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MIDDLE SEMICONTINUITY
FOR UNBOUNDED OPERATORS

HYOUNGSOON KIM

ABSTRACT. Let A be a C∗-algebra and KA its Pedersen’s
ideal. By making use of Mack’s characterization of PCS-
algebra and Phillips’ new description of multipliers of KA,
[14, 18], we generalize the concept of middle semicontinuity
[6] to the case of unbounded operators affiliated with A∗∗, the
enveloping von Neumann algebra of A. Especially we obtain
the unbounded version of a Dauns-Hofmann type theorem [15,
Theorem 4.6] and a middle interpolation theorem [6, Theorem
3.40].

1. Introduction and preliminaries. Let A be a C∗-algebra and
A∗∗ its enveloping von Neumann algebra. The theory of semicontinuous
operators in A∗∗ was developed by Pedersen, Akemann and Brown [2,
6, 15]. This paper is a sequel to [12] which generalizes the theory
of strong semicontinuity. We will adopt the same notations from it.
In this paper the concept of middle semicontinuity is generalized for
unbounded operators affiliated with A∗∗.

Let M(A) denote the multiplier algebra of A and KA the Peder-
sen’s ideal (minimal dense ideal) of A. If A is commutative, that is,
A = C0(X), the algebra of all complex valued continuous functions
which vanish at infinity on some locally compact space X, then M(A),
respectively KA, can be identified with Cb(X), respectively Cc(X),
the algebra of all complex value bounded, respectively compactly sup-
ported, continuous functions on X. As a noncommutative generaliza-
tion of the relation between Cc(X) and its multiplier algebra C(X),
Lazar and Taylor [13] introduced Γ(KA), the multipliers (double cen-
tralizers) of Pedersen’s ideal KA and made an extensive study of it.

In [18], Phillips gave a new description of Γ(KA) as an inverse limit
of C∗-algebras (pro C∗-algebra) and derived a number of the results
of [13] directly from corresponding facts about inverse limits of C∗-
algebras.
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Theorem 1.1 (Phillips [18, Theorem 4]). Let A be a C∗-algebra.
Then, for any approximate identity (eλ) for A contained in KA, we
have

Γ(KA) ∼= lim←−
α∈(KA)+

M(Ia) ∼= lim←−
λ

M(Ieλ
)

where Ib is the closed two sided ideal generated by b.

Remark. This theorem enables us to consider the elements of Γ(KA)sa
as (unbounded) self-adjoint operators on the universal Hilbert space Hu

of A. If h is in Γ(KA)sa, then there exists hλ in M(Ieλ
) for all λ such

that hµpλ = hλ for µ ≥ λ where pλ is the open central projection
corresponding to Ieλ

; and h can be identified with the net (hλ). For
each λ, hλ gives a projection valued measure Eλ

S(hλ) on pλHu. Note
that (Eλ

S(hλ))λ is an increasing net of projections in A∗∗ for every Borel
set S ⊂ R. Now we let E(S) be the limit projection of (Eλ

S(hλ))λ in
A∗∗. Then (E(S)) forms a projection valued measure on Hu. Hence
the operator that corresponds to (E(S)) is a densely defined self-adjoint
operator on Hu and will be denoted again by h. Then hpλ = hλ for all
λ and ah, hb ∈ KA for all a and b in KA.

A subset C of a topological space X, not necessarily Hausdorff,
is called relatively (quasi-) compact if C is contained in a (quasi-)
compact subset of X. Throughout this paper Λ will denote the set
of all relatively compact open subsets of PrimA, the primitive ideal
space of A with hull-kernel topology. From [13, Lemma 5.39] it follows
immediately that Prim (Ia) belongs to Λ for all a in (KA)+. Applying
[18, Lemma 5], we see that (C)Λ forms an increasing cofinal net where
Λ is ordered by set inclusion, and so we have the following:

Corollary 1.2. Let I(C) be the closed two sided ideal of A corre-
sponding to C ∈ Λ. Then

Γ(KA) ∼= lim←−
C∈Λ

M(I(C)).

A topological space X is called pseudocompact if every continuous
real valued function on X is bounded. When A is commutative and
has pseudocompact spectrum the equality Γ(KA) = M(A) holds, i.e.,
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every multiplier of Pedersen’s ideal KA is bounded. By Lazar and
Taylor, A is called a PCS-algebra if Γ(KA) = M(A) holds. We refer
the readers to [13] and [14] for the characterization of PCS-algebras. In
[13], the authors asked whether or not it is true that Γ(KA) = M(A)
if and only if PrimA is pseudocompact. Mack [14] has shown that
the correct condition for A to be a PCS-algebra is that PrimA be
weakly compact. Recall that X is called weakly compact if each infinite
pairwise disjoint family of nonempty open subsets has an accumulation
point or equivalently for each countable open cover {Un} of X, the
associated closed cover {Un} admits a finite subcover.

