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AREA INTEGRAL CHARACTERIZATION OF
M-HARMONIC HARDY SPACES ON THE UNIT BALL

MILOŠ ARSENOVIĆ AND MIROLJUB JEVTIĆ

ABSTRACT. Characterizations of M-harmonic Hardy
spaces Hp on the unit ball in Cn, n ≥ 1, in terms of area
functions involving gradient and invariant gradient are proved.

1. Introduction. Let B denote the unit ball in Cn, n ≥ 1,
and m the 2n-dimensional Lebesgue measure on B normalized so that
m(B) = 1, while σ is the normalized surface measure on its boundary
S. For the most part we will follow the notation and terminology of
Rudin [7]. If α > 1 and ξ ∈ S the corresponding Koranyi approach
region is defined by

Dα(ξ) = {z ∈ B : |1− 〈z, ξ〉| < (α/2)(1− |z|2)}.

For any function f on B we define a scale of maximal functions by

Mαf(ξ) = sup{|f(z)| : z ∈ Dα(ξ)}.

Let ∆̃ be the invariant Laplacian on B. That is,

(∆̃f)(z) =
1

n+ 1
∆(f ◦ φz)(0), f ∈ C2(B),

where ∆ is the ordinary Laplacian and φz the standard automorphism
of B taking 0 to z, see [7]. A function f defined on B is M-harmonic,
f ∈ M, if ∆̃f = 0.

For 0 < p < ∞, M-harmonic Hardy space Hp is defined to be the
space of all functions f ∈ M such that Mαf ∈ Lp(σ) for some α > 1.
We note that the definition is independent of α.

For f ∈ C1(B), Df = (∂f/∂z1, . . . , ∂f/∂zn) denotes the complex
gradient of f , ∇f = (∂f/∂x1, . . . , ∂f/∂x2n), zk = x2k−1 + ix2k,
k = 1, . . . , n, denotes the real gradient of f .
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We denote the area integrals by

Sαf(ξ) =
∫
Dα(ξ)

|∇f(z)|2(1− |z|2)1−n dm(z), ξ ∈ S

and
Tαf(ξ) =

∫
Dα(ξ)

|∇̃f(z)|2 dτ (z), ξ ∈ S,

where ∇̃f(z) = ∇(f ◦ φz)(0) is the invariant gradient and

dτ (z) = (1− |z|2)−1−n dm(z).

The main purpose of this paper is to prove the following theorem.

Theorem 1. Let 0 < p < ∞, and let f ∈ M. Then the following
are equivalent, with an aperture α > 1 fixed:

(a) f ∈ Hp.

(b) Sαf ∈ Lp(σ).

(c) Tαf ∈ Lp(σ).

This paper is organized as follows. In Section 2 some preliminaries
and auxiliary results are collected. In the third section we prove our
theorem for the case of M-harmonic functions. If f is holomorphic,
f ∈ H(B), the equivalence (a) ⇔ (b) is known though a detailed proof
seems to be lacking in the literature. The space Hp ∩ H(B) is the
usual Hardy space, and it will be denoted by Hp. In Section 4, for the
reader’s convenience, we give an independent proof of the theorem for
the case of Hp spaces.

2. Preliminaries. In terms of ordinary differential operators, the
invariant Laplacian ∆̃ is as follows:

(1) ∆̃ =
1

n+ 1
(1− |z|2)

n∑
j,k=1

(δj,k − zj z̄k)
∂2

∂zj∂z̄k
,

where δj,k denotes the Kronecker delta, see [7].
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Thus a straightforward calculation shows that, for f ∈ M,

∆̃|f |2(z) = 4
n+ 1

(1− |z|2)(|Df(z)|2 − |Rf(z)|2

+ |Df̄(z)|2 − |Rf̄(z)|2),

where, as usual, Rf(z) =
∑n

j=1 zj∂f/∂zj denotes the radial derivative
of f . A simple calculation shows that:

(2) ∆̃(1− |z|2)n = −4 n2

n+ 1
(1− |z|2)n+1.

