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AN EXPLICIT ZERO-FREE REGION
FOR THE RIEMANN ZETA-FUNCTION

YUANYOU CHENG

ABSTRACT. This paper gives an explicit zero-free region
for the Riemann zeta-function derived from the Vinogradov-
Korobov method. We prove that the Riemann zeta-function

does not vanish in the region σ ≥ 1 − .00105 log−2/3 |t|
(log log |t|)−1/3 and |t| ≥ 3.

1. Introduction. It is now well known that the problem involving
prime numbers can be related to the study of the Riemann zeta-
function. In 1860, Riemann in [17] showed that the key to the deeper
investigation of the distribution of the primes lies in the study of the
function which is now called the Riemann zeta-function. Let s = σ+ it
be a complex variable. For σ > 1, the Riemann zeta-function is defined
as

(1) ζ(s) =
∞∑

n=1

1
ns

.

The above series converges absolutely and uniformly on the half plane
σ ≥ σ0 for any σ0 > 1. It can be extended to be a regular function
on the whole complex plane C, except at s = 1, which is the only pole
of the Riemann zeta-function and at which the function has residue 1.
The general definition of the Riemann zeta-function may be referred to
by its functional equation. That is,

(2) π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s).

Here Γ is the factorial function of a complex variable and Γ(n) = (n−1)!
for every positive integer n. The pole of Γ at s = 0 corresponds to that
of ζ(s) at s = 1. The other poles of Γ at s = −n for positive integers
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n cancel with the so-called trivial zeros of the Riemann zeta-function,
which are s = −2n for all positive integers n. For reference, one may
see [7, 9, 12, 16] or [21].

The Riemann hypothesis states that all nontrivial zeros of ζ(s) are on
the line σ = 1/2, which is not proved or disproved. There exist weaker
results concerning the zero-free region for the Riemann zeta-function.
It is not difficult to show that ζ(s) �= 0 for σ > 1; we shall include
it in the next section for completeness. It was proved independently
by Hadamard, see [8] and de la Vallée Poussin, see [23], in 1896 that
ζ(s) �= 0 for σ ≥ 1. In 1899, de la Vallée Poussin established in [24]
that ζ(s) does not have zeros in the region

σ > 1 − A

log t
, t ≥ t0,

where A and t0 are positive constants. For reference, one may see [7].
Rosser in [19] gave this result with A = 1/19 and t0 = 1400 in 1939 for
estimating on primes. In fact, the number A can be sharpened if we
allow a bigger t0. Rosser, and later with Schoenfeld, used A = 1/17.71
for t0 = 1468 and A = 1/17.51 with t0 = e9.99, see [18] and [20]. For
another explicit result, one may also see [5], in which Chen and Wang
gave a zero-free region in the form

σ > 1 − 0.057812
log log x

and |t| ≤ log x,

for x ≥ e20000. In 1922, Littlewood, see [2], proved that ζ(s) �= 0 in the
region

σ > 1 −A
log log t

log t
, t ≥ t0,

where A and t0 are positive constants. This result was based on an
upper bound on exponential sums, see [2] or [27]. An explicit zero-
free region has useful applications in number theory. For reference,
one may see the above-mentioned paper of Rosser, that of Rosser and
Schoenfeld, or [5].

The widest known zero-free region for the Riemann zeta-function is
in the form of

(3) σ > 1 − A

log2/3 t(log log t)1/3
, and t ≥ t0,
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where A and t0 are positive constants. For reference, one may see [25,
26, 13] or the above-mentioned book [12]. For more information on
this topic, one may see [14]. The establishment of this kind of zero-
free region is based on an upper bound for the Riemann zeta-function
derived from the Vinogradov-Korobov method. In [6], the following
result is given.

Lemma 1. For σ ≥ (1/2) and t ≥ 2, we have

(4) |ζ(s)| ≤ AtB(σ) log2/3 t,

where A is 175 and

(a) B(σ) = 46(1 − σ)3/2 if σ ≤ 1;

(b) B(σ) = 0 if σ > 1.

The best known upper bound for the Riemann zeta-function in the
region considered in Lemma 1 is due to Heath-Brown [11], who claims
(4) with constant in B(σ) being 18.8, but with the constant A inexplicit.
For our application, we will need a completely explicit estimate as
afforded by Lemma 1.