Lemma 1.3. Let Ǎ denote PrimA. Then A/I(Ǎ − C) is a PCS-
algebra for all C in Λ.

Proof. Note that Prim (A/I(Ǎ − C)) = C. Then it is easy to show
that C is weakly compact since C is relatively compact.

Theorem 1.4. Let Ǎ denote PrimA. Then

Γ(KA) ∼= lim←−
C∈Λ

M(A/I(Ǎ− C));

i.e., Γ(KA) is isomorphic to the inverse limit of the multiplier algebras
M(A/J) as J runs through all closed ideals of A such that the primitive
ideal space Prim (A/J) is the closure of a relatively compact open subset
of PrimA.

Remark. This is a corrected version of [18, Theorem 7], which may
not be true when PrimA is not Hausdorff.

Proof. For an open subset D of PrimA, we denote by pD the
open central projection corresponding to the ideal I(D) and let pD =
1 − p(Ǎ−D). Note that the map x 	→ xpC , C ∈ Λ, is a homomorphism
from Γ(KA) into Γ(KA/I(Ǎ−C)) = M(A/I(Ǎ − C)). These maps
obviously give an injective homomorphism

Φ : Γ(KA) −→ lim←−
C∈Λ

M(A/I(Ǎ− C))



260 H. KIM

since if xpC = 0 for all C ∈ Λ, then x = 0. To show the surjectivity of
Φ, note that I(C) can be regarded as an essential ideal of A/I(Ǎ−C).
Hence we have an isometric isomorphism x 	→ xpC from M(A/I(Ǎ−C))
into M(I(C)). By Corollary 1.2 above, this implies Φ surjective.

2. Definition of MLSC(A). The generalization of strong semicon-
tinuity was quite smooth due to the cooperation of the quasi-state space
Q(A) and the theory of unbounded quadratic forms, see [12]. But for
the concept of middle semicontinuity, there are some difficulties even
though we have several candidates. In view of the theory of multipliers
Γ(KA) of Pedersen’s ideal KA we can naturally expect Γ(KA) to be
the set of unbounded middle continuous elements. There are several
possibilities for a definition of middle semicontinuity, such as semicon-
tinuous affine functions on Q(A) or S(A), q-semicontinuity, analogues
of conditions for bounded middle semicontinuity, and Phillips’ descrip-
tion of Γ(KA). Moreover, the commutative case is highly suggestive.
In [6] Brown already pointed out that q-semicontinuity should not be
considered as the basic notation. We consider the following list of
five conditions on an unbounded self-adjoint operator h, possibly not
densely defined, affiliated with A∗∗:

(M1) For all C ∈ Λ, there exists λC > 0 such that (h + λC)pC ∈
SLSC(I(C))+.

(M2) For all C ∈ Λ, there exists λC > 0 such that (h + λC)pC ∈
SLSC(A/I(Ǎ− C))+.

(M3) There exists (hi) with hi in M(I(Ci))sa such that Ci ↗ PrimA
in Λ; if i ≤ i′, then hi ≤ hi′pCi

, and hipC ↗ hpC for all C ∈ Λ.

(M4) There exists (hi) with hi in M(A/I(Ǎ − Ci))sa such that
Ci ↗ PrimA in Λ; if i ≤ i′ then hi ≤ hi′pCi

and hipC ↗ hpC , for
all C ∈ Λ.

(M5) There exists x in Γ(KA)+ such that h + x ∈ SLSC(A)+.

Proposition 2.1. (M5) ⇒ (M4) ⇒ (M3) ⇒ (M2) ⇒ (M1).

Proof. (M5) ⇒ (M4). Let (aj + λj1)j∈D be a net in Ã such that
aj + λj1↗ h+ x and λj ↗ 0. Let I = Λ×D. Then I is a directed set
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with the partial order defined by

(C, j) ≤ (C ′, j′)⇔ C ⊂ C ′ and j ≤ j′.

For i = (C, j) in I, let hi = (aj + λj1 − x)pC . Then hi is in
M(A/I(Ǎ− C))sa, by Lemma 1.3, and hipC ↗ hpC for all C in Λ.

(M4) ⇒ (M3). Note that I(C) can be regarded as an essential ideal
of A/(Ǎ − C). Hence the map x 	→ xpC is an isometric isomorphism
from M(A/I(Ǎ− C)) into M(I(C)).