We note that in [6] it is shown that, for f ∈ C1(B),

(3) |D̃f(z)|2 = |D(f ◦ φz)(0)|2 = (1− |z|2)(|Df(z)|2 − |Rf(z)|2).

The invariant Laplacian can be realized as a Laplace-Beltrami oper-
ator corresponding to the Bergman metric as follows. The Bergman
metric on B is given by

ds2 =
n∑

j,k=1

gjkdzjdz̄k,

where
gjk =

n+ 1
(1− |z|2)2 [(1− |z|2)δj,k + z̄jzk].

The inverse of the matrix gjk is gjk where

gjk(z) =
1

n+ 1
(1− |z|2)(δjk − z̄jzk)

and therefore the corresponding Laplace-Beltrami operator

4
n∑

j,k=1

gjk
∂2

∂zj∂z̄k

is precisely the invariant Laplacian. Hence one has Green’s formula for
the invariant Laplacian:
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If Ω is an open subset of B, Ω ⊂ B, whose boundary ∂Ω is
smooth enough, and u, v are real valued functions such that u, v ∈
C2(Ω) ∩ C1(Ω), then

(4)
∫

Ω

(u∆̃v − v∆̃u) dτ̃ =
∫
∂Ω

(
u
∂v

∂ñ
− v

∂u

∂ñ

)
dσ̃,

where τ̃ is the volume element of B determined by the Bergman metric,
σ̃ is the surface area element on ∂Ω determined by the Bergman
metric, and ∂/∂ñ denotes outward normal differentiation across ∂Ω
with respect to the Bergman metric.

By calculating the Jacobian of the identity map from “Euclidean”
B onto the “Bergman” B one can verify that the volume element τ̃ is
given by dτ̃ (z) = Cdτ (z), where C is a constant depending only on n.

Similarly, for 0 < r < 1, by calculating the Jacobian of the map
ξ �→ rξ from the “Euclidean” S onto the Bergman Sr = {rξ : ξ ∈ S}
one can find that the surface area element σ̃r on Sr determined by the
Bergman metric is given by

dσ̃r(rξ) = C
rn−1

(1− r2)n
dσ(ξ).

In this paper constants will be denoted by C which may indicate a
different constant from one occurrence to the next.

For ξ ∈ S and 0 < δ ≤ 2, set Qδ(ξ) = {η ∈ S : |1− 〈η, ξ〉| < δ}.
The class BMO consists of functions f ∈ L2(σ) for which

‖f‖2
BMO = sup

1
σ(Q)

∫
Q

|f(ξ)− fQ|2 dσ(ξ) < ∞,

where fQ denotes the average of f over a “ball” Q and the supremum
is taken over all Q = Qδ(ξ).

As final preliminary results we need the following three lemmas:

Lemma 1 [2]. If f ∈ H2 ∩ BMO, then Tαf ∈ BMO for all α > 1.

Lemma 2 [6]. Let 0 < p < ∞, 0 < r < 1, f ∈ M and
Er(z) = φz(rB), z ∈ B. Then there is a constant C = C(p, r) such
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that

(5) |∇̃f(z)|p ≤ C

∫
Er(z)

|f(w)|p dτ (w), z ∈ B.

Lemma 3 [5]. Let 0 < r < 1 and 1 ≤ i < j ≤ n. There is a constant
C such that if f ∈ M, then

a) |TijRf(w)| ≤ C(1− |w|2)−1/2
∫
Er(w)

|Rf(z)| dτ (z), w ∈ B,

b) |TijRf(w)| ≤ C(1− |w|2)−1/2
∫
Er(w)

|Rf(z)| dτ (z), w ∈ B,

where R =
∑n

j=1 z̄j(∂/∂z̄j) and Tij = z̄i(∂/∂zj) − z̄j(∂/∂zi) are
tangential derivatives.

