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BINARY FORMS, EQUIANGULAR
POLYGONS AND HARMONIC MEASURE

MICHAEL A. BEAN AND RICHARD S. LAUGESEN

ABSTRACT. Consider binary forms F having complex co-
efficients and discriminant DF �= 0. In a sequence of previous
papers, the first author studied the area AF of the planar
region |F (x, y)| ≤ 1 defined by forms F of this type in con-
nection with the enumeration of integer lattice points. In
particular, the first author showed that the GL2(R)-invariant

quantity |DF |1/n(n−1)AF is uniformly bounded when the de-
gree of F is at least three, and conjectured that this quantity
is maximized over the forms of degree n by forms with a com-
plete factorization over R and n equally spaced asymptotes.
The first author obtained his results using a standard integral
representation of AF over the real line.

In this paper we establish GL2(C) invariance of

|DF |1/n(n−1)AF with respect to Lagrangian planes in C2 (a
fact not previously noticed by many earlier authors), and we
subsequently give integral representations of AF over every
circle in the complex plane. In particular, we give a repre-
sentation over the unit circle and we use this representation
to give an explicit formula in terms of Beta functions for the
conjectured maximum value of |DF |1/n(n−1)AF . It turns out
that integration over the unit circle is directly linked to binary
forms in the complex indeterminates z̄ and z.

In addition, we reformulate the maximization problem for
binary forms in purely geometric and potential theoretic terms
as a maximization problem for harmonic measures on the
edges of equiangular polygons, with the inner harmonic ra-
dius of the polygon being normalized. In this context the
conjectured extremal polygon is the regular n-gon.

We conclude the paper with tables that summarize the
many equivalent formulas for AF , DF and related quantities.

1. Introduction. A binary form is a polynomial in two variables of
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homogeneous degree, i.e., a bivariate polynomial of the type F (X,Y ) =
a0X

n + a1X
n−1Y + · · · + anY

n where n is a positive integer and
where the coefficients a0, a1, . . . , an belong to some ring K, usually
Z, R or C, and are not all zero. The form F is said to have a
complete factorization over K if F (X,Y ) =

∏n
j=1(αjX−βjY ) for some

αj , βj ∈ K. (If K = C, then every form has a complete factorization
over K; however, if K = R, this is not generally the case.) In this
paper we are primarily interested in forms with real coefficients which
have a complete factorization over R.

For any form F ∈ C[X,Y ],1 let AF denote the area of the region
|F (x, y)| ≤ 1 in the real affine plane, and let DF denote the dis-
criminant of F . Note that AF = (1/2)

∫ π

−π
|F (cos θ, sin θ)|−2/n dθ =∫ ∞

−∞ |F (1, v)|−2/n dv and that DF =
∏

j<k(αjβk −αkβj)2 (facts which
follow from the polar form r ≤ |F (cos θ, sin θ)|−1/n of the inequality
|F (x, y)| ≤ 1 and the definition of the discriminant; see [6]). To avoid
unnecessary complications, we will assume throughout the paper that
all forms are of degree at least two, i.e., n ≥ 2. Put

Q(F ) = |DF |1/n(n−1)AF

(whenever the multiplication makes sense, i.e., whenever either DF �= 0
or AF <∞), and define the sequence {Mn} by

Mn = max
F

Q(F ),

where the maximum is taken over all forms F ∈ C[X,Y ] of degree n
with DF �= 0 or AF < ∞. Note that M2 = ∞ since AF = ∞ for the
form F (X,Y ) = XY .

In [5] and [6] the first author proved the following results about the
sequence {Mn}:
(R1) {Mn} is (strictly) decreasing for n ≥ 3.
(R2) For each n ≥ 3, Mn is attained by a form of degree n which
has real coefficients and a complete factorization over R; in fact, if the
polynomial F (1, v) has even one nonreal root, then Q(F ) < Mn.

(R3) M3 = 3B[(1/3), (1/3)] ≈ 15.90 and M4 = 27/6B[(1/4), (1/2)] ≈
11.77, where B(·, ·) denotes the Beta function.
These results revealed the surprising fact that Q(F ) is uniformly
bounded (over the forms F with nonzero discriminant and degree at
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FIGURE 1. |y4 + 5xy3 + 5x2y2 − 5x3y − 6x4| = 1.

least three) by a relatively small number, 3B[(1/3), (1/3)] ≈ 15.90,
even though the regions |F (x, y)| ≤ 1 are, in general, unbounded and
can contain as many as n asymptotes. (See Figure 1.) Note that the
conditions on the discriminant and the degree cannot be relaxed since,
for example, the forms Xn and X2 − Y 2 give rise to infinite area. The
fact that Q(F ) is uniformly bounded has important consequences for
certain lattice point problems in the theory of numbers; for details, see
[6, 7] and [12].

The first author’s results raised several questions about the sequence
{Mn}:
(Q1) Is there a formula, e.g., in terms of Beta functions, for the values
of Mn?

(Q2) Are there canonical classes of forms Fn for which Mn = Q(Fn)?

(Q3) What is the limiting value of the sequence {Mn}?
Since each Mn is actually attained by a form with a complete factor-
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ization over R, it is clear that these questions need only be considered
over the restricted class of forms with a complete factorization over R.
Even so, these questions remain nontrivial since Q(F ), when considered
over this restricted class, is a function of n−3 independent cross ratios
[5, Theorem 3].

Note that Q(F ) is invariant under the action of GL2(R) in the
following sense:

Q(FT ) = Q(F ) for all T =
(
a b
c d

)
∈ GL2(R),

where FT (X,Y ) = F (aX + bY, cX + dY ), see [6]. Hence, the value
Mn is actually attained by a class of GL2(R) equivalent forms. This
observation gives us insight into why it is possible to maximize Q(F )
but not AF .2 Indeed, the factor |DF |1/n(n−1) “normalizes” the area AF

in such a way that when one of the quantities |DF | or AF is large, the
other must be small, because the inequality Q(F ) ≤ 3B[(1/3), (1/3)]
must be maintained.

The first author was unable to answer questions (Q1), (Q2) and (Q3)
for n ≥ 5. However, he was able to formulate the following conjecture
(and prove it for n = 3, 4):

Conjecture 1 [5]. The maximum value Mn of Q(F ) over the forms
F of degree n with discriminant DF �= 0 is attained precisely when F is
a form which, up to multiplication by a complex number, is equivalent
under GL2(R) to the form

F ∗
n(X,Y ) =

n∏
k=1

(
X sin

(
kπ

n

)
− Y cos

(
kπ

n

))
;

that is,
Mn = Q(F ∗

n).

Moreover, the limit of the sequence {Mn} is 2π.

The first author based this conjecture on a correspondence between
binary forms and equiangular polygons, which he derived from the
Schwarz-Christoffel mapping formula:
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Schwarz-Christoffel correspondence [5, Theorem 2]. There is
a correspondence between the collection of forms F of degree n ≥ 3
having nonzero discriminant and a complete factorization over R and
the collection of n-sided equiangular polygons, such that the polygon
P(F ) corresponding to F has perimeter equal to AF . Under this corre-
spondence, GL2(R)-equivalent forms are mapped to similar polygons,
SL2(R)-equivalent forms are mapped to congruent polygons, and forms
equivalent to F ∗

n are mapped to n-sided regular polygons. Moreover, the
correspondence is bijective when considered as a map between equiva-
lence classes of forms and polygons.

More precisely, the first author conjectured that Mn = Q(F ∗
n) on

the basis of the above correspondence, and that limn→∞ Q(F ∗
n) = 2π

on the basis of numerical computations. (Note that the statement
limn→∞ Q(F ∗

n) = 2π is consistent with the above correspondence since
every circle is the limit of a sequence of regular polygons.) The first
author actually proved his conjecture in the cases n = 3 and n = 4
using GL2(R)-invariance and properties of hypergeometric functions;
however, he was unable to adapt his methods to the case n ≥ 5. Note
that the forms F ∗

n are natural candidates to maximize Q(F ) since their
corresponding graphs have the most symmetries possible; indeed, the
graph |F ∗

n(x, y)| = 1 is invariant under every rotation which is an
integer multiple of π/n radians and is symmetric about each of the
asymptotes x sin(kπ/n) − y cos(kπ/n) = 0 for k = 1, 2, . . . , n. (See
Figure 2 for the graph of F ∗

5 .) This observation, together with the
Schwarz-Christoffel correspondence and numerical evidence, leads one
to believe that Conjecture 1 is likely true.

Now, in the work of the first author [5, 6, 7, 8, 9, 10], the quantity
Q(F ) was analyzed from the perspective of the real line, i.e., using the
representation

Q(F ) =
∏
j �=k

|sj − sk|1/n(n−1) ·
∫ ∞

−∞

n∏
j=1

|v − sj |−2/n dv

where s1 < s2 < · · · < sn are the roots of F (1, v) (assumed to lie on
the real axis). In this paper we will analyze Q(F ) from the perspective
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FIGURE 2. |F ∗
5 (x, y) = 1.

of the unit circle, i.e., using the representation

Q(F ) =
∏
j �=k

|eiθj − eiθk |1/n(n−1) ·
∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ

where θj = 2arctan sj . The latter representation will follow from a rep-
resentation of Q(F ) over a general circle on the Riemann sphere which
we will derive by considering binary forms in C2 and transformations
in GL2(C); in fact, we will see that there is a direct link between inte-
gration over the unit circle and binary forms in z and z̄.

This new approach will allow us to:

(a) give an explicit formula for the values Q(F ∗
n) in terms of Beta

functions, and in so doing, reduce the proof of Conjecture 1 to verifying
thatMn = Q(F ∗

n) (see Theorem 1 and Theorem 2.1 in Section 2 below);

(b) reformulate the maximization problem for binary forms, via the
Schwarz-Christoffel correspondence, as a maximization problem for
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equiangular polygons which is expressed solely in terms of quantities
intrinsic to the mapped polygon, e.g., harmonic measure and harmonic
radius, and which does not refer to either the binary form F or the
conformal map connecting F and the polygon P(F ), see Theorem 3
and Theorem 4 in Section 2 below.

By considering appropriate generalizations of AF and Q(F ), we will
also establish the GL2(C) invariance of Q(F ) with respect to La-
grangian planes in C2, an important fact which has apparently not
been noticed before, e.g., [12].