(M3) ⇒ (M2). Assume (hi)I satisfies the conditions in (M3). For
any given C in Λ, there exists i0 such that C ⊂ Ci0 . Let λC = ‖hi0‖,
then (hi + λC)pCpCi

≥ 0 for all i ≥ i0 since I(C) is essential in
A/I(Ǎ − C). Let B = A/I(Ǎ − C), and let ΛB denote the set of
relatively compact open subsets of PrimB. For any fixed D in ΛB ,
there is a CD in Λ such that D = CD ∩ C. Let J(D) be the ideal of
B corresponding to D. Since hipCD

↗ hpCD
and (hi + λC)pCpCi

≥ 0
for i sufficiently large, we have (hi +λC)pCpCD

↗ (h+λC)pCpCD
and

(hi +λC)pCpCD
∈M(J(D))+ for i sufficiently large by [6, Proposition

2.18]. Note that M(J(D))+ ⊂ J(D)m+ ⊂ SLSC(J(D))+. Hence
(h + λC)pCpCD

∈ M(J(D))M+ ⊂ SLSC(J(D))M+ = SLSC(J(D))+
by [12, Corollary 3.9]. Therefore, (h + λC)pC ∈ SLSC(B)+ by [12,
Theorem 3.19].

(M2) ⇒ (M1) follows from [12, Proposition 3.13].

Proposition 2.2. (a) For the commutative C∗-algebra A = C0(X),
(M1) (M4) are all equivalent. For h not necessarily densely defined,
all describe the set of (−∞,∞]-valued lower semicontinuous functions
on X. For densely defined h they describe the set of R -valued lower
semicontinuous functions on X.

(b) (M5) describes the set of lower semicontinuous functions on X
which are bounded below by an R-valued continuous function.

Proof. (a) Assume h satisfies (M1). Note that every bounded strongly
lower semicontinuous element is determined completely by its atomic
part by [16, Theorem 4.3.15]. Hence, by [12, Theorem 3.6], (h+λC)pC
is determined by zath for all C ∈ Λ, and so is h. Now it is easy to deduce
from [12, Example 3.4A] that h corresponds to a (−∞,∞]-valued lower
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semicontinuous function on X. Consider the set I of all finite collections
of elements in Λ. For any singleton, i = {C} in I, let hi be the constant
function x 	→ miny∈C h(y) on C. For i = {C1, C2}, let Ci = C1 ∪ C2

and ki(x) = max{hm(x) | m = {C1} or {C2} and hm(x) defined}
on Ci. Then Ci is compact Hausdorff, hence normal, ki is upper
semicontinuous on Ci and ki ≤ h|Ci

. Therefore, we can find a bounded
continuous function hi on Ci such that ki ≤ hi ≤ h|Ci

. Assume that hi
has been selected for all i of order less than n. For i = {C1, C2, . . . , Cn}
in I, let Ci = C1 ∪ · · · ∪ Cn and ki(x) = max{hj(x) | j � i and hj(x)
defined} on Ci. Then Ci is normal, ki is upper semicontinuous on
Ci and ki ≤ h|Ci

. Choose a continuous function hi on Ci such that
ki ≤ hi ≤ h|Ci

. By induction we can construct a net (hi)i∈I where hi

is in Cb(Ci) ∼= M(A/I(X−Ci)) such that hi ↗ h pointwise. Therefore
h satisfies (M4).

If h is densely defined as an operator on Hu, then h(x) ∈ R for all x
in X. This shows the last statement.

(b) If f is a lower semicontinuous function on X such that f ≥ g for
some continuous real valued g, then f − (g ∧ 0) is positive and lower
semicontinuous on X. Therefore f satisfies (M5). The converse is clear,
since Γ(KA) is identified with C(X).

Example. We have an example that shows (M4) �⇒ (M5), see [9,
p. 97]. Let X = βR − (βN − N) where β indicates the Stone Čech
compactification. Then X is a locally compact Hausdorff space which is
pseudocompact but not countably compact (and not normal). So there
is a lower semicontinuous function f on X which is not bounded below.
Since X is pseudocompact, f does not satisfy (M5). Note that X must
be non-σ-compact, i.e., C0(X) non-σ-unital, for such an example.

Proposition 2.3. If X is a normal, countably paracompact, locally
compact Hausdorff space, then all of (M1) (M5) are equivalent for
A = C0(X).

Proof. The given condition on X implies that if f1, respectively f2,
is a lower, respectively upper, semicontinuous real function on X such
that f1 > f2, then there exists a continuous real function g such that
f1 > g > f2, see [8, Theorem 4].
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Let h be a (−∞,∞]-valued lower semicontinuous function on X.
Then the function f defined by f(x) = Tan−1(h(x)), for h(x) < ∞,
and f(x) = (π/2), for h(x) = ∞, is lower semicontinuous on X such
that −(π/2) < f ≤ (π/2). Thus there exists a continuous function g
such that −(π/2) < g < f ≤ (π/2). Then the function φ = tan ◦g
is continuous real valued such that φ < h on X. Therefore h satisfies
(M5) and we are done.

Proposition 2.4. If A is σ-unital, (M4) is equivalent to (M5).