3. Proof of Theorem.

(c) ⇒ (b). It follows from (3) that

|∇̃f(z)|2 = 2(|D̃f(z)|2 + |D̃f̄(z)|2)
≥ 2(1− |z|2)2(|Df(z)|2 + |Df̄(z)|2)
= (1− |z|2)2|∇f(z)|2

and hence (c)⇒ (b). (We note that it is not possible to bound |∇̃f(z)|2
by C(1− |z|2)2|∇f(z)|2 pointwise, see [4].)
(b) ⇒ (c). It is easy to check that

|z|2|Df(z)|2 = |Rf(z)|2 +
∑
i<j

|Tijf(z)|2.

Using this and (3) we find that

|z|2|∇̃f(z)|2 = 2|z|2(|D̃f(z)|2 + |D̃f̄(z)|2)
= 2(1− |z|2)[(1− |z|2)(|Rf(z)|2 + |Rf̄(z)|2)
+

∑
i<j

|Tijf(z)|2 +
∑
i<j

|Tij f̄(z)|2].
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Since |Rf(z)| ≤ |∇f(z)| and |Rf̄(z)| ≤ |∇f(z)|, to prove the implica-
tion (b) ⇒ (c) it is sufficient to show that

∫
Dα(η)

|Tijf(z)|2(1− |z|2)−n dm(z)

≤ C

∫
Dβ(η)

|∇f(z)|2(1− |z|2)1−n dm(z)

and∫
Dα(η)

|Tij f̄(z)|2(1− |z|2)−n dm(z)

≤ C

∫
Dβ(η)

|∇f(z)|2(1− |z|2)1−n dm(z)

for all 1 ≤ i < j ≤ n where 1 < α < β are fixed. We will prove the first
inequality. Analogously we may prove the second one.

From Lemma 3 we see that if rζ ∈ Dα(η), then

|TijRf(rζ)| ≤
{

C

1− r

∫
Sβ(r,η)

|Rf(w)|2 dτ (w)
}1/2

≤
{

C

1− r

∫
Sβ(r,η)

|∇f(w)|2 dτ (w)
}1/2

= Jr

and

|TijRf(rζ)| ≤
{

C

1− r

∫
Sβ(r,η)

|Rf̄(w)|2 dτ (w)
}1/2

≤ Jr

where Sβ(r, η) denotes the region

Sβ(r, η) = {z ∈ Dβ(η) : ((1− r2)/2) < 1− |z|2 < 2(1− r2)}.

An integration by parts shows that

f(rζ) =
∫ 1

0

[Rf(tr ζ) +Rf(tr ζ) + f(tr ζ)] dt.
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Hence
|Tijf(rζ)| ≤ C

r

∫ r

0

Jt dt.

Having obtained a bound for |Tijf(rζ)| which depends only on r, we
integrate in polar coordinates in Dα(η) using the fact that, for fixed r,

σ({ζ ∈ S : rζ ∈ Dα(η)}) ≤ C(1− r)n.

This gives that

∫
Dα(η)

|Tijf(z)|2(1− |z|2)−n dm(z) ≤ C

∫ 1

0

( ∫ r

0

Jt dt

)2

dr

≤ C

∫ 1

0

(1− r)2J2
r dr,

by Hardy’s inequality. Inserting the definition of Jr we obtain the
bound ∫ 1

0

(1− r)
∫
Sβ(r,η)

|∇f(z)|2 dτ (z) dr.

If z ∈ Sβ(r, η), then 1 − |z| is comparable to 1 − r, hence the above
integral is dominated by

∫
Dβ(η)

|∇f(z)|2(1− |z|2)1−n dm(z).

Implication (c) ⇒ (a). Let us fix 1 < α < β and 0 < r < 1. Put

Nα,rf(ξ) = sup |f(r1η)− f(r2η)|, ξ ∈ S,

where sup is taken over all r1η, r2η ∈ Dα(ξ) ∩ rB. We shall show that

(6) ‖Nα,rf‖Lp(σ) ≤ C‖Tβf‖Lp(σ),

where C is independent of r. From this it easily follows that Mαf ∈
Lp(σ) if Tβf ∈ Lp(σ).