The purpose of this paper is to give a zero-free region in the form
of (3) explicitly. Like the results in [19, 18, 20] and [5], this explicit
zero-free region can be used to obtain explicit results concerning the
distribution of prime numbers, see [4]. The main result in this paper
is as follows:

Theorem. The Riemann zeta-function does not vanish in the region

σ ≥ 1 − 0.00101 log−2/3 |t|(log log |t|)−1/3 and |t| ≥ 3.

2. Some estimates on ζ(s) and (ζ ′(s)/ζ(s)). Let us begin with
an elementary result measuring the size of ζ(σ) for real number σ.
We use the decreasing property of u−σ as a function of u. We have
(n + 1)−σ <

∫ n+1

n
u−σ du < n−σ; if we sum all sides of this inequality

over the set of all positive integers n, noting that the resulting series is
convergent for σ > 1, we get ζ(σ) − 1 <

∫ ∞
1

u−σ dσ < ζ(σ). This gives

(5)
1

σ − 1
< ζ(σ) <

σ

σ − 1
, for σ > 1.
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By the property of convergent series, we can differentiate (1) term by
term. We get

(6) ζ ′(s) = −
∞∑

n=1

log n
ns

for σ > 1.

Noting that the function u−σ log u is decreasing for u ≥ 3, we have that
n−σ log n <

∫ n

n−1
u−σ log u du for n ≥ 4. Similar to that in the proof of

(5), we get ζ ′(σ) + 2−σ log 2 + 3−σ log 3 > − ∫ ∞
3

u−σ log u du. It follows
that

−ζ ′(σ) <
1.001

(σ − 1)2
for 1 < σ < 1.05.

In the last step, we have used the fact
∫ ∞
3

u−σ log u du = (1 =
σ log 3− log 3)(σ−1)−231−σ and 3−σ+1(1 +σ log 3− log 3) + (σ−1)2 ×
(2−σ log 2 + 3−σ log 3) ≤ 1.001 for 1 < σ < 1.05. Recalling (5), we
obtain

(7) −ζ ′(σ)
ζ(σ)

<
1.001
σ − 1

for 1 < σ < 1.05.

The following identity is called Euler’s product identity for the
Riemann zeta-function. For σ > 1, we have

(8) ζ(s) =
∏
p

(
1 − 1

ps

)−1

,

where p runs through the set of all prime numbers. This identity is an
analytic equivalence for the proposition that every natural number can
be factorized into prime powers in one and only one way. Using this
identity, we can show that ζ(s) �= 0 for σ > 1. We have

1
|ζ(s)| =

∣∣∣∣
∏
p

(
1 − 1

ps

)∣∣∣∣ ≤
∏
p

(
1 +

1
pσ

)
≤

∞∑
n=1

1
nσ

.

The last expression is ζ(σ). Recalling (5), we get

(9) |ζ(s)| > σ − 1
σ

.
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This gives

(10) ζ(s) �= 0 for σ > 1.

Both (9) and (10) shall be needed later in this paper.

We may take logarithms on both sides of (8), in view of convergences
for the resulting series. It gives us

(11) log ζ(s) = −
∑

p

log
(

1 − 1
ps

)
for σ > 1.

Hadamard and de la Vallée Poussin used this equation in proving
ζ(s) �= 0 for σ ≥ 1, see [7]. A similar technique involved in their
proofs shall be used in Section 4. We shall not need ζ(s) �= 0 for σ = 1
for the following argument.

Differentiating both sides of (11), we get

(12) −ζ ′(s)
ζ(s)

=
∑

p

log p
ps − 1

for σ > 1.

The justification of the differentiation term by term is done by noting
that, for any arbitrary δ > 0, |(ps−1)−1 log p| < p−(σ−δ) for sufficiently
large p,

∑
p p

−(σ−δ) <
∑

n n
−(σ−δ), and the last series is uniformly

convergent for σ ≥ σ0 for any σ0 > 1. We then rewrite the right side
of (11), getting

∑
p

log p
ps − 1

=
∑

p

log p
∞∑

m=1

1
pms

=
∑
p,m

log p
pms

,

where the sum is taken over all prime numbers p and all positive integers
m. The last double series is absolutely convergent for σ > 1. We define
Λ(n) = log p whenever n is a power of a prime number p or Λ(n) = 0.
The equation (12) becomes

(13) −ζ ′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

for σ > 1.