Unfortunately, the verification that Mn = Q(F ∗
n) for n ≥ 5 has been

elusive. Nevertheless, we believe that the new approach to proving
maximality which we formulate in this paper holds promise. We suspect
that the solution to this maximization problem may involve new ideas
from (classical) mathematical physics, potential theory or probability.
It is our hope that researchers in these and other areas will recognize
something familiar in the reformulated maximization problem, stated at
the end of Section 2 below, and will be able to provide the missing link
needed to solve it. (Mathematical physicists might wish to regard the
points eiθ in formula (∗) on page 17 as point masses, potential theorists
will already be familiar with the harmonic measure in formula (∗∗) on
page 24, and probabilists might find a Brownian motion approach to
the harmonic measure fruitful.)

2. Statement of results.

2.1. Formulas for calculating Q(F ∗
n). Let F ∗

n be the form
F ∗
n(X,Y ) =

∏n
k=1(X sin(kπ/n)− Y cos(kπ/n)), the candidate to max-

imize Q(F ), and let B(x, y) denote the Beta function of x and y. Note
that the Beta function may be expressed either in terms of the Gamma
function or as an integral:

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

=
∫ 1

0

tx−1(1− t)y−1 dt

for x > 0 and y > 0, see [1, 6.2].

We will derive the following representations for AF∗
n
, DF∗

n
and Q(F ∗

n)
in Section 4.
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Theorem 1. For each n ≥ 2, we have

(1) AF∗
n
= 41−1/nB

(
1
2
− 1

n
,
1
2

)

and

(2) D
1/n(n−1)
F∗

n
=
1
2
n1/(n−1).

Consequently,

(3) Q(F ∗
n) = 2

1−2/nn1/(n−1)B

(
1
2
− 1

n
,
1
2

)
.

Notice that Q(F ∗
3 ) = 2

1/331/2B(1/6, 1/2) = 3B(1/3, 1/3), the latter
equality following from the identities Γ(1/2) =

√
π, Γ(z)Γ(1 − z) =

π csc(πz) with z = 1/3 and Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ[z + (1/2)],
with z = 1/6 [1, formulas 6.1.8, 6.1.17, 6.1.18]; and that Q(F ∗

4 ) =
27/6B(1/4, 1/2). Hence the values of Q(F ∗

3 ) and Q(F ∗
4 ) provided by

this theorem agree with the values ofM3 andM4 previously determined
in [5] and [6].

A further analysis in Section 4 of the above formulas forAF∗
n
,DF∗

n
and

Q(F ∗
n) will confirm that the general character of the sequence {Q(F ∗

n)}
is in accord with the known and conjectured properties of the sequence
{Mn}:

Corollary 1.1. The sequences {AF∗
n
} and {D1/n(n−1)

F∗
n

} are both
strictly decreasing for n ≥ 2. Consequently, the sequence {Q(F ∗

n)} is
also strictly decreasing.

Corollary 1.2. AF∗
n
→ 4π and D

1/n(n−1)
F∗

n
→ 1/2 as n→∞. Hence

Q(F ∗
n)→ 2π as n→∞.

Note that Corollary 1.2 provides a purely analytic basis for the con-
jecture that limn→∞ Mn = 2π (as opposed to the numerical basis pre-
sented in [5]). Taken together, the two corollaries provide a nontrivial
lower bound for the values Mn:
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Corollary 1.3. For each n ≥ 2, we have

Mn ≥ Q(F ∗
n) > 2π.

Consequently, 2π < Mn ≤ 3B(1/3, 1/3) < 15.90 for all n ≥ 3.

2.2. Binary forms in C2. We will derive the formulas for AF∗
n
,

DF∗
n
and Q(F ∗

n) stated in Theorem 1 by using a representation for AF

of the type (1/2)
∫ π

−π
|F ((1 + eiθ)/2, i(1 − eiθ)/2)|−2/n dθ (integration

over the unit circle) rather than the representation
∫ ∞
−∞ |F (1, v)|−2/n dv

(integration over the real line) employed in several papers. We will see
in Section 3 that both these representations are actually special cases
of the following general integral formula:

Theorem 2.1. Let F be a binary form with complex coefficients,
and let T be a transformation in GL2(C). Let C1 and C2 be the circles,
on the Riemann sphere, defined by

C1 =
{
σ

τ
:
(
σ
τ

)
∈ S \

(
0
0

) }
,

C2 =
{
τ

σ
:
(
σ
τ

)
∈ S \

(
0
0

) }

where S =
{
T−1

(
x

y

)
: x, y ∈ R

}
. Then AF has the representations

(4) AF = |detT |
∮
C1

|FT (σ, 1)|−2/n|dσ|

and

(5) AF = |detT |
∮
C2

|FT (1, τ )|−2/n|dτ |,

where the integrals are calculated in the complex plane. Moreover, for
any pair of circles C1, C2 which are inverses of each other in the sense
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that z ∈ C1 ⇔ z−1 ∈ C2, there is a transformation T ∈ GL2(C) such
that formulas (4) and (5) hold.

In particular, if T =
(

1 0

0 1

)
, then the formulas become

(6) AF =
∫ ∞

−∞
|F (u, 1)|−2/n du =

∫ ∞

−∞
|F (1, v)|−2/n dv,

while if T =
(

(1/2) (1/2)

(i/2) −(i/2)

)
, then the formulas become

(7)
AF =

1
2

∫ π

−π

∣∣∣∣F
(
eiφ + 1
2

,
i(eiφ − 1)

2

)∣∣∣∣
−2/n

dφ

=
1
2

∫ π

−π

∣∣∣∣F
(
1 + eiθ

2
,
i(1− eiθ)

2

)∣∣∣∣
−2/n

dθ.

Note that equations (6) and (7) are representations of AF over the
real line and the unit circle, respectively. Equation (7) is actually a
disguised form of the usual polar integral formula for calculating AF .
Indeed, using the homogeneity of F and the relation eiξ = cos ξ+i sin ξ,
we can certainly write

F

(
eiφ + 1
2

,
i(eiφ − 1)

2

)
= (eiφ/2)nF (cos(φ/2),− sin(φ/2))

and

F

(
1 + eiθ

2
,
i(1− eiθ)

2

)
= (eiθ/2)nF (cos(θ/2), sin(θ/2));

hence equation (7) can be written as

AF =
1
2

∫ π

−π

|F (cos(φ/2),− sin(φ/2))|−2/n dφ

=
1
2

∫ π

−π

|F (cos(θ/2), sin(θ/2))|−2/n dθ

which is the polar formula for the area of the region |F (x, y)| ≤ 1.
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When F (X,Y ) has a complete factorization over R, equations (6)
and (7) can be written in the following more explicit form:

Corollary 2.1.1. Let F (X,Y ) =
∏n

j=1(αjX − βjY ) be a binary
form with real coefficients and a complete factorization over R. Then
AF has the representations

AF = |a|−2/n

∫ ∞

−∞

n∏
j=1

|v − sj |−2/n dv(8)

and

AF =
1
2
|κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ(9)

where a = (−1)nβ1 · · ·βn, κ =
∏n

j=1(αj + iβj)/2, sj = αj/βj and
θj = 2arctan sj.

Note that if βk = 0 and sk = ±∞, then θk = π/2 and, by convention,
we replace βk by αk in the definition of a and we omit the kth factor
of the product in (8).

We will find equations (8) and (9) to be the most useful when
computing AF for forms F with a complete factorization over R.

Theorem 2.1 will follow from a consideration of binary forms over
two-dimensional real vector spaces S in C2. Every such vector space
is of the form S =

{(
A B

C D

) (
x

y

)
: x, y ∈ R

}
where

(
A B

C D

)
is a fixed

matrix in GL2(C). Recall from symplectic geometry [13, pp. 28 29]
that S is said to be Lagrangian if S and iS are orthogonal with respect
to the dot product on R4, where we use the usual identification of C2

with R4 via

(
x1 + iy1

x2 + iy2

)
�−→




x1

x2

y1

y2


 .
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Equivalently, S is Lagrangian precisely when

0 =
(
iA
iC

)
·
(
B
D

)

= �
〈 (

iA
iC

)
,

(
B
D

) 〉

= �(iAB + iCD)
= −�(AB + CD),

so that S is Lagrangian if and only if

AB + CD ∈ R.

Obviously, R2 is Lagrangian (take A = D = 1, B = C = 0), but many
other spaces S are Lagrangian too.
For any subspace S, not necessarily Lagrangian, and any binary
form F , let AS

F be the two-dimensional area of the region
{ ( σ

τ

) ∈
S : |F (σ, τ )| ≤ 1} in S. Extend the definition of Q(F ) by putting
Q(F,S) = |DF |1/n(n−1)AS

F , provided that either DF �= 0 or AS
F < ∞.

Note that it is not necessary to extend the definition of the discriminant
DF since DF only depends on the coefficients of F and has already been
defined for all forms with complex coefficients.

With these new definitions, and observing that T−1(S) = {
T−1

( σ

τ

)
:( σ

τ

) ∈ S}
is a two-dimensional real vector subspace of C2, we will show

in Section 3 that DF , AS
F and Q(F,S) have the following GL2(C)

invariance properties:

Theorem 2.2. Let F be a binary form with complex coefficients, let
T be a transformation in GL2(C), and let S be a two-dimensional real
vector space in C2. Then

DF = (detT )−n(n−1)DFT
.

Moreover, if S and T−1(S) are both Lagrangian planes in C2, then

AS
F = |detT |AT−1(S)

FT
,
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and if also DF �= 0 or AS
F <∞, then

Q(F,S) = Q(FT , T
−1(S)).

If T ∈ GL2(R) and S = R2, then T−1(S) = R2 is again Lagrangian,
and so Theorem 2.2 contains as a special case the GL2(R) invariance
of DF , AF , Q(F ).

We remark that if T−1(S) is not Lagrangian, then AS
F need not

equal |detT |AT−1(S)
FT

, as can be seen from the proof of Theorem 2.2

by considering T−1 =
(

1 0

1 i

)
with S = R2, for example.

The preceding two theorems allow us to express the area AS
F in

terms of formulas that directly parallel the known representation∫ ∞
−∞ |F (1, v)|−2/n dv for AF :

Corollary 2.2.1. Let S be a two-dimensional real vector space inside
C2 that is Lagrangian. Then, for every binary form F ,

(10) AS
F =

∮
C1

|F (σ, 1)|−2/n|dσ| =
∮
C2

|F (1, τ )|−2/n|dτ |

where

C1 =
{
σ

τ
:
(
σ
τ

)
∈ S \

(
0
0

) }

and

C2 =
{
τ

σ
:
(
σ
τ

)
∈ S \

(
0
0

) }
.