For λ > 0, let χλ be the characteristic function of {ξ : Tβf > λ},
Rλ(f) = M(χλ) and Ωr,λ = {ξ ∈ S : Nα,rf > λ}. Here, as usual,
M(χλ) denotes the maximal function of χλ defined by

M(χλ)(ξ) = sup
t>0

1
σ(Qt(ξ))

∫
Qt(ξ)

χλ(η) dσ(η).
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Let B denote the collection of all balls contained in Ωr,λ which touch
the boundary. There is a disjoint subcollection {Qk} of B and a C > 0
such that if {Q̃k} is the ball with the same center as {Qk} and C times
the radius, then {Q̃k} covers Ωr,λ. An adaptation of the argument
given in [3] shows that the following is true.

Suppose δ > 0, then there exists an ε > 0 such that for all λ > 0 and
all k we have

(7) σ({ξ ∈ Q̃k : Nα,rf > 2λ,Rελf(ξ) ≤ 1/2}) ≤ δσ(Q̃k).

This implies (6). Put

Gk = {ξ ∈ Q̃k : Nα,rf(ξ) > 2λ,Rελf(ξ) ≤ 1/2}.

Now

{ξ ∈ S : Nα,r > 2λ} ⊂ {ξ ∈ S : Rελf(ξ) > 1/2} ∪ (∪Gk)

so

σ({ξ ∈ S : Nα,r(ξ) > 2λ}) ≤ σ({ξ ∈ S : Rελf(ξ) > 1/2})
+ δ

∑
k

σ(Q̃k)

≤ C(σ({ξ ∈ S : Tβf(ξ) > ελ})
+ δσ({ξ ∈ S : Nα,rf(ξ) > λ}).

(Here we have used that

σ({ξ ∈ S : Rελf(ξ) > 1/2}) ≤ Cσ({ξ ∈ S : Tαf(ξ) > ελ}),

by the maximal theorem, and (7).)

Multiply by pλp−1 and integrate in λ from 0 to ∞ to find

‖Nα,rf‖pLp(σ) ≤ C(‖Tβf‖pLp(σ) + δ‖Nα,rf‖pLp(σ)),

where C is independent of r, which gives (6) if δ is chosen sufficiently
small.
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Implication (a) ⇒ (c). Assume 1 < α < β and 0 < r < 1. Put

Tα,rf(ξ) =
∫
Dα(ξ)∩rB

|∇̃f(z)|2 dτ (z).

We shall show

(8) ‖Tα,rf‖Lp(σ) ≤ C‖Mβf‖Lp(σ),

with C independent of r, and then let rB expand to B.

Suppose Mβf ∈ Lp(σ). For λ > 0, consider an open set Ωr,λ = {ξ ∈
S : Tα,rf(ξ) > λ}. Let B denote the collection of balls contained in
Ωr,λ which touch the boundary. There is a subcollection {Q̃k} of B and
a C > 0 such that if {Q̃k} is the ball with the same center as Qk and
C times the radius, then {Q̃k} covers Ωr,λ. Arguing as above we find
that the following is true.

Suppose that δ > 0; then there exists an ε > 0 such that

(9) σ({ξ ∈ Q̃k : Tα,rf(ξ) > 2λ,Mβf(ξ) ≤ ελ}) ≤ δσ(Q̃k).

This implies (8).

Put Gk = {ξ ∈ Q̃k : Tα,rf(ξ) > 2λ,Mβf(ξ) ≤ ελ}. Now

{ξ ∈ S : Tα,rf(ξ) > 2λ} ⊂ {ξ ∈ S :Mβf(ξ) > ελ} ∪ (∪Gk),

so

σ({ξ ∈ S : Tα,rf(ξ) > 2λ}) ≤ σ({ξ ∈ S :Mβf(ξ) > ελ}) + δ
∑
k

σ(Q̃k)

≤ C(σ({ξ ∈ S :Mβf(ξ) > ελ})
+ δσ({ξ ∈ S : Tα,rf(ξ) > λ})).

