ M is
the set

Nx = {exp(tkXk) ◦ · · · ◦ exp(t1X1)(x)},

where k ≥ 1, Xi ∈ F and ti ∈ R are such that the flows are well
defined, i = 1, . . . , k.

Let GF be the pseudogroup of local diffeomorphisms generated by
one-parameter subgroups exp(tX) whose infinitesimal generators be-
long to F . The set Nx is the orbit of GF through x. It is a smooth,
connected (immersed) submanifold of M . A zero-time orbit N0

x of F
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through x ∈M is a smooth submanifold of M given by

N0
x = {exp(tkXk) ◦ · · · ◦ exp(t1X1)(X) | t1 + · · ·+ tk = 0} ⊆ Nx,

where ti and Xi, i = 1, . . . , k, are as above.

The aim of this paper is to prove the following theorem:

Theorem. Let N denote a compact orbit of a family F of smooth
Killing vector fields on a smooth Riemannian manifold M . Zero-time
orbits of F define a Riemannian foliation (N,N 0) on N . One of the
following holds:

(i) All zero-time orbits coincide with N .

(ii) Zero-time orbits are dense in N .

(iii) Zero-time orbits are fibers of a locally trivial fibration π : N →
S1.

In Section 4 it is shown that this result holds with a weaker assump-
tion on F ; namely, it is enough to assume that the flow of F preserves
the transversal component of the metric.

If F contains only one vector field, then any compact orbit of F
must be diffeomorphic to S1. In that case, zero-time orbits are points,
and thus the alternative (iii) of the theorem holds (the locally trivial
fibration being the identity map).

From the proof of the theorem one can immediately draw the follow-
ing consequence, see also [8, p. 351]:

Corollary. Let M and F be as in the theorem, and let N0
1 and N0

2

be two zero-time orbits belonging to the same compact orbit of F . Then
there is an isometry φ :M →M such that φ(N0

1 ) = N
0
2 .

The set of points reachable from x at time T , T ≥ 0, is the set

AF (x, T ) = {exp(tkXk) ◦ · · · ◦ exp(t1X1)(x) | t1 + · · ·+ tk = T} ⊆ Nx,

where ti and Xi, i = 1, . . . , k, are as above.

For any T ≥ 0, p ∈ AF (x, T ) and X ∈ F , exp(−TX)(p) ∈ N0
x ; thus,

AF (x, T ) = (exp(TX))N0
x . Since the flow exp(TX) is an isometry,
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one concludes that AF (x, T ) is isometric to N0
x . From the corollary,

we conclude that there is an isometry between any two reachable sets
AF (x1, T1) and AF(x2, T2).

Clearly, the above theorem applies to the foliation of a compact orbit
by its reachable sets.

Example. Let F be any smooth family of Killing vector fields on the
sphere S2, for example, rotation vector fields, such that F is reachable,
i.e., there is only one orbit, N = S2. For topological reasons, zero-time
orbits cannot fiber over S1. Anyway, if N0 �= N , then (the proof will
show) that there must exist everywhere nonzero transversal direction.
Since this is impossible on S2, it follows that zero-time orbits coincide
with the orbit N .

3. Orbits and foliations. Let F be a family of smooth vector
fields on a smooth manifold M , assumed to be everywhere defined,
i.e., union of the domains of elements in F is M . Denote by ∆F the
distribution onM spanned by F . Recall that GF is the pseudogroup of
local diffeomorphisms generated by one-parameter subgroups exp(tX)
whose infinitesimal generators belong to F .

A distribution ∆F is called GF -invariant if for each g ∈ GF the
differential dg maps ∆F (x) ⊆ TxM into ∆F (g(x)) ⊆ Tg(x)M . Let
PF be the smallest GF -invariant distribution that contains F .

It can be shown, see [6], that the distribution PF is generated by the
pullbacks {dg◦X ◦g−1}, where X ∈ F and g ∈ GF . It is integrable, and
Theorem 4.1 in [6] implies that the orbits of F coincide with maximal
integral submanifolds of PF . Denote by ∆0

F the distribution spanned
by the differences {dg ◦X ◦ g−1 − dh ◦ Y ◦ h−1}, where X,Y ∈ F and
g, h ∈ GF . ∆0

F is GF -invariant, and hence its dimension is constant on
orbits of F , and of codimension zero or one in PF . Theorem 1.3 in [2]
implies that ∆0

F is integrable, and its maximal integral submanifolds
are precisely the zero-time orbits of F .