Proof. Assume h satisfies (M4), i.e., there is a net (hi), i ∈ I, with hi
in M(A/I(Ǎ−Ci))sa such that Ci ↗ PrimA; if i ≤ i′, then hi ≤ hi′PCi

and hipC ↗ hpC for all C ∈ Λ. Since A is σ-unital, there exists an
increasing sequence (Cn) in Λ such that Cn ↗ PrimA. Choose i1 such
that Ci1 ⊃ C1, and let h1 = pC1

hi1 . Choose i2 such that i2 ≥ i1 and
Ci2 ⊃ C2 and let h2 = pC2

hi2 . By [17, Theorem 10], the canonical map
ρ : M(A/I(Ǎ−C2))→M(A/I(Ǎ−C1)) is a surjective homomorphism.
Choose m1,m2 in R such that m1 ≤ h1, m2 ≤ h2 and m2 ≤ m1 ≤ 0.
Then we have

ρ(m2) = m2ρC1
≤ m1pC1

≤ h1 ≤ h2pC1
= ρ(h2).

Applying [16, Proposition 1.5.10], we can find y2 in M(A/I(Ǎ −
C2))sa such that ρ(y2) = pC1

y2 = h1 and m2 ≤ y2 ≤ h2 ≤ hpC2
.

Continuing this process, we can find a sequence (yn) where yn is in
M(A/I(Ǎ − Cn))sa such that yn ≤ hn ≤ hpCn

and ynpCn−1
= yn−1.

By Theorem 1.4 above, (yn) corresponds to a multiplier y in Γ(KA)sa
such that ypCn

= yn. Let x = y−. Then x ∈ Γ(KA)+, by [13, Lemma
5.14], and −xpCn

≤ hn ≤ hpCn
.

Now it is enough to show that (h + x)pCn
∈ SLSC(I(Cn))+ for all

n ∈ N by [12, Theorem 3.19]. Since hn ≥ −xpCn
,

(hi + x)pCn
∈M(A/I(Ǎ− Cn))+ ⊂ (A/I(Ǎ− Cn))m+ ,

for i ≥ in and (hi + x)pCn
↗ (h + x)pCn

. Therefore, (h + x)pCn
∈

SLSC(A/I(Ǎ−Cn))+ and hence (h+x)pCn
∈ SLSC(I(Cn))+ by [12,

Proposition 3.12].
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If PrimA is Hausdorff, then it is easy to see that (M1) is equivalent
to (M2) and (M3) is equivalent to (M4). But the following example
shows that (M1) does not imply (M2) in general.

Example. Let K be the set of all compact operators on a separable
infinite dimensional Hilbert space H and A an extension of K by c0 in
B(H), i.e., A = B+K where B = {∑∞

n=1 αnpn | (αn) ∈ c0} and (pn) is
a sequence of infinite dimensional mutually orthogonal projections such
that

∑
pn = 1. Note that A∗∗ ∼= K∗∗ ⊕ c∗∗0 ∼= B(H) ⊕ l∞ and PrimA

is homeomorphic to the space {0} ∪N with the topology generated by
{0} and {0, n}, n ∈ N. Let h = 0⊕ (−1,−2,−3, . . . ). Then h satisfies
(M1) but not (M2) since {0̄} = {0}∪N = PrimA and h is not bounded
below. Also note that hηZ.

Proposition 2.5. Let A be a σ-unital C∗-algebra with PrimA
Hausdorff. Then the conditions (M1) (M5) are all equivalent.

Proof. We will show that (M2) ⇒ (M5). Since PrimA is σ-compact
and Hausdorff, we can find an increasing sequence (Cn) in Λ such that
Cn ↗ PrimA and Cn ⊂ Cn+1 for all n ∈ N. If h satisfies (M2), then
there exists λn > 0 such that (h + λn)pCn

∈ SLSC(A/I(Ǎ − Cn))+.
We may assume that λn ↗∞. Then the function

g = (−λ1)XC1 +
∞∑

n=2

(−λn)XCn−Cn−1

is lower semicontinuous on PrimA. Then we can find a continuous
function f on PrimA such that f < g < 0 since PrimA is σ-compact,
locally compact Hausdorff. Let x be the operator corresponding to −f .
Then xηZ and x ∈ Γ(KA)+. Now we will show that h+x ∈ SLSC(A)+,
or equivalently (h+x)pCn

∈ SLSC(I(Cn))+, for all n in N. For n = 1,

(h + x)pC1 = (h + λ1)pC1 + (x− λ1)pC1 ∈ SLSC(I(C1))+

since (x − λ1)pC1 ∈ M(I(C))+ ⊂ SLSC(I(C))+. Assume that (h +
x)pCn−1 belongs to SLSC(I(Cn−1))+. By the choice of x, x̌−1[0, λn]
is a closed subset of Cn−1. Let Dn = Cn\x̌−1[0, λn]. Then Dn

is open in Cn and Dn ∪ Cn−1 = Cn. Hence we have I(Cn−1) +
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I(Dn) = I(Cn). Since (h + x)pDn
= (h + λn)pDn

+ (x − λn)pDn

and (x − λn)pDn
∈ M(I(Dn))+ ⊂ SLSC(I(Dn))+, (h + x)pDn

∈
SLSC(I(Dn))+. Applying [12, Proposition 3.13], we get (h+ x)pCn

∈
SLSC(I(Cn))+. So we are done.