Multiply by pλp−1 and integrate in λ from 0 to ∞ to find

‖Tα,rf‖pLp(σ) ≤ C(‖Mβf‖pLp(σ) + δ‖Tα,rf‖pLp(σ)),

by (9). This gives (8), if δ is chosen sufficiently small.
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4. Analytic case. In this section we give an independent proof,
based on an interpolation theorem, for the case of Hp spaces.

The implication (a) ⇒ (c). We consider first case 0 < p < 2. First
we show the implication is true in case f ∈ H∞(B), the space of all
holomorphic bounded functions on B. Assume that f ∈ H∞(B) and let
1 < α < β be fixed. Let E = {ξ ∈ S : Mβf(ξ) ≤ h}, h > 0, and let F
be the complement of the set E. If λMβf (t) = σ({ξ ∈ S :Mβf(ξ) > t}),
t > 0 is the distribution function of Mβf , then λMβf (h) = σ(F ).

Let R = ∪ξ∈EDα(ξ). From (1) and (3) we see that ∆̃|f |2 =
(4/(n+ 1))|D̃f |2. Hence,

2
n+ 1

∫
E

[Tαf(ξ)]2 dσ(ξ) =
∫
E

∫
Dα(ξ)

∆̃|f |2(z) dτ (z) dσ(ξ)

=
∫
R

∆̃|f |2(z)σ({ξ ∈ E : z ∈ Dα(ξ)}) dτ (z),

by Fubini’s theorem. Since σ({ξ ∈ S : z ∈ Dα(ξ)}) ∼= (1 − |z|2)n, we
see that

(10)
∫
E

[Tαf(ξ)]2 dσ(ξ) ≤ C

∫
R

∆̃|f |2(z)(1− |z|2)n dτ (z).

To calculate the right integral, we apply (4). But we have to replace
the region R by smooth regions Rε ⊂ R approximating R. See [9] for
this argument. We put u = (1− |z|2)n, v = |f |2. Then we have

∫
Rε

∆̃|f |2(z)(1− |z|2)nτ (z) =
∫
Rε

|f(z)|2∆̃(1− |z|2)n dτ (z)

+
∫
∂Rε

(1− |z|2)n ∂

∂ñ
|f(z)|2 dσ̃(z)

−
∫
∂Rε

|f(z)|2 ∂

∂ñ
(1− |z|2)n dσ̃(z)

= I1 + I2 − I3.

It follows from (2) that I1 < 0. To evaluate I2 and I3 we divide the
boundary ∂Rε into two parts ∂RE

ε and ∂RF
ε , where ∂R

E
ε (respectively
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∂RF
ε ) is the part lying above the set E (respectively F ). Set

IE1 =
∫
∂RE

ε

(1− |z|2)n ∂

∂ñ
|f(z)|2 dσ̃(z),

IF1 =
∫
∂RF

ε

(1− |z|2)n ∂

∂ñ
|f(z)|2 dσ̃(z),

IE2 =
∫
∂RE

ε

|f(z)|2 ∂

∂ñ
(1− |z|2)n dσ̃(z)

and

IF2 =
∫
∂RF

ε

|f(z)|2 ∂

∂ñ
(1− |z|2)n dσ̃(z).

It is easily verified that if v is real valued and C1 in B then the
outward normal derivative ∂v/∂ñ at tξ along St is given by

∂v

∂ñ
(tξ) =

2√
n+ 1

(1− t2)Re
n∑
j=1

ξj
∂v

∂zj
(tξ).

Using this the Schwarz inequality and (5), Lemma 2, we find that

(11)

|IE1 | ≤ C

∫
∂RE

ε

(1− |z|2)|f(z)| |∇f(z)| ds(z)

≤ C

(∫
∂RE

ε

|f(z)|2 ds(z)
)1/2( ∫

∂RE
ε

|∇̃f(z)|2 ds(z)
)1/2

≤ C

∫
E

[Mβf(ξ)]2 dσ(ξ).

