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A NOTE ON
NON-AUTONOMOUS IMPLICIT INTEGRAL EQUATIONS

WITH DISCONTINUOUS RIGHT-HAND SIDE

GIOVANNI ANELLO AND PAOLO CUBIOTTI

ABSTRACT. Let I := [0, 1], f : I × [0, σ] → R, g : I × I →
[0, +∞[ and h : I× ] 0, +∞ [→ R. In this note we prove an
existence result for solutions u ∈ Ls(I) of the integral equation

h(t, u(t)) = f

(
t ,

∫
I

g(t, z)u(z) dz

)
for a.a. t ∈ I

where, in particular, the continuity of f with respect to
the second variable is not assumed. Our result is a partial
extension of a previous result of the same authors [1], where
the function h was not allowed to depend explicitly on t.

1. Introduction. Let A ⊆ ]0,+∞[, I := [0, 1] and J := [0, λ], with
λ > 0, and let us consider the integral equation

(1) h(u(t)) = f

(
t,

∫
I

g(t, z)u(z) dz
)

for a.a. t ∈ I,

where f : I×J → R, g : I× I → [0,+∞[ and h : A → R. Recently, in
the papers [1, 2, 3, 6], the equation (1) has been investigated together
with some of its special cases, obtaining some existence results where
the function f is not assumed to be continuous in the second variable.
More specifically, in the paper [1] the function f was assumed to satisfy
the following assumption: there exist a function f∗ : I × J → R and
two negligible sets E1, E2 ⊆ J , with E2 closed, such that f∗( · , x) is
measurable for each x in a countable dense subset of J and, for a.a.
t ∈ I, one has {

x ∈ J : f∗(t, x) �= f(t, x)
}
⊆ E1,{

x ∈ J : f∗(t, · ) is discontinuous at x
}
⊆ E2.
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Of course, such a function f can be discontinuous (with respect to the
second variable) at each point x ∈ J .

In this note we consider the more general integral equation

(2) h(t, u(t)) = f

(
t ,

∫
I

g(t, z)u(z) dz
)

for a.a. t ∈ I,

and, in the spirit of [1], we prove an existence theorem for solutions
u ∈ Ls(I) where f is not assumed to satisfy the usual Carathéodory
condition, but only the more general condition above. Our study was
motivated by the reading of the papers [4, 7, 9]. In particular, in [7],
to find solutions to equation (2), besides assuming the Carathéodory
condition on f and h, it was assumed that h is nondecreasing in ]0,+∞[
with respect to the second variable (and having linear growth). In
[4, 9] the authors consider little different implicit integral equations.
However, many special cases of these latter fall within the framework of
equation (2). We also refer the reader to the references of these papers
where he can find some mathematical models which make interesting
studying equations like (2).

Our result is as follows (from now on, m denotes the Lebesgue
measure on the real line and “int” stands for “interior”; moreover,
to make notations simpler, we put ht := h(t, · )).

Theorem 1.1. Let I := [0, 1] and J := [0, λ], with λ > 0. Let
s ∈ ]1,+∞], A ⊆ ]0,+∞[ an interval, h : I × A → R a Carathéodory
function. Let f : I × J → R, g : I × I → [0,+∞[, β ∈ Ls(I),
φ0 ∈ Lj(I), with j ≥ s′ := s/(s− 1) and j > 1, φ1 ∈ Ls′

(I), and let P
be a countable dense subset of J . Assume that:

(i) there exist a function f∗ : I × J → R and two sets E1, E2 ⊆ J ,
with E2 closed and m(E1 ∪ E2) = 0 such that, for each x ∈ P , the
function f∗( · , x) is measurable and for a.a. t ∈ I one has

(3)
{
x ∈ J : f∗(t, x) �= f(t, x)

}
⊆ E1

and

(4)
{
x ∈ J : f∗(t, · ) is discontinuous in x

}
⊆ E2;
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(ii) for a.a. t ∈ I, one has that

inth−1
t (z) = ∅ for all z ∈ intht(A),

and the two sets{
x ∈ A : x is a local minimum for ht

}
,{

x ∈ A : x is a local maximum for ht

}
are closed;

(iii) if one puts

v(t) := ess inf
x∈J

f(t, x), z(t) := ess sup
x∈J

f(t, x),

then for a.a. t ∈ I one has

(5) [v(t), z(t)] ⊆ ht(A) and sup h−1
t ([v(t), z(t)]) ≤ β(t);

(iv) one has

0 < ‖φ0‖Ls′(I) ≤
λ

‖β‖Ls(I)
;

(v) for each t ∈ I, the function g(t, ·) is measurable;

(vi) for a.a. z ∈ I, the function g(· , z) is continuous in I, differen-
tiable in ]0, 1[ and

g(t, z) ≤ φ0(z), 0 <
∂g

∂t
(t, z) ≤ φ1(z) for all t ∈ ]0, 1[.

Then there exists a solution û ∈ Ls(I) to the equation (2).