We have seen that (M5) is strictly stronger than (M1) (M4) even in
the commutative case. So far, it is not completely clear which one is
the best choice, but our preference is for (M5). One thing we should
note is that only (M5) gives an affirmative answer, see Proposition 2.7
below, to the first question (Q1) in [6]: Is every lower semicontinuous
element the limit of a monotone increasing net of continuous elements?
(It was trivially yes for the bounded case.) Also considering the relation
with q-semicontinuity, Theorem 3.4 below, we like to choose (M5) at
least in the σ-unital case. Furthermore it is pleasing that it is described
globally. For a bounded operator h, even (M5) does not imply h ∈ Ãm

sa,
but we believe that (M5) is a better concept of middle semicontinuity
than “h ∈ Ãm

sa.” For example, when ⊕iAi, a c0-direct sum, the new
concept behaves better, see [6, Proposition 2.11].

Definition 2.6. Let h be a selfadjoint operator, not necessarily
densely defined, such that hηA∗∗. Then h is called unbounded middle
lower semicontinuous, h ∈ MLSC(A), if h satisfies (M5), i.e., there
exists x in Γ(KA)+ such that h + x is in SLSC(A)+. Also h is called
unbounded middle upper semicontinuous (h ∈ MUSC(A)) if −h is in
MLSC(A). As a special case, we denote by MLSCd(A), respectively
MUSCd(A), the set of all densely defined h in MLSC(A), respectively
MUSC(A).

Remark. If A is a PCS-algebra, then

h ∈MLSC(A) =⇒ h is bounded below

by the definition of PCS-algebra. In other words, if we assume bound-
edness for continuous elements, then we would have semiboundedness
for semicontinuous elements. (This would be false if we used (M4)
instead of (M5) by the example after Proposition 2.2 above.)

Notation. For self-adjoint operators h and k affiliated with A∗∗, we
write h ≥ k if hpC ≥ kpC for all C in Λ. For a net (hi), write hi ↗ h
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if hipC ↗ hpC for all C in Λ. These agree with the same notations in
[12] if all the operators are bounded below.

Proposition 2.7. h ∈ MLSC(A) if and only if there exists a net
(hi) in Γ(KA)sa such that hi ↗ h.

Proof. Let x ∈ Γ(KA)+ be such that h + x ∈ SLSC(A)+. Then
there exists a net (ai + λi1) in Ãsa such that ai + λi1 ↗ h + x. Let
hi = ai + λi1− x. Then hi ∈ Γ(KA)sa and hi ↗ h.

For the converse, let hi ↗ h for a net (hi) in Γ(KA)sa. Fix i0. Since
hi − hi0 ∈ Γ(KA)+ ⊂ SLSC(A)+ for i ≥ i0 and hi − hi0 ↗ h− hi0 , we
have h− hi0 ∈ SLSC(A)+.

Proposition 2.8. Γ(KA)sa = MLSCd(A) ∩MUSCd(A).

Proof. If h ∈MLSCd(A)∩MUSCd(A), then hpC is bounded for all
C in Λ, and so

hpC ∈M(I(C))msa ∩ (M(I(C))sa)m

= Ĩ(C)
m

sa ∩ ((Ĩ(C)sa))m
= M(I(C))sa

by [6, Proposition 2.8] and [15, Theorem 2.5]. This means that
h ∈ Γ(KA)sa by Corollary 1.2 above.

The other direction is obvious.

Remark. This means that the middle continuous elements are just
the multipliers of Pedersen’s ideal as we expected. The conditions
(M1) (M4) have this property too.

Proposition 2.9. Let I be an ideal of A with open central projection
z.

(a) h ∈MLSC(A)⇒ zh ∈MLSC(I).

(b) h ∈MLSC(A)+ ⇒ zh ∈MLSC(A)+ and zh ∈MLSC(I)+.
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Proof. (a) Let x ∈ Γ(KA)+ such that h + x ∈ SLSC(A)+. By [12,
Proposition 3.12], z(x + h) ∈ SLSC(I)+. Since zx is in Γ(KI)+, we
have zh ∈MLSC(I).

(b) Let h ∈MLSC(A)+ such that h + x ∈ SLSC(A)+ for some x in
Γ(KA)+. It is enough to show that zh + x ∈ SLSC(A)+. To see this,
let ϕα → ϕ in Q(A). Passing to a subnet, we may assume zϕα → θ
and (1− z)ϕα → ψ, where θ + ψ = ϕ. Since (1− z)ψ = ψ,

ϕ(zh + x) = θ(zh + x) + ψ(x) ≤ θ(h + x) + ψ(x)
≤ lim(zϕα)(h + x) + lim(1− z)ϕα(x)

(since x ∈ SLSC(A)+)
≤ lim[zϕα(h + x) + (1− z)ϕα(x)]
= lim[ϕα(zh + zx) + ϕα((1− z)x)]
= limϕα(zh + x).