The function Λ is the von Mangoldt Lambda-function.
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It is this equation (13) which is used in the estimation on the zeros
of the Riemann zeta-function. We shall need another tool connecting
the upper bound as in (4) for ζ(s) to that for −(ζ ′(s)/ζ(s)) as well as
to the zeros of ζ(s); see next section.

3. An analytic tool. Traditionally, for the purpose of connecting
the upper bound for ζ(s) to that for −ζ ′(s)/ζ(s), we have Landau’s
lemma, see [2], though a different approach can be found in [15]. The
following lemma and its proof can be found in [10].

Lemma 2. Suppose that f(s) is regular in the disc |s − s0| ≤ r
and nonvanishing both at s = s0 and on the circle |s − s0| = r. Let
ρk = s0 + rke

iθk be the zeros of f(s) in the disc and nk the multiplicity
of ρk. Then

−�
(
f ′(s0)
f(s0)

)
= − 1

πr

∫ (3π/2)

−(π/2)

cos(θ) log |f(s0 + reiθ)|

+
∑
ρk

nk

(
1
rk

− rk

r2

)
cos(θk).

By the assumption of Lemma 2, we have (1/rk) − (rk/r
2) > 0. We

shall apply Lemma 2 only in the case of (π/2) < θk < 3(π/2), so that
cos(θk) < 0. We see that every term in the last sum is negative. We
have the following corollaries.

Corollary 1. Assume the same as in Lemma 2 and (π/2) < θk <
(3π/2). Then

(14) −�
(
f ′(s0)
f(s0)

)
≤ − 1

πr

∫ 2π

0

cos(θ) log |f(s0) + reiθ)| dθ.

If ρ0 = s0 +r0e
iθ0 is one of the zeros of f(s) with multiplicity n0 such

that �(s0), then θ0 = π and cos(θ0) = −1. In this case we have

n0

(
1
r0

− r0
r2

)
≤ − 1

r0
+

r0
r2

= −� 1
s0 − ρ0

+
r0
r2

≤ −� 1
s0 − ρ0

+
1
r
.
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Thus we get the following corollary.

Corollary 2. Assume the same as in Corollary 1. If ρ0 = s0 +r0e
iθ0

is one of the zeros of f(s) such that �(ρ0) = �(s0), then

(15) −�
(
f ′(s0)
f(s0)

)
≤ − 1

πr

∫ 2π

0

cos θ log |f(s0+reiθ)| dθ−� 1
s0−ρ0

+
1
r
.

To apply Lemma 2, we shall assume that t0 ≥ ee3
. For brevity,

we denote L1 = log(4t0 + 1/3) and L2 = log(L1). Then we let
σ0 = 1 + κL

−2/3
1 L

−1/3
1 for some 0 < κ < 1. We have s0 = σ0 + it0.

We note by recalling (10) that the Riemann zeta-function does not
vanish at any point s0. Then we let r = λL

−2/3
1 L

−1/3
2 + ε for some

0 < λ < 1 and ε a positive number tending to zero. We note here that
r < (L2/L1)2/3 < (3/e3)2/3 < 1/3.

Suppose s is on the circle |s−s0| ≤ r. Then σ = �(s) = σ0 +r cos(θ),
where θ = arg(s− s0). By the condition that σ0 > 1, we have

σ − 1 > r cos(θ).

We shall now calculate the integral involved for −(π/2) < θ < (π/2)
and (π/2) < θ < (3π/2) separately.

If −(π/2) < θ < (π/2), then cos(θ) > 0. Recalling (9), we have
log |ζ(s)| > log(σ − 1) − log(1.05). Using (16), we get log |ζ(s)| >
log r + log(cos θ) − log(1.05) and

− log |ζ(s)| < log
1
r

+ log
1

cos θ
+ 0.05.

It follows that

(17) − 1
πr

∫ π/2

−π/2

cos θ log |ζ(s)| dθ ≤ 2
πr

log
1
r

+
2(1−log 2)

πr
+

1
10πr

.

Here we have used the fact that − ∫ π/2

−π/2
cos θ log(cos θ) dθ = 2(1−log 2).