Now it is very important to be aware of the space S on which
the area AS

F is being calculated. Consider, for example, the form
F (X,Y ) = XY (X + Y ) on the two spaces R2 and

S =
{(

z̄
z

)
: z ∈ C

}
=

{(
1 −i
1 i

) (
x
y

)
∈ S : x, y ∈ R

}
.
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Obviously, R2 is Lagrangian and so is S since AB + CD = (1)(−i) +
(1)(̄i) = 0 ∈ R. From [6], or equation (32) in Section 3 below, it is
clear that

AR2

F = AF = 3B(1/3, 1/3) = 21/331/2B(1/6, 1/2).
On the other hand, from equation (10) above, we have

AS
F =

∫
|τ |=1

|τ (1 + τ )|−2/3|dτ |

=
∫ π

−π

|1 + eiζ |−2/3 dζ

= 21/3
∫ π

0

(cos(ζ/2))−2/3 dζ

= 21/3
∫ 1

0

t−5/6(1− t)−1/2 dt using t = cos2(ζ/2)

= 21/3B
(
1
6
,
1
2

)

< AR2

F .

Consequently, when referring to AS
F and Q(F,S), we must always pay

attention to the space S on which the form F is to be considered.

Several authors, e.g., [12, p. 148, eq. (1.19)], have correctly remarked
that Q(F ) is not GL2(C) invariant in the traditional sense. However,
as Theorem 2.2 states, Q(F,S) actually is GL2(C) invariant when a
new perspective is adopted.

Now, when studying forms over S = R2, the first author found two
subclasses of binary forms with complex coefficients to be particularly
relevant: (i) forms F with real coefficients; and (ii) forms F with a
complete factorization overR, i.e., forms F which factor as a product of
linear forms with real coefficients. For a general space S, the analogous
subclasses are: (i) forms F which are real valued on S and (ii) forms
F which factor completely as a product of linear forms that are real
valued on S. For convenience in the subsequent exposition, we will use
the following notation:

(11) FS =
{
binary forms F (X,Y ) ∈ C[X,Y ] :

F (σ, τ ) ∈ R whenever
(
σ
τ

)
∈ S

}
,
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(12)

F∗
S =

{ n∏
j=1

Lj(X,Y ) : the Lj are linear forms in FS and n ≥ 1}.

While the consideration of all Lagrangian two-dimensional real vector
spaces S in C2 is necessary for the correct formulation of the GL2(C)
invariance, we will usually only work with the spaces

(13) Sc :=
{ (

z̄
z

)
: z ∈ C

}

and

(14) Sl := R2,

for which the integrals in equation (10) are performed over the unit
circle and the real line, respectively. (The subscripts c and l refer to
the “circle” and the “line.”) We remarked above that Sc and Sl are
Lagrangian. The spaces Sc,Sl and their corresponding sets of forms
FSc

,FSl
are connected in a natural way by the transformation

T =
(
(1/2) (1/2)
(i/2) (−i/2)

)
=

(
1 −i
1 i

)−1

.

Indeed, Sl = TSc and
F (x, y) = FT (z̄, z)

for all z = x + iy ∈ C, and F ∈ FSl
⇔ FT ∈ F ∈ FSc

. With this
perspective, we see that moving from the unit circle to the real line in
the complex plane amounts to putting z = x+ iy and z̄ = x− iy.

Now every linear form which is real valued on Sc is of the type γ̄z̄+γz
for some γ ∈ C. Hence, every form in F∗

Sc
is of the type

∏n
j=1(γ̄jσ+γjτ )

for some γj ∈ C. For such forms, the representations of ASc

F and DF

can be concisely written in the following way:

Corollary 2.2.2. Let F be a form which factors completely as a
product of linear forms that are real valued on Sc. If F is given in the
symmetric form F (σ, τ ) =

∏n
j=1(γ̄jσ + γjτ ), then

(15) ASc

F =
∫ π

−π

n∏
j=1

|γjeiθ/2 + γ̄je
−iθ/2|−2/n dθ
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and

(16) |DF |1/n(n−1) =
∏
j �=k

|γj γ̄k − γ̄jγk|1/n(n−1).

On the other hand, if F is in the asymmetric form F (σ, τ ) =
κ

∏n
j=1(τ − eiθjσ), then

(17) ASc

F = |κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ

and

(18) |DF |1/n(n−1) = |κ|2/n
∏
j �=k

|eiθj − eiθk |1/n(n−1).

Combining these representations of ASc

F and DF for F ∈ F∗
Sc
with

Theorem 2.2 and the fact that Sl = TSc gives us two more representa-
tions of AF (= ASl

F ) and DF when F ∈ F∗
Sl
:

Corollary 2.2.3. Let F be a form which factors completely over R
as

∏n
j=1(αjX − βjY ) where αj , βj ∈ R. Then

(19)

AF =
1
2

∫ π

−π

n∏
j=1

|γjeiθ/2 + γ̄je
−iθ/2|−2/n dθ

=
1
2
|κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ

and

(20)

D
1/n(n−1)
F = 2

∏
j �=k

|γj γ̄k − γ̄jγk|1/n(n−1)

= 2|κ|2/n
∏
j �=k

|eiθj − eiθk |1/n(n−1)

where γj = (αj + iβj)/2, κ =
∏n

j=1 γj and θj = 2arctan(αj/βj).
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Note that the second representation of AF in equation (19) above is
identical to formula (9) in Corollary 2.1.1.

The reader may be puzzled by the apparent incompatibility of for-
mulas (16) and (18) with formula (20). In fact, these formulas are
completely consistent once one takes into account the spaces Sc and
Sl. More precisely, if F ∈ F∗

Sl
and if T =

(
(1/2) (1/2)

(i/2) (−i/2)

)
, then the for-

mulas stated in Corollary 2.2.2 actually apply to the form FT ∈ F∗
Sc
,

not to F ; moreover, the factors of 1/2 and 2 in equations (19) and (20),
respectively, come from the fact that |detT | = (1/2).
Corollary 2.2.3 reveals that the maximization conjecture for Q(F ),
Conjecture 1 in Section 1, can be interpreted as claiming that

(∗) Q(F ) =
∏
j �=k

|eiθj − eiθk |1/n(n−1) ·
∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ

is maximal when the points eiθj are evenly distributed around the unit
circle. This is a nontrivial problem, because while Polya and Schur [18,
p. 385] long ago showed that the discriminant term

∏
j �=k |eiθj − eiθk |

is indeed maximal when the points eiθj are equidistributed, it follows
from work of Arestov [2, Theorem 4] that the area term

∫ π

−π

∏n
j=1 |eiθ−

eiθj |−2/n dθ is actually minimal when the eiθj are equidistributed.
(See Baernstein’s paper [3, p. 144] for a proof by a different method
and a discussion of Arestov’s result.) Conjecture 1 therefore asserts,
roughly speaking, that the maximum of the discriminant overwhelms
the minimum of the area.

2.3. Binary forms and equiangular polygons. The Schwarz-
Christoffel transformations provide us with yet another representation
of AF , namely as the perimeter of an equiangular polygon. An
appealing feature of this representation is that it enables us to translate
the analytic problem of maximizing Q(F ) into the geometric problem of
maximizing the perimeter of an equiangular polygon of a given “size”
and in so doing, it provides us with another plausible approach to
answering questions (Q1), (Q2), (Q3) of the introduction. We will
shortly give a precise reformulation of the maximization problem in
geometric and potential theoretic terms. However, before we can
do this, we will need the following explicit version of the Schwarz-
Christoffel correspondence:
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Theorem 3. Let F be a binary form of degree n ≥ 3 with DF �= 0
and with a complete factorization over R, and let s1, . . . , sn be the roots
of F (1, v) ordered such that s1 < · · · < sn, where possibly sn =∞. Let
T =

(
a b

c d

)
be a transformation in GL2(C), and let VT be the associated

fractional linear transformation defined by VT (w) = (c+ dw)/(a+ bw)
for w ∈ C. Let D be the image of the upper half plane under V −1

T , and
let z0 = V −1

T (i) ∈ D.
Then the map gTF defined by

(21) gTF (z) = (detT )
∫ z

z0

FT (1, τ )−2/n dτ

is a conformal map of D onto an n-sided equiangular polygon P with
interior angles (n− 2)π/n such that

(i) gTF (z0) = 0 ∈ P;
(ii) the vertices v1, . . . , vn of the polygon P, in consecutive order, are

given by vj = gTF (V
−1
T (sj));

(iii) the length of the edge vjvj+1 on ∂P is

|detT |
∫ V −1

T
(sj+1)

V −1
T

(sj)

|FT (1, τ )|−2/n|dτ |.

Moreover, the mapped polygon P is the same for all T ∈ GL2(C),
provided that we choose the correct branch of the nth root in (21), and
has perimeter |∂P| = AF .

Conversely, for any n-sided equiangular polygon P containing the
origin and for any domain D whose boundary is a circle on the Riemann
sphere, there is a binary form F of degree n with nonzero discriminant
and a complete factorization over R, and there is a transformation
T ∈ GL2(C) such that the function gTF defined by (21) maps D
conformally onto P and has properties (i), (ii) and (iii).

From this it follows, by taking T = I and using Section 5 of [5], that
for forms F and G with a complete factorization over R:

• F and G are equivalent under GL2(R), up to multiplication by −1,
if and only if P(F ) and P(G) are similar polygons;
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• F and G are equivalent under SL2(R), up to multiplication by −1,
if and only if P(F ) and P(G) are congruent polygons;
• P(F ∗

n) is an n-sided regular polygon.

Note that there is no closed polygon for n = 2 which gives a concrete
reason for AF to be infinite when F is an indefinite binary quadratic
form, i.e., equivalent under GL2(R) to X2 − Y 2.