Theorem 1.1 above extends Theorem 1.1 of [1] (where equation
(1) is considered) to the more general equation (2) (note also that
assumptions (ii)1 and (iii) of Theorem 1.1 are a natural extension of
assumptions (6) and (7) of Theorem 1.1 of [1] to the case in which
h depends explicitly on t). Such an extension is not full since we are
assuming, in addition, that for a.a. t ∈ I both of the sets of local minima
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and local maxima of ht are closed. Roughly speaking, this is needed in
order to prove Lemma 2.4 below and, consequently, to ensure that the
multi-function G defined in the proof of Theorem 1.1 is L(I) ⊗ B(J)-
measurable. Ultimately, this is the key point of the proof, which makes
it possible to extend the ideas of [1] to problem (2).

The proof of Theorem 1.1 will be given in the next section, together
with some technical preliminary results. As regards notations, we refer
to [1]. Finally, we refer to [1] for remarks and counterexamples to
possible improvements of Theorem 1.1.

2. The proof of Theorem 1.1. Firstly, we establish some technical
lemmas. We recall that if (T,�) is a measurable space and X is a
topological space, a multi-function F : T → 2X is said to be measurable
if F−(A) := {t ∈ T : F (t) ∩A �= ∅} ∈ � for every open set A in X .

Lemma 2.1. Let (T,�), X and Y be respectively a measurable space,
a separable metric space and a topological space. Let h : T ×X → Y
be a function such that h(t, ·) is continuous for all t ∈ T and h(·, x) is
measurable for all x ∈ X. Let Ω be a subset of X.

Then, the multi-function H : T → 2Y defined by H(t) = h(t,Ω) for
every t ∈ T , is measurable.

Proof. Since every subset of a separable metric space is separable
with respect to the relative topology, we can find a sequence {xn} in
Ω such that Ω ⊆ {xn}. Now, let A be an open subset of Y . We now
show that

H−(A) =
⋃

n∈N

{t ∈ T : h(t, xn) ∈ A};

hence, our conclusion will follow. Clearly, it is enough to prove that

H−(A) ⊆
⋃

n∈N

{t ∈ T : h(t, xn) ∈ A},

since the reverse inclusion is obvious. To this aim, choose any t∗ ∈
H−(A). Then, there exists x ∈ Ω such that h(t∗, x) ∈ A. Since the
function h(t∗, ·) is continuous at x, there exists n∗ ∈ N such that
h(t∗, xn∗) ∈ A. Consequently, we get
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t∗ ∈
⋃

n∈N

{t ∈ T : h(t, xn) ∈ A},

as claimed.

In the sequel, if T is a given nonempty set, A is a topological space
and h : T ×A→ R is a function, we put, for each t ∈ T ,

mh(t) := {x ∈ A : x is a local minimum for ht}
Mh(t) := {x ∈ A : x is a local maximum for ht}
lh(t) := inf

x∈A
ht(x)

uh(t) := sup
x∈A

ht(x).

Lemma 2.2. Let T be a topological space with a σ-algebra T
containing the open subsets of T . Let A ⊆ R be an interval, and let
h : T ×A→ R be a continuous function satisfying

(6) inth−1
t (r) = ∅ for all t ∈ T, r ∈ [lh(t), uh(t)] .

Then, the multi-functions mh,Mh : T → 2A are measurable.

Proof. Put
T1 := {t ∈ T : lh(t) > −∞},
T2 := {t ∈ T : uh(t) < +∞}.

It is easy to realize that T1 and T2 are measurable, see [5, Lemma
III.39]. Now, we observe that, for each t ∈ T , one has

(7) mh(t) = m1(t) ∪m2(t) ∪m3(t)

where

m1(t) := {x ∈ A : h(t, x) = lh(t)},
m2(t) := {x ∈ mh(t) : h(t, x) = uh(t)} and
m3(t) := {x ∈ mh(t) : h(t, x) ∈ ]lh(t), uh(t)[ }.
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The continuity of h implies that m1 has closed values in A. Moreover,
the functions lh and uh, which take their values in R, are upper semi-
continuous and lower semi-continuous in T , respectively. In particular,
they are measurable. Consequently, the functions

(t, x) ∈ T1 ×A −→ h(t, x) − lh(t) ∈ R

and
(t, x) ∈ T2 ×A −→ h(t, x) − uh(t) ∈ R

have the Carathèodory property. Then, by [8, Theorem 3.5 and
Corollary 6.3], it follows that m1 is measurable.

Now, we claim that m2 is measurable too. To prove our claim, fix
an open subset Ω of A. Moreover, let rn be a sequence in Ω such that
Ω ⊆ {rn}, and put

Bn,k := {y ∈ A : |y − rn| < 1/k}.