3. A Dauns-Hoffmann type theorem and middle interpola-
tion. Recall that h is called q-LSC if E(t,∞)(h) + (1− ph) is open for
all t ∈ R where ph is the projection on D(h) and ES(h) stands for the
spectral projection of h corresponding to S ⊂ R. h is called q-USC if
−h is q-LSC, and h is called q-continuous if h is densely defined, q-LSC
and q-USC. For h bounded, we use q-lsc or q-usc instead. We refer to
[6, p. 905] for the history of q-semicontinuity. Unlike the bounded case,
q-continuity does not imply middle continuity in general. Let A be the
algebra K of compact operators on a separable Hilbert space H, and let
h be an arbitrary unbounded self-adjoint densely defined operator on
H. Since every projection is open, h is q-continuous. Note that A is a
PCS-algebra and hence Γ(KA) = M(A) = B(H). Therefore, h cannot
be in Γ(KA). However, if we assume local boundedness of h, then we
still have a similar result.

Proposition 3.1. h ∈ Γ(KA)sa ⇔ h is q-continuous and hpC ,
respectively hpC , is bounded for every C in Λ.

Proof. Assume h ∈ Γ(KA)sa and let g(t) = Tan−1(t). Then g(h)
is in Γ(KA)sa, by [13, Lemma 5.14], and bounded. Therefore, g(h) is
in M(A)sa and q-continuous by Akemann [1]. Since g is continuous



268 H. KIM

and monotone increasing, this implies that h is q-continuous. Since
hpC ∈M(I(C))sa and I(C) is essential in A/I(Ǎ− C), hpC has to be
bounded.

Now assume that h is q-continuous and hpC is bounded for every
C in Λ. Then hpC is q-continuous with respect to I(C), and hence
hpC ∈ M(I(C))sa by [3, Theorem 2.2]. Therefore, h ∈ Γ(KA)sa by
Corollary 1.2.

Definition 3.2. For a self-adjoint operator h such that hηA∗∗ and
hpC is bounded below for all C ∈ Λ, consider the set Zh of all central
projections z such that zh is densely defined on zHu and bounded
above. Each zh has a central cover c(zh) in Z by Pedersen [15]. Then
there exists a self-adjoint operator c(h) on the Hilbert space zhHu where
zh = ∨z∈Zh

z such that c(h)ηZ and zc(h) = c(zh) for all z ∈ Zh, and
it will be called central cover of h. We think of c(h) as being +∞
on (1 − zh)Hu. Clearly the map [π] 	→ π∗∗(c(h)) defines a function
ȟ : Â → (−∞,∞]. Note that if hi ↗ h, then c(hi) ↗ c(h) and hence
ȟi ↗ ȟ pointwise on Â, cf. [16, Lemma 2.6.5].

Proposition 3.3. If h satisfies (M1) and hηZ, then ȟ is lower
semicontinuous on Â, or PrimA, and h is q-LSC.

Proof. Assume that h satisfies (M1) and hηZ. Then for all C ∈ Λ,
there exists λC such that (h+λC)pC ∈ SLSC(I(C))+. Therefore there
exists a net (ai + λipC) in Ĩ(C) such that ai + λipC ↗ (h + λC)pC ,
ai ∈ I(C)+ and λi ↗ 0. By Pedersen [16, Proposition 4.4.4], ǎi is lower
semicontinuous on C (= Prim (I(C))). So [(h + λC)pC ]∨ is the limit
of the increasing net (ǎi + λi) of lower semicontinuous functions, and
hence a lower semicontinuous function on C. This implies that (hpC)∨

is lower semicontinuous as well. Since ȟ|C = (hpC)∨ for all C ∈ Λ, and
each C is open in PrimA, this shows that ȟ is lower semicontinuous on
PrimA, or Â. Applying [12, Theorem 3.23] to (h+λC)pC , we see that
hpC is q-LSC with respect to I(C). Clearly hpC q-LSC for all C in Λ
implies h q-LSC.

Recall that we write h
q

≥ k if and only if E(−∞,s](h) · E[t,∞)(k) = 0
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for all s, t ∈ R such that s < t. Note h
q

≥ k implies h ≥ k if k is locally
bounded above, cf. [6, Definition 3.39].

Theorem 3.4. Let A be a σ-unital C∗-algebra, and let h be q-
LSC such that hpC is bounded below for every C in Λ. Then h is in
MLSC(A).

Proof. Assume h is q-LSC such that hpC is bounded below for every
C in Λ. By [12, Theorem 3.22], h+ is in SLSC(A). Hence we may
assume h ≤ 0. Let

g−n = −1 ∨ [(id + (n− 1)) ∧ 0]

and
h(n) = g−n(h) for n ∈ N.

Then h =
∑∞

n=1 h
(n) and g−n is a bounded, continuous, monotone

increasing function such that −1 ≤ g−n ≤ 0. Therefore, h(n) is q-lsc
for all n ∈ N.