The maps gTF with T =
(

1 0

0 1

)
and T =

(
(1/2) (1/2)

(i/2) (−i/2)

)
are of particular

interest and will be denoted by gF and hF , respectively, throughout the
paper. Note that gF : H → P(F ) and that hF : D → P(F ), where
H := {z ∈ C : �z > 0} and D := {z ∈ C : |z| < 1}. Closely related to
gF and hF are the fractional linear transformations U∗ : H → D and
V ∗ : D→ H defined by

U∗(z) =
i− z

i+ z
,(22)

V ∗(w) = i
1− w

1 + w
,(23)

or equivalently by U∗ = V −1
T and V ∗ = VT where VT is the fractional

linear transformation associated to T =
(

(1/2) (1/2)

(i/2) (−i/2)

)
. The explicit

form of gF , hF and the connections among gF , hF , U∗ and V ∗ are
given in the following corollary:

Corollary 3.1. Let F (X,Y ) =
∏n

j=1(αjX − βjY ) be a binary form
of degree n ≥ 3 with DF �= 0 and with a complete factorization over
R, and let s1 = α1/β1, . . . , sn = αn/βn be the roots of F (1, v) ordered
such that s1 < · · · < sn, where possibly sn = ∞. Let P be the polygon
corresponding to F under the family of conformal maps gTF defined by
(21).

If T =
(

1 0

0 1

)
, then gTF is a conformal map from H to P with defining

equation

(24) gF (z) = a−2/n

∫ z

i

n∏
j=1

(v − sj)−2/n dv
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where a = (−1)nβ1 · · ·βn, while if T =
(

(1/2) (1/2)

(i/2) (−i/2)

)
, then gTF is a

conformal map from D to P with defining equation

(25) hF (w) =
−i
2
κ−2/n

∫ w

0

n∏
j=1

(τ − eiθj )−2/n dτ

where κ =
∏n

j=1(αj + iβj)/2 and θj = 2arctan(αj/βj). The vertices
of P in counterclockwise order are v1, . . . , vn, where vj = gF (sj) =
hF (eiθj ). Moreover, sj = V ∗(eiθj ), eiθj = U∗(sj) and gF ◦ V ∗ = hF ,
hF ◦ U∗ = gF .

Note that if βn = 0 and sn = ∞, then θn = π and, by convention,
we replace βn by αn in the definition of a and we omit the nth factor
of the product in (24).

Notice the similarity between the formulas for gF , hF and the formu-
las for AF in Corollary 2.1.1. Figure 3 gives a visual representation of
the composition properties for the maps gF , hF , U∗ and V ∗ which will
be helpful later in the paper.

The proof of Theorem 3 and its corollary will be given in Section 5.

2.4. Equiangular polygons and harmonic measure. The corre-
spondence between binary forms and equiangular polygons described in
Theorem 3 and its corollary gives us a potentially important tool with
which to attack the problem of maximizing Q(F ). Indeed, from the
above correspondence, it is clear that maximizing Q(F ) over all binary
forms with nonzero discriminant and degree at least three is equivalent
to maximizing the perimeter of an n-sided equiangular polygon of a
given “size” (as measured by the discriminant). The hope here is that
one might solve the problem using geometry alone. However, before
we can approach the problem in this way, we need to formulate the
notion of “size” of a polygon as measured by the discriminant solely
in terms of (geometric) quantities intrinsic to the polygon and without
reference to the discriminant of the associated binary form.

To achieve this formulation, we first consider the meaning of the
discriminant of a form F , with a complete factorization over R, in the
context of the geometry of the curve |F (x, y)| = 1. Hence, suppose that
F (X,Y ) =

∏n
j=1(αjX − βjY ) with αj , βj ∈ R. Then the discriminant
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1–1

H

D

eiθ1
eiθ2

eiθ3

eiθ4

U ∗ V ∗

s1 s2 s3 s4

gF

hF

v1 v2

v3v4

FIGURE 3.

of F is DF =
∏

j<k(αjβk − αkβj)2. Viewed from a purely algebraic
perspective, the discriminant is an indicator of degeneracy in the form,
in the sense that DF = 0 if and only if F has two factors αjX−βjY and
αkX−βkY that are proportional. However, from the perspective of the
curve |F (x, y)| = 1 in the real affine plane, D1/n(n−1)

F can be considered
a measure of two quantities: the size of the region |F (x, y)| ≤ 1 and the
relative separation of the asymptotic lines Lj defined by αjx−βjy = 0.

To see how this is possible, put ρj =
√

α2
j + β2

j > 0 and ψj =
arctan(αj/βj) ∈ (−(π/2), (π/2)], so that ψj gives the direction of the
asymptote Lj . Notice that either sinψj = αj/ρj and cosψj = βj/ρj or
else sinψj = −αj/ρj and cosψj = −βj/ρj . Then

DF = (ρ1 · · · ρn)2(n−1)
∏
j<k

(
αj
ρj

βk
ρk
− αk

ρk

βj
ρj

)2

= (ρ1 · · · ρn)2(n−1)
∏
j<k

(sinψj cosψk − sinψk cosψj)2

= (ρ1 · · · ρn)2(n−1)
∏
j<k

(sin(ψk − ψj))2.
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Hence,

(26) D
1/n(n−1)
F = (ρ1 · · · ρn)2/n

∏
j �=k

| sin(ψk − ψj)|1/n(n−1).

We claim that
∏

j �=k | sin(ψk − ψj)|1/n(n−1) is a measure of average
separation of the asymptotes and (ρ1 · · · ρn)−1/n is a measure of the
average distance of the graph |F (x, y)| = 1 from the origin. Indeed,
| sin(ψk − ψj)| is a measure of the separation of the lines Lj and Lk,
normalized on a scale from 0 to 1, and

∏
j �=k | sin(ψk−ψj)|1/n(n−1) is the

geometric mean of these separations. On the other hand, (ρ1 · · · ρn)−1/n

can be considered a measure of the “average distance” of the graph
|F (x, y)| = 1 from the origin since replacement of any ρj by cρj , with
the other ρk fixed, has the effect of magnifying the graph by a factor
of c−1/n. Hence, putting

(27) d(Lj , Lk) = | sin(ψk − ψj)|

and

(28) rF = (ρ1 · · · ρn)−1/n,

we see that

(29) D
1/n(n−1)
F =

1
r2
F

∏
j �=k

d(Lj , Lk)1/n(n−1).

Consequently, D1/n(n−1)
F encapsulates information about both the rel-

ative separation of the asymptotes and also the size of the region
|F (x, y)| ≤ 1 as measured by the “area estimator” r2

F . (Of course,
there is no general functional relationship between AF and r2

F , though
r2
F will have the same order of magnitude as AF .)

Now, in light of the Schwarz-Christoffel correspondence and the above
discussion, it is reasonable to expect D

1/n(n−1)
F , which measures the

size of the polygon corresponding to F , to be expressible in terms of
quantities which measure the relative separation of the vertices vj and
also the average “spread” of the polygon. Unfortunately, the most
natural measure of separation and spread Euclidean distance will
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not work. Indeed, if P is an equiangular triangle, for example, with side
length s, then the geometric mean of the distances between vertices is∏

j �=k |vj − vk|1/6 = s, while the perimeter of P is 3s. However, for any
cubic form F , with DF > 0, the equiangular triangle corresponding
to F under the Schwarz-Christoffel correspondence has side length
B[(1/3), (1/3)]/|DF |1/6, see (32) below, and so it cannot be the case
that |DF |1/6 =

∏
j �=k |vj − vk|1/6 = s. Similar remarks can be made

when n > 3. Hence, a different measure of separation and spread on
the polygon is required.

It turns out that the appropriate measures of separation and spread
for the mapped polygon are harmonic measure and harmonic radius.
In the context of the complex plane, these notions are actually quite
natural. However, the definitions are somewhat technical to state, and
so we will postpone them until Section 6, where we will prove the
following result:

Theorem 4. Let F be a binary form of degree n ≥ 3 with DF �= 0
and with a complete factorization over R, and let P be the polygon,
containing the origin, corresponding to F under the family of maps gTF
of Theorem 3. Let v1, . . . , vn be the vertices of P in consecutive order.
Then

AF = |∂P|
and

(30) D
1/n(n−1)
F =

2
RP

{ ∏
j �=k

sin(πµP(
�

vjvk))
}1/n(n−1)

where RP is the harmonic radius of P with respect to the origin, and
µP(

�
vjvk) is the harmonic measure of the arc

�
vjvk on ∂P with respect

to the origin. Consequently,

(31) Q(F ) =
2|∂P|
RP

{ ∏
j �=k

sin(πµP(
�

vjvk))
}1/n(n−1)

.

We will actually show in Section 6 that rF = (RP/2)1/2 and
d(Lj , Lk) = sin(πµP(

�
vjvk)). We will also show that RP and µP can
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be replaced in Theorem 4 by the harmonic radius and the harmonic
measure with respect to any fixed point ζ in P.
Using Theorems 1, 3 and 4, we can now reformulate the maximization
problem (Q2) in Section 1 and its conjectured solution in purely
geometric and potential theoretic terms:

Reformulated maximization problem. To determine, among all
n-sided equiangular polygons P containing the origin, the maximum
value of

(∗∗) Q(P) = 2|∂P|
RP

{ ∏
j �=k

sin(πµP(
�

vjvk))
}1/n(n−1)

and to characterize the equiangular polygons for which this maximum
is achieved.

Reformulated conjecture. The maximum value Mn of Q(P),
taken over all n-sided equiangular polygons P containing the origin,
is equal to

21−2/nn1/(n−1)B

(
1
2
− 1

n
,
1
2

)

and is achieved precisely when P is an n-sided regular polygon.

3. Binary forms in C2 Proof of Theorems 2.1 and 2.2 and
their corollaries. One of the key ideas in the work of the first author
[5, 6, 7, 8, 9, 10] was the use of transformations in GL2(R) to simplify
the computation of AF and Q(F ). Indeed, the first author defined the
action of GL2(R) on a binary form F (X,Y ) ∈ C[X,Y ] by

FT (X,Y ) = F (aX + bY, cX + dY ), T =
(
a b
c d

)
∈ GL2(R)

and then used the resulting invariance properties

(P1) AF = |detT |AFT

(P2) DF = (detT )−n(n−1)DFT

(P3) Q(F ) = Q(FT )
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(along with several other ideas) to prove the results (R1), (R2) and
(R3) stated in the introduction. In this section we will explain how
transformations in GL2(C) can be used to further simplify the calcu-
lation of AF and, as a consequence, we will obtain the representations
of AF stated in Theorem 2.1 and Corollary 2.1.1. In the next section
we will use a special case of these representations to derive the formula
for AF∗

n
stated in Theorem 1.

Now the natural way to define the action of GL2(C) on a binary form
F (X,Y ) ∈ C[X,Y ] is by:

FT (X,Y ) = F (aX + bY, cX + dY ) for T =
(
a b
c d

)
∈ GL2(C).