(Here we denoted the area measure on ∂RE
ε by ds.)

Next we estimate IF1 . By the definition of E, we know that |f(z)| ≤ h
for all z ∈ ∪{Dβ(ξ) : ξ ∈ E} and so by (5) we have |∇̃f(z)| ≤ Ch for
all z ∈ R. (We may choose 0 < r < 1 so that if w ∈ Dα(ξ) then
Er(w) ⊂ Dβ(ξ).) This gives that

(12)
IF1 ≤ C

∫
∂RF

ε

(1− |z|2)n|f(z)| |∇̃f(z)| dσ̃(z) ≤ Ch2σ(F )

= Ch2λMβf (h).



12 M. ARSENOVIĆ AND M. JEVTIĆ

Using the same argument as in the previous step we find that

(13) IE2 ≤ C

∫
E

[Mβf(z)]2 dσ(ξ) ≤ C

∫ h

0

tλMβf (t) dt.

Finally, since |f(z)| ≤ h on Rε, we get

(14) IF2 ≤ Ch2σ(F ) = Ch2λMβf (h).

Combining (11), (12), (13) and (14) we can replace (10) by the following
inequality:

∫
E

[Tαf(ξ)]2 dσ(ξ) ≤ C

[
h2λMβf (h) +

∫ h

0

tλMβf (t) dt
]
.

From this and the fact that σ(F ) = λMβf (h), it follows that

λTαf (h) ≤ C

[
λMβf (h) +

1
h2

∫ h

0

tλMβf (t) dt
]
.

Therefore we get that

(15)
∫
S

[Tαf(ξ)]p dσ(ξ)

≤ C

[ ∫ ∞

0

hp−1

(
λMβf (h) +

1
h2

∫ h

0

tλMβf (t) dt
)
dh

]

≤ C

[ ∫ ∞

0

hp−1λMβf (h) dh+
∫ ∞

0

tλMβf (t)
(∫ ∞

t

hp−3 dh

)
dt

]

≤ C

∫
S

[Mβf(ξ)]p dσ(ξ).

This proves the theorem for the case f ∈ H∞(B).

To show the general case, suppose that f ∈ Hp(B), 0 < p < 2.
Define fε, for 0 < ε < 1 and z ∈ B by fε(z) = f(εz). Then we have
fε ∈ H∞(B). Replace f by fε in (15) to get that

(16) ‖Tαfε‖Lp(σ) ≤ C‖Mβf‖p.

To complete the proof we have to eliminate ε in the above inequality.
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Since |∇̃fε(z)| → |∇̃f(z)| as ε → 1, by Fatou’s lemma we have

‖Tαf‖pLp(σ) ≤
∫
S

(
lim inf
ε→1

∫
Dα(ξ)

|∇̃fε(z)|2 dτ (z)
)p/2

dσ(ξ)

=
∫
S

lim inf
ε→1

( ∫
Dα(ξ)

|∇̃fε(z)|2 dτ (z)
)p/2

dσ(ξ)

≤ lim inf
ε→1

∫
S

( ∫
Dα(ξ)

|∇̃fε(z)|2 dτ (z)
)p/2

dσ(ξ)

≤ C lim inf
ε→1

‖Mβfε‖pLp(σ)

≤ C‖Mβf‖pLp(σ),

by (16).

Now we apply Lemma 1 and interpolation theorem [8] to conclude
that the implication (a) ⇒ (c) is true for all 0 < p < ∞.
The proof of the implication (b) ⇒ (a) can be easily reduced to the

harmonic case already proved in [1]. More precisely, if Sαf ∈ Lp(σ),
then by Lemma 3 on page 61 of [9] the standard area integral of f
taken over cones lies in Lp(σ). Now by the result of [1], Lemma 2.2
the nontangential maximal function of f lies in Lp(σ). This certainly
implies that f ∈ Hp.
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