142 Y. CHENG

If (π/2) ≤ θ ≤ (3π/2), then cos θ ≤ 0. Similarly, but recalling (4)
and using (16), we get

log |ζ(s)| ≤ B(σ) log t +
2
3

log log t + logA,

and B(σ) ≤ Br3/2(− cos θ)3/2. Note that

∫ 3π/2

π/2

(− cos θ)5/2 dθ = 1.4377... < 1.438.

It follows that

(18) − 1
πr

∫ 3π/2

π/2

cos θ log |ζ(s)| dθ

≤ 1.438B
π

r1/2 log t +
4

3πr
log log t +

2 logA
πr

.

Combining (17) and (18), we obtain

(19) − 1
πr

∫ 2π

0

cos θ log |ζ(s)| dθ ≤ 2
πr

log
1
r

+
1.438B

π
r1/2 log t

+
(

4
3

log log t+2 logA+0.714
)

1
πr

.

Recalling the definition of r, we deduce

(19a)
2
πr

log
1
r
<

4 − 2 log λ
3πλ

L
2/3
1 L

1/3
2 ,

from the fact that log(1/λ) + (2/3) log log(4t0 + (1/3)) <
((4 − 2 log λ)/3) log log(4t0 + (1/3));

(19b)
1.438B

π
r1/2 log t ≤ 1.438Bλ1/2

π
L

2/3
1 L

1/3
2 ;

and

(19c)
4 log log t/3 + 2 logA + 0.714

πr

≤
(

4
3πλ

+
32/3(2 logA + 0.714)

πe2λ

)
L

2/3
1 L

1/3
2 .
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It follows that

(20) − 1
πr

∫ 2π

0

cos θ log |ζ(s)| dθ ≤ CL
2/3
1 L

1/3
2 ,

where

C = C(A,B, λ)

=
4 − 2 logλ

3πλ
+

1.438Bλ1/2

π
d +

4
3πλ

+
32/3(2 logA + 0.714)

πe2λ
.

Applying Corollaries 1 and 2 of Lemma 2, we get

(21) −�
(
ζ ′(s0)
ζ(s0)

)
≤ CL

2/3
1 L

1/3
2 ;

and if ρ0 = µ0 + it0 is a zero of ζ(s), then

(22) −�
(
ζ ′(s0)
ζ(s0)

)
≤ (C + λ−1)L2/3

1 L
1/3
2 − 1

σ0 − µ0
.

4. The final step. We should have recourse to a trigonometric
inequality. The inequality serves for the same purpose as 3 + 4 cos θ +
cos(2θ) > 0, see [7]. We may choose different ones from those in [3] and
[10] to suboptimize the results. Let us use the following arbitrary form.
Let a, b, c and d be positive numbers. Let α, β, γ, δ, η be determined
by

α =
5
8
b2d2 +

1
2
a2d2 + 2abcd +

1
2
b2c2 + a2c2,(23a)

β =
3
2
abd2 +

3
2
b2cd + 2a2cd + 2abc2,(23b)

γ =
1
2
a2 + 2abcd +

1
2
b2c2 +

1
2
b2d2,(23c)

δ =
1
2
abd2 +

1
2
b2cd,(23d)

η =
1
8
b2d2.(23e)
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Then

(24) α + β cos(θ) + γ cos(2θ) + δ cos(3θ) + η cos(4θ)
= (a + b cos θ)2(c + d cos θ)2 ≥ 0.

Recalling (13), we have

−�
(
ζ ′(s)
ζ(s)

)
=

∞∑
n=1

Λ(n)
nσ

cos(t).

It follows from (24) that

(25) − α�
(
ζ ′(σ)
ζ(σ)

)
− β�

(
ζ ′(σ + it)
ζ(σ + it)

)
− γ�

(
ζ ′(σ + 2it)
ζ(σ + 2it)

)

− δ�
(
ζ ′(σ + 3it)
ζ(σ + 3it)

)
− η�

(
ζ ′(σ + 4it)
ζ(σ + 4it)

)
≥ 0.