Unfortunately, properties (P1) and (P3) do not hold when the action
of GL2(C) is defined in this way.3 Indeed, it is well known [11, p. 17]
that all the (nondegenerate) cubic forms in C[X,Y ] are equivalent to
one another under GL2(C), but Q(F ) is not constant over the class of
cubic forms with complex coefficients [8, p. 1978]. In fact, even over
the restricted class of cubic forms with real coefficients, Q(F ) assumes
more than one value:

(32) Q(F ) =
{
3B[(1/3), (1/3)] if DF > 0,√
3B[(1/3), (1/3)] if DF < 0.

At first glance, then, it would seem that properties (P1) and (P3)
cannot be preserved. However, a little reflection reveals that the
problem is not with our definition of the action of GL2(C); rather,
it is with our failure to transform the variables X,Y when calculating
the area. Indeed, the area AFT

on the right hand side of the equation
in (P1) should not, in general, be calculated in R2; rather, it should be
calculated in the image of R2 under T−1. Hence, we will need to keep
track of the two-dimensional real vector space inside C2 on which the
area is to be calculated.

Now every two-dimensional real vector space S inside C2 is of the
type

S =
{(

A B
C D

)(
x
y

)
: x, y ∈ R

}

for some fixed matrix
(
A B

C D

)
∈ GL2(C). Moreover, the matrix

(
A B

C D

)
defining S is unique up to right multiplication by an element ofGL2(R).
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Hence, with a slight abuse of notation, we can write

S =
{
WS

(
x
y

)
: x, y ∈ R

}

where WS is the “unique” matrix in GL2(C) which defines S.
From the preceding discussion, it is clear that if the variables of
a form F (X,Y ) are transformed to the space S under the action of
T ∈ GL2(C), then the appropriate area to calculate is the area of
the region

{( σ

τ

) ∈ S : |F (σ, τ )| ≤ 1}. Hence, for any space S and any
form F , write AS

F for the area of the two real dimensional region
{( σ

τ

) ∈ S : |F (σ, τ )| ≤ 1} in C2 � R4. Further, put Q(F,S) =
|DF |1/n(n−1)AS

F . Then, as we will see before the end of the section, the
modified invariance properties

(P1′) AS
F = |detT |AT−1(S)

FT

(P3′) Q(F,S) = Q(FT , T
−1(S))

do hold for all suitable transformations T and Lagrangian spaces S.
Note that, for a general space S, the classes of forms

FS =
{
binary forms F (X,Y ) ∈ C[X,Y ] :

F (σ, τ ) ∈ R whenever
(
σ
τ

)
∈ S

}
,

F∗
S =

{ n∏
j=1

Lj(X,Y ) : the Lj are linear forms in FS and n ≥ 1
}

are generalizations, respectively, of the classes of forms with real
coefficients and with complete factorizations over R. Indeed, FS is
the collection of binary forms which are real valued on S, while F∗

S is
the collection of forms which factor as a product of real valued linear
forms. It is fairly straightforward to show that

F ∈ FS ⇐⇒ FT ∈ FT−1(S)

and that

F ∈ F∗
S ⇐⇒ FT ∈ F∗

T−1(S).
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Hence the action of GL2(C) preserves the properties of being real
valued and of having a complete factorization. It is also straightforward
to show that every linear form in FS is of the type L(σ, τ ) = γσ + δτ
where ( γ δ ) ∈ CS := {( α β )W−1

S : α, β ∈ R}. Hence, the coefficient
vector of a linear form which is real valued on S need not (and generally
will not) be in the variable space S.
Before proceeding to the proof of Theorem 2, it is worth remarking
that binary forms are really just matrix products of the type

F (X,Y ) =
n∏

j=1

(αj −βj )
(
X
Y

)
.

With this perspective, the action of T ∈ GL2(C) on F can be written
as

FT (X,Y ) =
n∏

j=1

(αj −βj )T
(
X
Y

)
,

and it is a straightforward matter to determine the coefficient vectors
of the linear factors of FT : if F (X,Y ) =

∏n
j=1(αjX − βjY ), then

FT (X,Y ) =
∏n

j=1(α̂jX − β̂jY ) where ( α̂j −β̂j ) = ( αj −βj )T .

3.1. Proof of Theorem 2.1 and Corollary 2.1.1. We now proceed to
derive the representations of AF stated in Theorem 2.1. Hence, let
F (X,Y ) =

∏n
j=1(αjX − βjY ) be a binary form, and let T =

(
a b

c d

)
be

a transformation in GL2(C). Further, put

S =
{
T−1

(
x
y

)
: x, y ∈ R

}

and let

C1 =
{
σ

τ
:
(
σ
τ

)
∈ S \

(
0
0

) }
,

C2 =
{
τ

σ
:
(
σ
τ

)
∈ S \

(
0
0

) }
.

Then C1 and C2 are circles on the Riemann sphere, i.e., they are
either straight lines or circles in the complex plane. Indeed, z �→
(az+b)/(cz+d) is a fractional linear transformation whose inverse maps
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R to C1, w �→ (c + dw)/(a + bw) is a fractional linear transformation
whose inverse maps R to C2 and (as is well known) fractional linear
transformations map circles and lines to circles and lines.

Suppose that we apply the substitution

u =
aσ + b

cσ + d

to the integral
∫ ∞
−∞ |F (u, 1)|−2/n du, which is a known representation

of AF ; see [6]. Then, by the remarks just made, this integral will
be transformed into a line integral over the circle C1. Under this
substitution, the differential du becomes

du = |du| =
∣∣∣∣ ad− bc

(cσ + d)2
dσ

∣∣∣∣ = |detT |
|cσ + d|2 |dσ|

and each linear factor L(u, 1) = αu − β of F (u, 1) =
∏n

j=1(αju − βj)
becomes

L(u, 1) = (α− β)
(
u
1

)

= (α− β)
(

aσ+b
cσ+d
1

)

= (α− β)
(
aσ + b
cσ + d

)
(cσ + d)−1

= (α− β)T
(
σ
1

)
(cσ + d)−1

= LT (σ, 1)(cσ + d)−1.

Hence,
|F (u, 1)|−2/n du = |FT (σ, 1)|−2/n|detT | |dσ|

and so

AF =
∫ ∞

−∞
|F (u, 1)|−2/n du = |detT |

∮
C1

|FT (σ, 1)|−2/n |dσ|,

which is formula (4) in the statement of Theorem 2.1.

On the other hand, suppose that we apply the substitution

v =
c+ dτ

a+ bτ
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to the integral
∫ ∞
−∞ |F (1, v)|−2/n dv. Then, arguing as above, we find

that

AF =
∫ ∞

−∞
|F (1, v)|−2/n dv = |detT |

∮
C2

|FT (1, τ )|−2/n |dτ |,

which is formula (5) in the statement of Theorem 2.1.

Now suppose that F (X,Y ) ∈ C[X,Y ] is a binary form and that we
are given circles C1, C2 which are inverses of each other in the sense that
z ∈ C1 ⇔ z−1 ∈ C2. Then there is a fractional linear transformation
z �→ (az + b)/(cz + d), a, b, c, d ∈ C, ad− bc �= 0, which maps C1 to R.
Since C1 and C2 are inverses, the transformation w �→ (c+dw)/(a+bw)
is also a fractional linear map which takes C2 to R. Put T =

(
a b

c d

)
.

Then clearly T ∈ GL2(C) and, by the previous discussion, formulas (4)
and (5) in the statement of Theorem 2.1 hold with these T , C1 and C2.
It remains to consider the two special cases:

• T =
(

1 0

0 1

)

• T =
(

(1/2) (1/2)

(i/2) −(i/2)

)
.

In the first case the integration takes place on the real line, while in the
second case (the more interesting one) it takes place on the unit circle.

Case 1. T =
(

1 0

0 1

)
.

Here the variable space is

S =
{(

x
y

)
: x, y ∈ R

}
= R2 = Sl

and the “circles” of integration C1, C2 are both equal to the real line.
Hence formulas (4) and (5) reduce to

AF =
∫ ∞

−∞
|F (u, 1)|−2/n du =

∫ ∞

−∞
|F (1, v)|−2/n dv,

which is equation (6) in the statement of Theorem 2.1.
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If F (X,Y ) has a complete factorization overR of the type
∏n

j=1(αjX−
βjY ) and if either αj �= 0 for all j or else βj �= 0 for all j, then we can
write the expressions (6) for AF as

AF = |b|−2/n

∫ ∞

−∞

n∏
j=1

|u− tj |−2/n du

and

AF = |a|−2/n

∫ ∞

−∞

n∏
j=1

|v − sj |−2/n dv,

respectively, where sj = αj/βj = 1/tj , a = (−1)nβ1 · · ·βn and
b = α1 · · ·αn.4 That is, we have shown that formula (8) in the statement
of Corollary 2.1.1 is true. If βk = 0 for some k, then (6) again gives
(8), but with βk replaced by αk in the definition of a and with the kth
factor of the product in (8) omitted.

Note that we can impose an ordering on either the sj or the tj , but not
both. To maintain consistency throughout the paper, we will always
assume that s1 ≤ · · · ≤ sn when F (X,Y ) has a complete factorization
over R; if also DF �= 0 then we may assume that s1 < · · · < sn.

Case 2. T =
(

(1/2) (1/2)

(i/2) −(i/2)

)
.

Here the variable space is

S =
{
T−1

(
x
y

)
: x, y ∈ R

}

=
{(

1 −i
1 i

) (
x
y

)
: x, y ∈ R

}

=
{(

z̄
z

)
: z ∈ C

}

= Sc
and so the circles of integration C1, C2 are both equal to the unit circle
{z ∈ C : |z| = 1}. Hence formulas (4) and (5) reduce to

AF =
1
2

∫ π

−π

∣∣∣∣F
(
eiφ + 1
2

,
i(eiφ − 1)

2

)∣∣∣∣
−2/n

dφ
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and

AF =
1
2

∫ π

−π

∣∣∣∣F
(
1 + eiθ

2
,
i(1− eiθ)

2

)∣∣∣∣
−2/n

dθ,

which is equation (7) in the statement of Theorem 2.1.