If F is a family of analytic vector fields, then Proposition 1.4 in [2], see
also [9], provides a useful way of computing the distributions involved:
PF equals Lie (F), which is the smallest Lie algebra generated by F ,
and ∆0

F = {∑αiXi +X ′}, where Xi ∈ F ,
∑
αi = 0 and X ′ ∈ F ′ (F ′

is the derived algebra of F).
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A foliation (M,F) of codimension q, q ≤ n, on an n-dimensional
manifold M is a partition {Fα} of M into connected, not necessar-
ily imbedded, submanifolds, called leaves of F , which satisfy the fol-
lowing requirement: for every point there is an open neighborhood
U and a diffeomorphism φ : U → Rn = Rn−q × Rq given by φ =
(x1, . . . , xn−q, y1, . . . , yq), so that for each leaf Fα the connected com-
ponents of U ∩ Fα are given by the equations y1 = constant, . . . , yq =
constant. From the definition it follows that, locally, every foliation is
given by the submersion of U onto the local quotient manifold π(U),
where π :M →M/F is the projection.

From the above it follows that the distribution ∆0
F , restricted to an

orbit N of F , defines a foliation, N,N 0 = ∆0
F |N , of N by codimension

zero (trivial foliation) or codimension one leaves.

4. Killing vector fields and Riemannian foliations. Let
(M,γ) be a Riemannian manifold and (M,F) a foliation on M . The
tangent space TxM splits as the direct sum TxM = TxN ⊕ TxQ
of the space TxN tangent to the leaf N of F through x and its
orthogonal complement TxQ. The metric γ = γN ⊕ γQ decomposes
into its tangential and transversal components. A foliation F is called
Riemannian if LXγQ = 0, where LX denotes the Lie derivative of the
metric in the direction of the vector field X tangent to the leaves of F
(given by LXγQ(U, V ) = X(γQ(U, V ))− γQ([X,U ], V )− γQ(U, [X,V ]),
where U and V are vector fields on M). Interpreting the vector fields
tangent to the leaves of F as defining the motion onM , the requirement
that the foliation be Riemannian means that the transversal component
of the metric is a constant of motion. Equivalently, see [3], the foliation
is Riemannian if and only if the distance between its leaves is locally
constant.

Example. A Riemannian submersion is a smooth submersion
f : M → P between Riemannian manifolds M and P such that the
differential df(x) : TxM → Tf(x)P is an isometry between the hori-
zontal subspace Hx (= orthogonal complement of df(x)−1(0) in TxM)
and Tf(x)P for all x ∈ M . The collection {f−1(y) | y ∈ P} defines a
Riemannian foliation on M of codimension equal to the dimension of
P .
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Let a Lie group G act on a Riemannian manifold M by isometries. If
all orbits of G have the same dimension, then they define a Riemannian
foliation on M . In the example at the end of this paper, M = T 2, with
the standard metric, and G = GF acts by isometries (one-parameter
groups generated by a(∂/∂θ1) and b(∂/∂θ2) are translations). Conse-
quently, the foliation ∆0

F on T 2 is a Riemannian foliation.

A vector field X on a Riemannian manifold (M,γ) is called a Killing
vector field if its (local) one-parameter group of diffeomorphisms con-
sists of (local) isometries of M . In other words, X is Killing if and
only if LXγ = 0. The importance of Killing vector fields is that their
orbits define a Riemannian foliation, since LXγ = 0 implies LXγQ = 0
(to be precise, such a foliation is called a singular Riemannian foliation
since the dimension of its leaves does not have to be constant, see [5];
however, in the case under consideration, i.e., the foliation of an orbit
by zero-time orbits, all leaves will have the same dimension). Rotation
fields on the sphere Sn equipped with the standard metric are Killing
vector fields. Constant vector fields on Rn are Killing vector fields,
and they project to Killing vector fields on the flat torus Tn = Rn/Zn.
Orbits of those fields define Riemannian foliations on Sn,Rn and Tn,
respectively. Complete, Killing vector fields form a Lie subalgebra K
of the algebra X (M) of all vector fields on M .

5. Proof of the theorem. Let F be a family of smooth Killing
vector fields on a smooth Riemannian manifold (M,γ), and denote by
(N, γ) any of its compact orbits (the metric on N is the induced metric
from M). The tangent space to N at x is given by

TxN = PF (x) = {dg ◦X ◦ g−1(x) | X ∈ F , g ∈ GF} ⊇ F(x).

We can view vector fields in F ⊆ X (M) as vector fields restricted to N
and will denote this (restricted) family again by F . Orbit N is assumed
to be compact, and, consequently, exponential maps are defined for all
times. Since the pullback by a diffeomorphism of a Killing vector field is
again a Killing vector field, the zero-time distribution ∆0

F is spanned by
Killing vector fields, and the foliation (N,N 0 = ∆0

F |N ) of N by its zero-
time orbits is a Riemannian foliation whose leaves are of codimension
zero or one in N .