Since A is σ-unital, there exists a sequence (Cn) in Λ such that Cn ↗
PrimA. Let mn be an integer lower bound of hpCn

for all n ∈ N. Then,
without loss of generality, we may assume that 0 = m1 > m2 > · · · .
For n with ms > −n ≥ ms+1, let g(n) = XCs

− 1. Then g(n) is upper
semicontinuous on PrimA. By the proof of [16, Theorem 4.4.6], there is
k(n) with −k(n) ∈ Am

+ ∩Z such that (k(n))∨ = g(n). Note that h(n) is q-

lsc, k(n) is q-usc and h(n)
q

≥ k(n). By the middle interpolation theorem
[6, Theorem 3.40], there is x(n) in M(A)sa such that k(n) ≤ x(n) ≤ h(n)

and h(n) − x(n) ∈ Am
+ . Here note that −1 ≤ x(n) ≤ 0 and pCs

x(n) = 0
if −n < ms. Let x = −∑∞

n=1 x
(n). Then for each s there are only

finitely many terms nonzero on pCs
Hu. Thus x is bounded on pCs

Hu

and xpCs
∈M(I(Cs))+ for all s ∈ N. This implies x ∈ Γ(KA)+.

Now we will show that h + x ∈ SLSC(A)+. Note that h + x =∑∞
n=1(h(n) − x(n)). Since h(n) − x(n) ∈ Am

+ for all n ∈ N, we have∑l
n=1(h(n) − x(n)) ∈ Am

+ for all l ∈ N, and

l∑

n=1

(h(n) − x(n))↗
∞∑

n=1

(h(n) − x(n)) as l↗∞.
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Therefore h + x ∈ SLSC(A)+.

Remark. The example before Proposition 3.1 shows that the hy-
pothesis that hpC be bounded below cannot be dropped. Also the
assumption of A being σ-unital cannot be dropped either by the exam-
ple A = C0(X) with X = βR − (βN −N) since X is pseudocompact
but not countably compact.

Theorem 3.5. Let A be a σ-unital C∗-algebra. Then the map
h 	→ ȟ is an isomorphism from {h ∈ MLSC(A) | hηZ} onto the
set of (−∞,∞]-valued lower semicontinuous functions on PrimA, or
Â, which are bounded below on C for all C in Λ.

Proof. Proposition 3.3 above shows that the map h 	→ ȟ is well
defined. For injectivity, let h1 and h2 be in {h ∈ MLSC(A) | hηZ}
such that ȟ1 = ȟ2. Then, for any C in Λ, there is λC > 0 such that
(hi + λC)pC ∈ SLSC(I(C))+ for i = 1, 2, and (h1pC)∨ = (h2pC)∨.
Applying [15, Theorem 4.6] to fδ[(hi +λC)pC ] we can see that h1pC =
h2pC for all C in Λ. Therefore h1 = h2.

Now it suffices to show that the map h 	→ ȟ is surjective. Let f be
a (−∞,∞]-valued lower semicontinuous function on PrimA such that
f |C is bounded below for all C ∈ Λ. Then the function g defined by
g(x) = Tan−1(f(x)) for f(x) < ∞ and g(x) = (π/2) for f(x) = ∞ is
bounded lower semicontinuous on PrimA. By Pedersen [15, Theorem
4.6], there is an h′ in Z∩Ãm

sa such that ȟ′ = g. Let h = tan(h′)⊕(+∞)z
where z is the spectral projection of h′ corresponding to {π/2}. Then
hηZ and ȟ = f on PrimA and hence h is q-LSC and hpC is bounded
below for all C ∈ Λ. Applying Theorem 3.4, we have h ∈ MLSC(A),
and we are done.

The above is a generalization of Pederson [15, Theorem 4.6], which
gives a new proof of the Dauns-Hofmann theorem in the unbounded
case for σ-unital C∗-algebras. Using a similar idea we generalize the
middle interpolation theorem, [6, Theorem 3.40], as follows:

Theorem 3.6. Assume that A is a σ-unital C∗-algebra, h is q-LSC,
k is q-USC such that for all C ∈ Λ, hpC is bounded below and kpC is
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bounded above, and h
q

≥ k. Then there exists x ∈ Γ(KA)sa such that
k ≤ x ≤ h. Moreover, if h is bounded below and k is bounded above,
then there exists x ∈M(A)sa such that k ≤ x ≤ h.

Proof. Since A is σ-unital, there is an increasing sequence (Cn) in
Λ such that Cn ↗ PrimA. Let Mn (respectively mn) be an integer
upper (respectively lower) bound of kpCn

(respectively hpCn
), such

that 0 < M1 ≤M2 ≤ · · · , and 0 > m1 ≥ m2 ≥ · · · . Let

gn = [0 ∨ (id− (n− 1))] ∧ 1

and
g−n = −1 ∨ [(id + (n− 1)) ∧ 0] for n ∈ N.