Suppose that F (X,Y ) has a complete factorization overR of the type
F (X,Y ) =

∏n
j=1(αjX − βjY ) with αj , βj ∈ R. We proceed to show

that formulas (4) and (5) can actually be reduced to the much simpler
expressions

AF =
1
2
|κ̄|−2/n

∫ π

−π

n∏
j=1

|eiφ − e−iθj |−2/n dφ(33)

and

AF =
1
2
|κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ,(34)

where

κ =
n∏

j=1

αj + iβj
2

and
θj = 2arctan(αj/βj).

For this, first notice that the linear form L(X,Y ) = αX − βY ∈ FSl

is transformed (under T ) to the linear form

LT (σ, τ ) = (α −β )T
(
σ
τ

)

=
(
α− iβ

2
α+ iβ

2

) (
σ
τ

)

=
α− iβ

2
σ +

α+ iβ

2
τ ∈ F∗

Sc
.

Hence the linear factor αjX − βjY of F (X,Y ) is transformed to the
linear factor γ̄jσ + γjτ of FT (σ, τ ) where γj = (αj + iβj)/2, and so
FT (σ, τ ) =

∏n
j=1(γ̄jσ + γjτ ).
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We consider the integrations over C1 and C2 separately to obtain (33)
and (34).

(i) Integration over C1. Notice that

FT (σ, τ ) = κ̄

n∏
j=1

(
σ +

αj + iβj
αj − iβj

τ

)

= κ̄

n∏
j=1

(
σ − i+ αj/βj

i− αj/βj
τ

)

= κ̄
n∏

j=1

(σ − U∗(αj/βj)−1τ )

where U∗ is the fractional linear map defined by equation (22) of
Section 2. Now

U∗(αj/βj) =
1 + iαj/βj
1− iαj/βj

=
cos(θj/2) + i sin(θj/2)
cos(θj/2)− i sin(θj/2)

= eiθj .

Hence

FT (σ, τ ) = κ̄

n∏
j=1

(σ − e−iθj τ )

and so, by (4) of Theorem 2.1,

AF = |detT |
∮
C1

|FT (σ, 1)|−2/n |dσ|

=
1
2
|κ̄|−2/n

∫ π

−π

n∏
j=1

|eiφ − e−iθj |−2/n dφ

as claimed in (33).

(ii) Integration over C2. Here we can write

FT (σ, τ ) = κ

n∏
j=1

(τ − U∗(αj/βj)σ) = κ

n∏
j=1

(τ − eiθjσ).

Consequently,

AF = |detT |
∮
C2

|FT (1, τ )|−2/n |dτ |

=
1
2
|κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ
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as claimed in (34).

Hence we have shown that formula (9) in the statement of Corol-
lary 2.1.1 is true. This completes the proof of Theorem 2.1 and Corol-
lary 2.1.1.

3.2. Proof of Theorem 2.2. Let S be a two-dimensional real vector
space in C2, and let T ∈ GL2(C). Suppose that F (σ, τ ) is a binary
form on C2. Then DF = (detT )−n(n−1)DFT

, by exactly the same
direct calculation that works when T ∈ GL2(R). Now suppose also
that S and T−1(S) are Lagrangian. We aim to show that

AS
F = |detT |AT−1(S)

FT
.

Actually, since

T

({ (
σ∗

τ∗

)
∈ T−1(S) : |FT (σ∗, τ∗)| ≤ 1

})

=
{(

σ
τ

)
∈ S : |F (σ, τ )| ≤ 1

}
,

we need only show that the linear transformation T : T−1(S) → S
magnifies area on T−1(S) by a factor of |detT |.
To determine this area magnification, first recall that T magnifies
volume in C2 � R4 by a factor of |detT |2; see [17, p. 19] for a proof of
this by linear algebra or [16, p. 51] for a proof using differential forms.
Next the hypothesis that S and T−1(S) are Lagrangian tells us that S
and iS are orthogonal in R4 and that T−1(S) and iT−1(S) = T−1(iS)
are orthogonal in R4. Hence,

R4 = S ⊕ iS = T−1(S)⊕ T−1(iS).

Thus the volume magnification |detT |2 of T on R4 equals the product
of the area magnifications of T on T−1(S) and on iT−1(S), and these
area magnifications are of course equal. Therefore, |detT |2 equals the
square of the area magnification of T on T−1(S), as we wished to show.
Finally, if DF �= 0 or AS

F <∞, then Q(F,S) is well defined, and from
the invariance relations proved above for DF and AS

F we deduce that
Q(F,S) = Q(FT , T

−1(S)), completing the proof of Theorem 2.2.
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3.3. Proof of Corollaries 2.2.1, 2.2.2, 2.2.3. We first prove Corol-
lary 2.2.1. Let S =

{(
A B

C D

)(
x

y

)
: x, y ∈ R

}
be Lagrangian, and write

T =
(
A B

C D

)
∈ GL2(C) so that T−1(S) = R2. From Theorem 2.2 we

know that
AS
F = |detT |AFT

while by Theorem 2.1 applied with T−1 in place of T and with FT in
place of F we have

AFT
= |detT−1|

∮
C1

|F (σ, 1)|−2/n |dσ|

= |detT−1|
∮
C2

|F (1, τ )|−2/n |dτ |.

Corollary 2.2.1 follows immediately.

Formulas (15) and (17) of Corollary 2.2.2 are direct consequences
of formula (10) of Corollary 2.2.1, while formulas (16) and (18) of
Corollary 2.2.2 follow directly from the definition of the discriminant.

Corollary 2.2.3 follows from Theorem 2.2 and Corollary 2.2.2 using
the transformation T =

(
(1/2) (1/2)

(i/2) −(i/2)

)
and the fact that Sl = TSc,

along with the earlier observation that if F factors completely over R
then FT factors completely as a product of linear forms that are real
valued on Sc.

4. Formulas for calculating AF∗
n
, DF∗

n
and Q(F ∗

n) Proof of
Theorem 1 and its corollaries. In this section we will show that

AF∗
n
= 41−1/nB

(
1
2
− 1

n
,
1
2

)
,

D
1/n(n−1)
F∗

n
=
1
2
n1/(n−1)

and that the sequences {AF∗
n
}, {D1/n(n−1)

F∗
n

} decrease to limiting values
4π, 1/2 respectively. Theorem 1 and its corollaries will then follow.

In the argument which follows, we will find it convenient to work with
the form F̂ ∗

n defined by

F̂ ∗
n(X,Y ) =

n∏
j=1

(X sinψj − Y cosψj)
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where
ψj =

jπ

n
− π

2
,

rather than with the form F ∗
n . (The advantage is that all ψj are

in the interval (−π/2, π/2], which is the same as the range of the
arctangent function used in our representations of AF on the unit
circle.) The form F̂ ∗

n is actually equal to (−1)n/2F ∗
n when n is even

and is SL2(R)-equivalent to it for all n. (Apply the transformation
T =

(
0 −1

1 0

)
to F ∗

n .) Hence the formulas which we derive for F̂ ∗
n below

will automatically hold for F ∗
n as well, since AF and DF are both

invariant under SL2(R).

We begin by deriving the formula for AF̂∗
n
. Our point of departure

is formula (9) in Corollary 2.1.1 which, in our present context, has the
form

(35) AF̂∗
n
= 2

∫ π

−π

n∏
j=1

|eiθ − e2iψj |−2/n dθ

(since κ = (i/2)ne−iψ1 · · · e−iψn in this case). We claim that this
formula can be written as

AF̂∗
n
= 2

∫ π

−π

|eiζ + 1|−2/n dζ.

To see why this is so, consider the polynomial p(z) =
∏n

j=1(z −
e2iψj ). With this notation, we can write equation (35) as AF̂∗

n
=

2
∫ π

−π
|p(eiθ)|−2/n dθ. From the definition of ψj , we clearly have e2iψj =

−e2ijπ/n, and so p(z) =
∏n

j=1(z + e2πij/n) = zn + (−1)n+1 and
AF̂∗

n
= 2

∫ π

−π
|einθ + (−1)n+1|−2/n dθ. Hence, using the substitution

θ = (ζ + (n + 1)π)/n and the periodicity of eiζ , we obtain AF̂∗
n
=

2
∫ π

−π
|eiζ + 1|−2/n dζ as claimed.

Now eiζ + 1 = eiζ/2(eiζ/2 + e−iζ/2) = 2eiζ/2 cos(ζ/2), and so, by
symmetry, we have AF̂∗

n
= 22−2/n

∫ π

0
(cos(ζ/2))−2/n dζ. Applying the

transformation t = cos2(ζ/2) to this latter expression, we then obtain
AF̂∗

n
= 22−2/n

∫ 1

0
t−1/2−1/n(1 − t)−1/2 dt, which we recognize to be
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22−2/nB(1/2− 1/n, 1/2). Hence,

AF∗
n
= 41−1/nB

(
1
2
− 1

n
,
1
2

)
,

as required.

We now proceed to derive the formula for DF̂∗
n
. Here our point of

departure is formula (20) in the statement of Corollary 2.2.3 which, in
our present context has the form

(36) D
1/n(n−1)

F̂∗
n

= 2(2−n)2/n
∏
j �=k

|e2iψj − e2iψk |1/n(n−1)

(since κ = (i/2)ne−iψ1 · · · e−iψn in this case). As in the derivation of
AF̂∗

n
, we can make profitable use of the polynomial p(z) = zn+(−1)n+1.

Indeed, we can write the product
∏

j �=k |e2iψj−e2iψk | as∏n
j=1 |p′(e2iψj )|

and then use the simple formula p′(z) = nzn−1 to conclude that

D
1/n(n−1)

F̂∗
n

=
1
2

n∏
j=1

n1/n(n−1) =
1
2
n1/(n−1)

as required.

Combining the formulas for AF∗
n
and D

1/n(n−1)

F̂∗
n

just derived, we
obtain

Q(F ∗
n) = 2

1−2/nn1/(n−1)B

(
1
2
− 1

n
,
1
2

)

for n ≥ 2. This completes the proof of Theorem 1.
It remains to show that sequences {AF∗

n
} and {D1/n(n−1)

F∗
n

} are de-
creasing and have respective limits 4π and 1/2. By direct differenti-
ation, it is straightforward to show that {D1/n(n−1)

F∗
n

} is strictly de-
creasing. Moreover, we clearly have limn→∞ D

1/n(n−1)
F∗

n
= 1/2 and

limn→∞ AF∗
n
= 4π since n1/(n−1) → 1 and B(1/2 − 1/n, 1/2) →

B(1/2, 1/2) = Γ(1/2)2 = π. Hence, we need only show that {AF∗
n
}

is decreasing. For this purpose, consider the function

f(x) = 4−xB

(
1
2
− x,

1
2

)



BINARY FORMS 51

on the interval x ∈ [0, 1/2). We will show that f ′(x) > 0 for x > 0 and
the result will follow.