Now, suppose that ρ = µ + iν is a zero of ζ(s) with µ > (1/2)
and ν ≥ ee3

. We shall take t0 = kν where k = 1, 2, 3 or 4. For
each k = 1, 2, 3 or 4, using the definition of σ0 in Section 3, we let
s0 = σ0 + it0 be the center for the circle on which we are applying
corollaries of Lemma 2. Recall that ζ(s0) �= 0. Also, by choosing the
value of ε in the definition of r while λ is fixed, we may assume that
there is no zero of ζ(s) on the circle |s − s0| = r, since there exist at
most finitely many zeros in any finite region for any regular function.
Recalling (10) and σ0 > 1, we know that all zeros must have angles in
the range (π/2) < θ < (3π/2) with respect to the center s0. Using (7)
to −�(ζ ′(σ0)/ζ(σ0)), (21) to −�(ζ ′(σ0 +kit0)/ζ(σ0 +kit0)), for k = 2,
3 and 4, (22) to −�(ζ ′(σ0 + it0)/ζ(σ0 + it0)) and (25), we obtain

1.001α
σ0 − 1

− β

σ0 − µ
+ DL

2/3
1 L

1/3
2 ≥ 0,

or
β

σ0 − µ
≤ DL

2/3
1 L

1/3
2 +

1.001α
σ0 − 1

,

where
D = (β + γ + δ + η)C + βλ−1,
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with C being defined in (20). From this, we get

1 − µ ≥ β

DL
2/3
1 L

1/3
2 + 1.001α(σ0 − 1)−1

− (σ0 − 1).

Substituting σ0 by its definition, we acquire

(26) 1 − µ ≥ ϑL
−2/3
1 L

−1/3
2

where
ϑ = [D + 1.001ακ−1]−1β − κ.

We want to optimize ϑ as a function of κ with fixed a, β and D. We
may instead consider the function f(x) = (β/(D + αx)) − (1/x) with
x = κ−1. The critical point is x = D(

√
α(

√
β −√

α))−1. This leads to

(27) ϑ =
(
√
β −√

α)(β − 0.001α−√
αβ)

D(
√
β + 0.001

√
α)

.

Conclude that we have proved that the Riemann zeta-function does not
have zeros in the region

σ > 1 − ϑ log−2/3

(
4t +

1
3

)(
log log

(
4t +

1
3

))−1/3

, t ≥ ee3
,

with

ϑ =
(
√
β −√

α)(β − 0.001α−√
αβ)

(
√
β + 0.001

√
α)(β + γ + δ + η)Cβλ−1

where

C =
4 − 2 log λ

3πλ
+

1.438Bλ1/2

π
+

4
3πλ

+
32/3(2 logA + 0.714)

πe2λ
,

with any 0 < λ < 1, A and B from the upper bound in the form of (4),
a, b, c and d are any positive numbers, and α, β, γ, δ and η are subject
to (23a) through (23e).

In the case that A = 175 and B = 46, we choose λ = 0.43. It gives
C = 18.5. We use a = 5, b = 3, c = 1 and d = 1 in (24), getting
ϑ = (1/951). In [22], it is proved that ζ(s) �= 0 for σ > 1/2 and
0 ≤ t ≤ 545, 439, 823.215. The last number is greater than ee3

. We let
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t > 3/5. It follows that t > (e− 1/3)/4 or 4t+ 1/3 > 0. Conclude that
we have proved that ζ(s) does not have zeros in the region

(28) σ > 1− 1

951 log2/3(4t + 1/3)(log log(4t + 1/3))1/3
and t > 3/5.

Recalling Theorem 26 in [20] that the Riemann zeta-function does
not have zeros in the region

σ > 1 − 0.0571 log−1 t and t ≥ e9.99,

we may only use (28) for t ≥ ee14.7988
. Note that

log2/3(4t + 1/3)(log log(4t + 1/3))1/3

log2/3 t(log log t)1/3
<

952
951

for t ≥ ee14.7988
. We obtain

(29) σ > 1 − 1

952 log2/3 t(log log t)1/3
and t ≥ 3.

To finish the proof of the main result, we resort to the “symmetric”
property of the Riemann zeta-function. That is,

ζ(s̄) = ζ(s).

For σ > 1, this can be realized easily by using the definition of (1)
and is in fact valid everywhere. The latter can be proved by analytical
continuation and the principle of reflection, see [1]. This tells us that
the Riemann zeta-function does not have zero in the region similar to
(29) but with t being replaced by |t|. We finish the proof of the main
result.
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