Let g̃±n(h), n ∈ N, denote gn(h) ⊕ 1(1 − ph) and g−n(h) ⊕ 0(1 − ph)
respectively, and let g̃±n(k) denote gn(k) ⊕ 0(1 − pk) and g−n(k) ⊕
(−1)(1 − pk), respectively. Then g̃±n(h) is q-lsc, g̃±n(k) is q-usc,

g̃±n(h)
q

≥ g̃±n(k),

h =
∞∑

n=1

(g̃n(h) + g̃−n(h)) and k =
∞∑

n=1

(g̃n(k) + g̃−n(k)).

Note that if Mn < t ∈ N, then g̃t(k)pCn
= 0, and if t < mn then

g̃t(h)pCn
= 0. For Mn < t ≤ Mn+1, let qt = 1 − pCn

. Then qt is an
open central projection such that g̃t(k) = g̃t(k)qt ≤ g̃t(h)qt ≤ g̃t(h).

This implies that g̃t(h)qt is q-lsc and g̃t(k)
q

≤ g̃t(h)qt. By Brown [6,
Theorem 3.40], we can find xt in M(A)sa for t > M1 such that

g̃t(k) ≤ xt ≤ g̃t(h)qt ≤ g̃t(h).

Similarly, we can find x−t in M(A)sa for −t < m1 such that

g̃−t(k) ≤ g̃−t(k)q−t ≤ x−t ≤ g̃−t(h)q−t = g̃−t(h).

For m1 ≤ t ≤ M1, choose xt ∈ M(A)sa such that g̃t(k) ≤ xt ≤ g̃t(h).
Let x =

∑∞
n=1(xn + x−n). Then there are only finitely many terms

nonzero on pCn
Hu for each n ∈ N since xtpCn

= 0 for sufficiently large
|t|. Therefore, xpCn

∈ M(I(Cn))sa, n ∈ N, and hence x belongs to
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Γ(KA)sa. By the choice of xt, the inequality kpC ≤ xpC ≤ hpC holds
for all C ∈ Λ. Hence k ≤ x ≤ h.

If h is bounded below and k is bounded above, then xt can be taken
to be zero for |t| large. This proves the last statement.

Acknowledgment. The author wishes to express his sincere thanks
to Professor L.G. Brown for many valuable suggestions and comments.

REFERENCES

1. C.A. Akemann, A Gelfand representation theory for C∗-algebras, Pacific J.
Math. 39 (1971), 1 11.

2. C.A. Akemann and G.K. Pedersen, Complications of semicontinuity in C∗-
algebra theory, Duke Math. J. 40 (1973), 785 795.

3. C.A. Akemann, G.K. Pedersen and J. Tomiyama, Multipliers of C∗-algebras,
J. Funct. Anal. 13 (1973), 277 301.

4. N. Bourbaki, Elements of mathematics. General topology, Part I, Addison-
Wesley, Hermann, Paris, 1966.

5. L.G. Brown, Interpolation for multipliers, in Operator algebras and applica-
tions, Vol. 1, London Math. Soc. Lecture Note Ser. 135 (1988), 55 59.

6. , Semicontinuity and multipliers of C∗-algebras, Canad. J. Math. 40
(1988), 865 988.

7. R.C. Busby, Double centralizers and extensions of C∗-algebras, Trans. Amer.
Math. Soc. 32 (1968), 79 99.

8. C.H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951),
219 224.

9. L. Gillman and M. Jerison, Rings of continuous functions, van Nostrand,
Princeton, 1960.

10. B. Johnson, An introduction to the theory of centralizers, Proc. London Math.
Soc. (3) 14 (1969), 299 320.

11. H. Kim, Semicontinuity for unbounded operators affiliated with operator
algebras, Ph.D. Dissertation, Purdue University, 1992.

12. , Strong semicontinuity for unbounded operators, Rocky Mountain J.
Math. 25 (1995), 1395 1415.

13. A.J. Lazar and D.C. Taylor, Multipliers of Pedersen’s ideal, Mem. Amer.
Math. Soc. 169 (1976),

14. J. Mack, The spectrum of a PCS-algebra, preprint.

15. G.K. Pedersen, Applications of weak∗ semicontinuity in C∗-algebra theory,
Duke Math. J. 22 (1972), 431 450.

16. , C∗-algebras and their automorphism groups, Academic Press, Lon-
don, 1979.



MIDDLE SEMICONTINUITY 273

17. , SAW∗-algebras and corona C∗-algebras, Contributions to noncom-
mutative topology, J. Operator Theory 15 (1986), 15 32.

18. N.C. Phillips, A new approach to the multipliers of Pedersen’s ideal, Proc.
Amer. Math. Soc. 104 (1988), 861 867.

Department of Mathematics, Yonsei University, Kangwondo 220-710,

Korea

E-mail address: kimh@dragon.yonsei.ac.kr