The function f is actually strictly convex since it is the integral of
strictly convex functions of x:

f(x) =
∫ 1

0

(4t)−xt−1/2(1− t)−1/2 dt,

as follows from the integral representation of the Beta function. Since
f is strictly convex, it suffices to show that f ′(0) ≥ 0 because then
f ′(x) > 0 for all x ∈ (0, 1/2).
The identity B(x, y) = Γ(x)Γ(y)/Γ(x+y) gives us the representation

f(x) = 4−xΓ((1/2)− x)Γ(1/2)
Γ(1− x)

,

and by applying the duplication formula for the gamma function [1,
6.1.18] with z = (1/2)− x we obtain the simple formula

f(x) =
√
π
Γ(1− 2x)
Γ(1− x)2

Γ
(
1
2

)
.

Differentiating this gives f ′(0) = 0. Consequently, f ′(x) > 0 for all
x > 0 and so f is increasing for x > 0.

Therefore, the sequence {AF∗
n
} is strictly decreasing and has limit 4π.

Combining this with the fact that the sequence {D1/n(n−1)
F∗

n
} strictly

decreases to 1/2, we see that the sequence {Q(F ∗
n)} strictly decreases

to 2π.

This completes the proof of Corollary 1.1 and Corollary 1.2. Corol-
lary 1.3 follows immediately.

5. Binary forms and equiangular polygons Proof of The-
orem 3. In this section we will briefly explain why Theorem 3 is
true. Let F be a binary form of degree n ≥ 3 with DF �= 0 and
with a complete factorization over R, let T =

(
a b

c d

)
be a trans-

formation in GL2(C), let VT be the fractional linear transformation
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defined by VT (w) = (c + dw)/(a + bw), let D = V −1
T (H) (where

H = {z ∈ C : �z > 0}), let z0 = V −1
T (i), and let gTF be the map

gTF (z) = (detT )
∫ z

z0

FT (1, τ )−2/n dτ.

Now the case T = I of Theorem 3 was established by the first
author in [5, pp. 4974 4977]. The general case of Theorem 3 is
clearly an immediate consequence of the case T = I and the fact that
gTF = gIF ◦ VT , with the latter fact being true because

(gIF ◦ VT )(z0) = gIF (i) = 0 = gTF (z0)

and for all z ∈ D,

(gIF ◦ VT )′(z) = (gIF )′(VT (z))V ′
T (z)

= F (1, VT (z))−2/nV ′
T (z)

= F

(
1,

c+ dz

a+ bz

)−2/n
ad− bc

(a+ bz)2

= (detT )F (a+ bz, c+ dz)−2/n

= (detT )FT (1, z)−2/n

= (gTF )
′(z).

Lastly, Corollary 3.1 follows easily from Theorem 3. Note here that if
T =

(
(1/2) (1/2)

(i/2) −(i/2)

)
, then detT = −i/2 and FT (1, τ ) = κ

∏n
j=1(τ −eiθj )

by the calculation used in proving (34) in Section 3.

6. Equiangular polygons and harmonic measures Proof of
Theorem 4. In this section we will show that, if F is a binary form
of degree n ≥ 3 with DF �= 0 and with a complete factorization over
R, and if P is the equiangular polygon corresponding to F under the
family of mappings gTF defined by equation (21) in the statement of
Theorem 3, then

D
1/n(n−1)
F =

2
RP

{ ∏
j �=k

sin(πµP(
�

vjvk))
}1/n(n−1)
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where RP is the harmonic radius of P with respect to the origin and
µP(

�
vjvk) is the harmonic measure of the arc

�
vjvk on ∂P with respect

to the origin.

We begin by defining the potential theoretic notions of harmonic
measure and harmonic radius. Let Ω be a simply connected, bounded
domain in C whose boundary is a Jordan curve, and let ζ be any point
in Ω. (Of course, in our application, we will take Ω = P.) For any
distinct points z, w on ∂Ω, the boundary of Ω, let

�
zw denote the open

arc along ∂Ω traversed counterclockwise from z to w. Let χ �
zw
be the

characteristic function on ∂Ω, i.e.,

χ �
zw
(ξ) =

{
1 if ξ is on

�
zw

0 otherwise.

Then the harmonic measure at ζ ∈ Ω of the arc
�
zw, denoted by

µΩ(ζ;
�
zw), is the value at ζ of the harmonic extension to Ω of the

characteristic function χ �
zw
. (By Dirichlet’s theorem, bounded har-

monic functions are determined by their values on the boundary; hence,
µΩ(ζ;

�
zw) is uniquely defined.)

If Ω = D, then µD(ζ;
�

z1z2) is given by the Poisson kernel, i.e.,

µD(ζ;
�

z1z2) =
1
2π

∫ θ2

θ1

1− |ζ|2
|eiθ − ζ|2 dθ

where z1 = eiθ1 , z2 = eiθ2 , with θ1 < θ2 < θ1 + 2π. In particular,

µD(0;
�

z1z2) =
θ2 − θ1

2π
=
length of the arc

�
z1z2

2π
.

This illustrates the general principle that harmonic measure is a gen-
eralization of arc length, normalized so that the harmonic measure of
∂Ω with respect to ζ ∈ Ω is 1.
Note that harmonic measure is conformally invariant in the sense
that

µΩ(ζ;
�

z1z2) = µD(f(ζ);
�

f(z1)f(z2))

for all conformal maps f of Ω onto D. Hence, we can compute
µΩ(ζ;

�
z1z2) by calculating

length of the arc
�

f(z1)f(z2)
2π
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where f is a conformal map of Ω onto D with f(ζ) = 0. Moreover,
µΩ(ζ;

�
z1z2) ∈ [0, 1] for all Ω and all ζ ∈ Ω, and µΩ(ζ;E) = 1 −

µΩ(ζ; ∂Ω\E) for all arcs E in ∂Ω. Further, the translation invariance of
the Laplacian implies that harmonic measure is translation invariant,
meaning that µΩ(ζ;

�
z1z2) = µΩ−ζ(0;

�
z̃1z̃2), where z̃j = zj − ζ. (For

more information on harmonic measure, see [14, pp. 114 118].)

To define the notion of harmonic radius for Ω, we will use the Green
function GΩ(z, w) of the Laplacian on Ω. The Green function GΩ(z, w)
can be constructed directly from the domain Ω using the methods of
potential theory [14, pp. 26, 250], or can be specified by mapping Ω to
the unit disk D [14, pp. 26, 30]. In the latter case,

GΩ(z, w) = log
∣∣∣∣1− f(z)f(w)
f(z)− f(w)

∣∣∣∣
where f : Ω → D is a conformal map of Ω onto D with f(ζ) = 0 (the
existence of f being guaranteed by the Riemann mapping theorem and
the assumption that Ω is simply connected). The function GΩ(z, w)
is harmonic in each of the variables z, w for z �= w, is symmetric with
respect to interchanging z and w, and has a logarithmic singularity at
z = w. Also, the Green function is conformally invariant in the sense
that

GΩ(z, w) = Gf(Ω)(f(z), f(w))

for all conformal maps f defined on Ω. For a detailed description of
Green functions and their properties, see [14].

Now, in terms of the Green function, the harmonic radius of Ω with
respect to the point ζ ∈ Ω is

RΩ(ζ) = lim
z→ζ

|z − ζ|eGΩ(z,ζ).

In particular, the harmonic radius of the unit disk D with respect to
ζ ∈ D is

RD(ζ) = lim
z→ζ

|1− zζ̄| = 1− |ζ|2

since GD(z, ζ) = log |(1 − zζ̄)/(z − ζ)|; this illustrates the general
principle that the harmonic radius RΩ(ζ) measures the distance from ζ
to the boundary ∂Ω. Notice that the conformal invariance of the Green
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function implies in particular that the harmonic radius is invariant
under translation, meaning that RΩ(ζ) = RΩ−ζ(0). See [4] for a survey
of work on the harmonic radius.

The harmonic radius can be calculated more simply when a conformal
map f̃ : D → Ω with f̃(0) = ζ is given. Indeed, using the continuity
of f̃ , the conformal invariance of GΩ, and the fact that GD(w, 0) =
log |1/(w − 0)|, we have

RΩ(ζ) = lim
z→ζ

|z − ζ|eGΩ(z,ζ)

= lim
w→0

|f̃(w)− f̃(0)|eGΩ(f̃(w),f̃(0))

= lim
w→0

|f̃(w)− f̃(0)|eGD(w,0)

= lim
w→0

∣∣∣∣ f̃(w)− f̃(0)
w − 0

∣∣∣∣
= |f̃ ′(0)|.

(This explains why RΩ(ζ) is often called the inner conformal radius.)
We will later apply this with Ω = P, ζ = 0, f̃ = hF , which gives
RP(0) = |h′

F (0)|.
Now let F (X,Y ) =

∏n
j=1(αjX − βjY ) be a binary form of degree

n ≥ 3 with DF �= 0 and with αj , βj ∈ R, and let P be the equiangular
polygon corresponding to F under the Schwarz-Christoffel map

hF (w) =
−i
2
κ−2/n

∫ w

0

n∏
j=1

(τ − eiθj )−2/n dτ

discussed in Corollary 3.1, where κ =
∏n

j=1(αj + iβj)/2 and θj =
2arctan(αj/βj). Suppose that the roots sj = αj/βj of F (1, v) are
ordered such that s1 < · · · < sn. Then −π < θ1 < · · · < θn ≤ π
and the vertices vj = hF (eiθj ) of P are in counterclockwise order. Let
µP(

�
vjvk) denote the harmonic measure of the arc

�
vjvk on ∂P, and let

RP denote the harmonic radius of P, both taken with respect to the
origin.

Recall, from formula (29) of Section 2, that

D
1/n(n−1)
F =

1
r2
F

∏
j �=k

d(Lj , Lk)1/n(n−1)
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where d(Lj , Lk) = | sin((θk − θj)/2)| and rF = (
∏n

j=1

√
α2
j + β2

j )
−1/n.