Assume that the zero-time orbits N0 of N do not coincide with N .
At every point there is a decomposition TxN = TxN

0 ⊕ TxQ into leaf
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zero-orbit directions and a transversal direction. Let T ∈ F be such
that T (x) /∈ ∆0

F (x) for some x. If, for some y, T (y) ∈ ∆0
F (y), then,

by the GF -invariance of ∆0
F , it follows that T (x) ∈ ∆0

F (x). In other
words, the above decomposition can be written as

TxN = N 0(x)⊕ RT (x),

globally on N , where RT (x) denotes the linear span of T (a vector field
T /∈ ∆0

F which is nonzero at one point is nonzero everywhere on N ;
otherwise, the zero-time distribution ∆0

F (x) would equal TxN for all x
and N0 = N , contrary to the assumption).

From [∆0
F , T ] = [PF − PF , T ] = [PF , T ]− [PF , T ] ⊆ PF − PF = ∆0

F ,
it follows that the flow of T preserves zero-time orbits. Consequently,
the group A(N 0) of automorphisms of the foliation N 0, i.e., diffeomor-
phisms of N that map zero-time orbits to zero-time orbits, contains
flows of all vector fields in F , and therefore has open orbits. Since N
is connected, A(N 0) acts transitively on N .

Consider the subfamily of the algebra of vector fields on N given by

N 0
b = {X ∈ X (N) | LXf = Xf = 0} ⊇ N 0

where f is a constant of motion for N 0, i.e., LXf = Xf = 0 for
all X in N 0. Let φ : N → N be an automorphism of N 0. If f
is a constant of motion for N 0, then φ ◦ f is again a constant of
motion for N 0. Moreover, dφ pulls back vector fields from N 0

b to N 0
b ,

and therefore N 0
b (φ(x)) = dφ(N 0

b (x)). Since the automorphism group
acts transitively, the dimension of N 0

b (x) is constant on N , and hence
N 0

b defines a distribution, which will also be denoted by N 0
b . Since

N 0
b = {X | df(X) = 0} for all constants of motion, the distribution N 0

b

(is integrable and hence) defines a foliation of codimension qb ≤ 1 on N .
If it is of codimension one, the flow of the vector field T is transversal
to its leaves (such a foliation is called transversally parallelizable).

From Chapter 4 in [3] it follows that the orbits N0
b of N 0

b are
compact submanifolds of N ; they are the closures of orbits of N 0.
Moreover, the orbits N0

b constitute fibers of the locally trivial fibration
φ : N → N/N 0

b , where N/N 0
b is a smooth manifold of dimension equal

to qb.

The foliation (N,N 0) induces a foliation (N0
b ,N 0) on N0

b , by zero-
time orbits. Since A(N 0) is transitive, all orbits N0

b are isomorphic as



322 M. LOVRIĆ

foliations. If the dimension of N/N 0
b is zero, it follows that N 0

b has
only one leaf, which is the closure of leaves of N 0. So in this case all
leaves of N 0 are dense in N . If the dimension of N/N 0

b is one, then
π is a fibration over a compact, connected, one-dimensional manifold,
i.e., π is a locally trivial fibration over S1. This completes the proof of
the theorem.

Example. Identify the two-dimensional torus T 2 with the product
S1×S1 so that the point of T 2 corresponds to (θ1, θ2) determined up to
a multiple of 2π. Consider the family F = {a(∂/∂θ1), b(∂/∂θ2)}, where
a and b are nonzero constants. Since the vector fields a(∂/∂θ1) and
b(∂/∂θ2) commute, it follows that every element of GF is of the form
exp(t1a(∂/∂θ1)) exp(t2b(∂/∂θ2)), for some t1 and t2. Clearly, ∆F (x)
coincides with the tangent space TxT

2 and, consequently, F has only
one orbit, namely, T 2, i.e., F is reachable. The distribution ∆0

F is
spanned by {a(∂/∂θ1)−b(∂/∂θ2)}, and its orbits (the zero-time orbits)
foliate the (compact) orbit T 2 of F either by one-dimensional manifolds
diffeomorphic to R, if a/b is irrational, or by leaves diffeomorphic to S1,
if a/b is rational. In the latter case, the theorem proved in this paper
implies that the foliation is actually a fibration over S1. This example
also shows that a compact orbit can have noncompact zero-time orbits.

Example. Let M = S1 × S1 × S1 with coordinates θ1, θ2 and θ3
(modulo 2π), and let F = {(∂/∂θ1), (∂/∂θ2), (∂/∂θ3)}. The orbit
N of each point is equal to M . For t1, t2 ∈ R, define X(t1, t2) =
t1(∂/∂θ1)+ t2(∂/∂θ2)−(t1+ t2)(∂/∂θ3). The zero-time orbit of a point
x ∈ N is N0

x = {expX(t1, t2) | t1, t2 ∈ R}. Clearly zero-time orbits do
not give a locally trivial fibration π : N → S1, nor is N0

x = S1. If t1/t2
is irrational, then (t1 + t2)/t1 and (t1 + t2)/t2 are also irrational, and
so X(t1, t2) gives a dense flow on N ; i.e., the zero-time orbits are dense
in N .
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