As we explained in Section 2, d(Lj , Lk) measures the separation of
the asymptotic lines Lj , Lk, while rF measures the average distance
of the curve |F (x, y)| = 1 from the origin. We will show d(Lj , Lk) =
sin(πµP(

�
vjvk)) and rF = (RP/2)1/2, so that

D
1/n(n−1)
F =

2
RP

{ ∏
j �=k

sin(πµP(
�

vjvk))
}1/n(n−1)

.

The proof of Theorem 4 will then be complete since AF = |∂P| by
Theorem 3.

Hence, let ωj = eiθj . Then, using the properties of harmonic measure
developed above, we have for j < k that

d(Lj , Lk) = sin
(
θk − θj
2

)

= sin
(
π · θk − θj

2π

)

= sin(πµD(0;
�

ωjωk))

= sin(πµP(hF (0);
�

hF (ωj)hF (ωk)))
by conformal invariance

= sin(πµP(
�

vjvk)) since hF (0) = 0 and hF (ωj) = vj .

For j > k,

d(Lj , Lk) = d(Lk, Lj) = sin(πµP(
�

vkvj)) by above

= sin(π[1− µP(
�

vjvk)]) = sin(πµP(
�

vjvk))
once more. On the other hand, using the fact that

h′
F (w) =

−i
2
κ−2/n

n∏
j=1

(w − eiθj )−2/n

(which follows immediately from the formula for hF (w) given above),
we have

rF =
( n∏

j=1

√
α2
j + β2

j

)−1/n

= 2−1|κ|−1/n

= 2−1|2h′
F (0)|1/2 =

(
RP
2

)1/2

since RP = |h′
F (0)|.



BINARY FORMS 57

Consequently, d(Lj , Lk) = sin(πµP(
�

vjvk)) and rF = (RP/2)1/2 as
claimed. Theorem 4 now follows.

Finally we show that RP and µP can be replaced in Theorem 4 by
the harmonic radius and the harmonic measure with respect to any
point ζ ∈ P. To this end, fix ζ ∈ P and let z0 = g−1

F (ζ) ∈ H. Choose
T ∈ SL2(R) to be such that V −1

T (i) = z0, where VT : H → H was
defined in Theorem 3. Let G = FT−1 (so that GT = F ) and observe
that the form G has a complete factorization over R and has DG �= 0
since F is assumed in Theorem 4 to have the same properties. The
Schwarz-Christoffel maps gF , gTG are defined on H, and

gF (z) =
∫ z

i

F (1, τ )−2/n dτ

=
∫ z0

i

F (1, τ )−2/n dτ +
∫ z

z0

F (1, τ )−2/n dτ

= gF (z0) + (detT )
∫ z

z0

GT (1, τ )−2/n dτ

= ζ + gTG(z),

so that
P(F ) = ζ + P(G).

Next, SL2(R) invariance [6, p. 119] shows that AF = AG, DF = DG,
Q(F ) = Q(G), while the translation invariance of harmonic measure
and harmonic radius gives that

RP(F )(ζ) = RP(G)(0) = RP(G)

and
µP(F )(ζ;

�
vjvk) = µP(G)(0;

�
ṽj ṽk) = µP(G)(

�
ṽj ṽk),

where ṽj = vj − ζ is the jth vertex of P(G). Hence by applying
Theorem 4 to G we deduce that

D
1/n(n−1)
F = D

1/n(n−1)
G =

2
RP(G)

{ ∏
j �=k

sin(πµP(G)(
�

ṽj ṽk))
}1/n(n−1)

=
2

RP(F )(ζ)

{ ∏
j �=k

sin(πµP(F )(ζ;
�

vjvk))
}1/n(n−1)
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and

Q(F ) = Q(G) =
2|∂P(G)|
RP(G)

{ ∏
j �=k

sin(πµP(G)(
�

ṽj ṽk))
}1/n(n−1)

=
2|∂P(F )|
RP(F )(ζ)

{ ∏
j �=k

sin(πµP(F )(ζ;
�

vjvk))
}1/n(n−1)

.

Thus, Theorem 4 remains true when RP and µP are replaced by the
harmonic radius and harmonic measure with respect to ζ, instead of
the origin.

TABLE 1.

affine symmetric affine asymmetric

F (X,Y )
∏n

j=1(αjX−βjY ) a
∏n

j=1(Y − σjX)

d(Lj , Lk)
|αjβk−αkβj |√
α2

j+β2
j

√
α2

k
+β2

k

|sj−sk|√
1+s2j

√
1+s2

k

rF (
∏n

j=1

√
α2
j ! +β2

j )
−1/n (|a|∏n

j=1

√
1+s2

j )
−1/n

D
1/n(n−1)
F

∏
j �=k |αjβk−αkβj |1/n(n−1) |a|2/n ∏

j �=k |sj−sk|1/n(n−1)

AF

∫∫
|F (x,y)|≤ 1

dx dy |a|−2/n
∫ ∞
−∞

∏n
j=1 |s−sj |−2/n ds

TABLE 2.

complex symmetric complex asymmetric

F (X,Y )
∏n

j=1
(γ̄j z̄+γjz) κ

∏n

j=1
(z−eiθj z̄)

d(Lj , Lk)
1
2

|γj γ̄k−γ̄jγk|
|γj |·|γk|

1
2
|eiθj −eiθk |

rF
1
2
(|γ1| · · · |γn|)−1/n 1

2
|κ|−1/n

D
1/n(n−1)
F 2

∏
j �=k

|γj γ̄k−γ̄jγk|1/n(n−1) 2|κ|2/n
∏

j �=k
|eiθj −eiθk |1/n(n−1)

AF
1
2

∫ π

−π

∏n

j=1
|γje

iθ/2+γ̄je
−iθ/2|−2/n dθ 1

2
|κ|−2/n

∫ π

−π

∏n

j=1
|eiθ−eiθj |−2/n dθ
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TABLE 3.

polar equiangular polygon

F (X,Y ) ±
∏n

j=1
ρj(X sinψj−Y cosψj) P(v1, . . . , vn)

d(Lj , Lk) | sin(ψk−ψj)| sin(π · µP (



vjvk))

rF (ρ1 · · · ρn)−1/n (RP
2

)1/2

D
1/n(n−1)
F

1
r2

F

∏
j �=k

| sin(ψk−ψj)|1/n(n−1) 2
RP

{
∏

j �=k
sin(π · µP (



vjvk))}1/n(n−1)

AF r2
F

∫ π/2

−π/2
| sin(ψ−ψj)|−2/n dψ |∂P|

7. Summary of the representations of AF , DF , Q(F ) and
related quantities. In this final section we summarize the more
important formulas derived in the paper, for binary forms with a
complete factorization over R.

Tables 1, 2 and 3 present six equivalent formulas for each of the five
quantities F (X,Y ), d(Lj , Lk), rF , D

1/n(n−1)
F , AF . (Note that the area

AF is calculated in the real affine plane R2.) In particular, the entries
in corresponding rows of the three tables will all be equal, when the
assumptions listed below are satisfied. For example,

AF =
∫∫

|F (x,y)|≤1

dx dy

= |a|−2/n

∫ ∞

−∞

n∏
j=1

|s− sj |−2/n ds

=
1
2

∫ π

π

n∏
j=1

|γjeiθ/2 + γ̄je
−θ/2|−2/n dθ

=
1
2
|κ|−2/n

∫ π

−π

n∏
j=1

|eiθ − eiθj |−2/n dθ

= r2
F

∫ π/2

−π/2

n∏
j=1

| sin(ψ − ψj)|−2/n dψ

= |∂P|.
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Some formulas in the tables have not been written down explicitly
elsewhere in the paper, but these all follow easily from other formulas
that have been derived in this paper.

Recall that Lj denotes the jth asymptote of the curve |F (x, y)| = 1
(as ordered from the negative y-axis); that d(Lj , Lk) denotes the
“distance” between the asymptotes Lj , Lk, as defined by equation
(27) of Section 2; and that rF is the “average distance” of the curve
|F (x, y)| = 1 from the origin, as measured by equation (28) of Section 2.
Further, P is the equiangular polygon corresponding to the form F
under the Schwarz-Christoffel map of Theorem 3; RP denotes the
harmonic radius of P with respect to the origin and µP(

�
vjvk) is the

harmonic measure of the arc
�

vjvk on ∂P with respect to the origin (see
Section 6 for definitions).

The formulas in Tables 1, 2 and 3 hold under the following assump-
tions: (1) n ≥ 2, (2) αj , βj ∈ R, (3) ρj =

√
α2
j + β2

j , (4) ρj �= 0,
(5) for the “affine asymmetric” column of Table 1, assume βj �= 0
for all j, (6) ψj = arctan(αj/βj) ∈ (−π/2, π/2], (7) ψ1 ≤ · · · ≤ ψn,
(8) sj = αj/βj = tanψj , (9) a = (−1)nβ1 · · ·βn, (10) z = X + iY ,
z̄ = X − iY , (11) γj = (αj + iβj)/2, |γj | = ρj/2, (12) κ = γ1 · · · γn,
(13) θj = 2ψj ∈ (−π, π]; consequently, sj = tan(θj/2) and γ̄j/γj =
−eiθj , (14) for the “equiangular polygon” column of Table 3, assume
ψ1 < · · · < ψn and n ≥ 3, (15) v1, . . . , vn are the consecutive vertices
of the equiangular polygon P and are given by

vj = gF (sj) = hF (eiθj )

where gF : H→ P, hF : D→ P are the conformal maps defined by

gF (z) = a−2/n

∫ z

i

n∏
j=1

(v − sj)−2/n dv,

hF (w) =
−i
2
κ−2/n

∫ w

0

n∏
j=1

(τ − eiθj )−2/n dτ,

not forgetting the notational conventions for gF described after Corol-
lary 3.1.
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ENDNOTES

1. For any ring K, K[X,Y ] is the ring of polynomials in X and Y with coefficients
in K. Note that the collection of binary forms over K, i.e., bivariate polynomials
of homogeneous degree, is a proper subset of K[X,Y ]. See [15].

2. Though if we consider AF over the class of forms F with integer coefficients
and nonzero discriminant, then AF ≤ 3B[(1/3), (1/3)] since the discriminant of a
form with integer coefficients must be an integer, see [6].

3. On the other hand, property (P2) does hold.

4. Notationally, it may seem more natural here to interchange the roles of a, sj

and b, tj . However, we are going to actually only use the representation involving
a, sj , and so to maintain consistency with the papers [5, 6], the stated notation is
preferable.
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