Of course, each Bn,k is open in A. Let us show that

(8) m−
2 (Ω) =

⋃
(n,k)∈N×N

{t ∈ T2 : {0} = h(t, Bn,k ∩ Ω) − uh(t)}

by which, taking into account Lemma 2.1, our claim follows. Let
t ∈ m−

2 (Ω). Then m2(t) ∩ Ω �= ∅. Pick x0 ∈ m2(t) ∩ Ω. Since x0

is at the same time a local minimum and a global maximum for h(t, ·),
we can find an open subset V of Ω such that h(t, x) = uh(t) for all
x ∈ V . If we choose n, k ∈ N for which Bn,k ⊂ V we easily get
{0} = h(t, Bn,k ∩ Ω) − uh(t). Therefore, it follows that

m−
2 (Ω) ⊆

⋃
(n,k)∈N×N

{t ∈ T2 : {0} = h(t, Bn,k ∩ Ω) − uh(t)}.

Since the reverse inclusion comes by the same argument, then (8) is
proved. Finally, we claim that the multi-function m3 is lower semi-
continuous. To prove this latter assertion, fix an open subset Ω of
A. We have to show that m−

3 (Ω) is open. Let t0 ∈ m−
3 (Ω) and

x0 ∈ m3(t0) ∩ Ω. Therefore, lh(t0) < h(t0, x0) < uh(t0) and x0 is
a local minimum for h(t0, ·). As h is continuous, lh is upper semi-
continuous and uh is lower semi-continuous, we can find an open
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neighborhood V1 of t0 and an open neighborhood W1 ⊆ Ω of x0

in A such that lh(t) < h(t, x) < uh(t) for every (t, x) ∈ V1 × W1.
Also, we can find an open neighborhood W2 of x0, with W2 ⊆ W1,
such that h(t0, x) ≥ h(t0, x0) for every x ∈ W2. Without loss of
generality, we can suppose that W2 is an interval. Now, suppose
x0 ∈ int (A). Then, by condition (6), there are x1, x2 ∈ W2 satisfying
x1 < x0 < x2, h(t0, x1) > h(t0, x0) and h(t0, x2) > h(t0, x0). By the
continuity of h, there exists an open neighborhood V2 of t0 with V2 ⊆ V1

such that h(t, x1) > h(t, x0) and h(t, x2) > h(t, x0) for all t ∈ V2.
Consequently, if t ∈ V2, the function h(t, ·) has a local minimum xt

lying in ]x1, x2[ ⊆ W2 ⊆ W1 ⊆ Ω. Analogously, if x0 = inf A or
x0 = supA we can argue in a similar manner to achieve the same
conclusion. Consequently, xt ∈ m3(t) ∩ Ω for every t ∈ V2 and thus
m−

3 (Ω) is open. In particular, the multi-function m3 is measurable.
Therefore, taking into account (7) and [8, Proposition 2.3], we have that
the multi-function mh is measurable as well. By the same argument it
can be proved that the multi-function Mh is measurable.

By Lemma 2.2 the following result follows easily.

Lemma 2.3. Let T and A be as in Lemma 2.2 and let μ be a
complete measure on T . Assume that h : T × A→ R is measurable in
first variable and continuous in the second one. Moreover, assume that
(6) holds for almost all t ∈ T .

Then, the multi-functions mh,Mh are measurable.

Proof. Let T0 ⊆ T such that μ(T0) = 0 and (6) holds for all
t ∈ T1 := T \ T0. By the Scorza-Dragoni theorem, we get the existence
of a sequence of pairwise disjoint measurable sets {Kn} in T such that

μ
(
T1 \ ∪n∈NKn

)
= 0

and the restriction of h to each setKn×A is continuous. By Lemma 2.2,
the multi-functions mh and Mh are measurable on each Kn. Since

μ
(
T0 ∪ (T1 \ ∪n∈NKn)

)
= 0

it follows that, the multi-functions mh and Mh are measurable on T .
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Finally, we prove the following result.

Lemma 2.4. Let T and A be as in Lemma 2.2. Assume that
h : T × A → R is measurable in first variable and continuous in the
second one, and that h satisfies condition (6). Moreover, assume that
mh(t) and Mh(t) are closed for all t ∈ T .

Then, there exists a multi-function Y : T → 2A such that:

(i) the graph Gr (Y ) of Y is T ⊗ B(A)-measurable;

(ii) for each measurable J ⊆ R, and each T ⊗ B(J)-measurable
function g : T × J → R satisfying

(9) g(t, x) ∈ h(t, A) for all (t, x) ∈ T × J,

the multi-function Hg : T × J → 2A, defined by putting

H(t, x) := h−1
t (g(t, x)) ∩ Y (t),

is T ⊗ B(J)-measurable and with closed values.

Proof. Let J ⊆ R be a measurable set, and let g : T × J → R be any
T ⊗ B(J)-measurable function satisfying (9). By [11, Theorem 2.4], if
for t ∈ T we take

(10) Y (t) = [h−1
t (lh(t)) ∩ (A \Mh(t))]∪

[h−1
t (uh(t)) ∩ (A \mh(t))] ∪ [A \ (mh(t) ∪Mh(t))],

one has that H(t, x) is nonempty and closed for all (t, x) ∈ T × J . By
Corollary 1 and Theorem 3.5 of [8] we have that the graph of both
the multi-functions mh and Mh is T ⊗B(A)-measurable. Now, observe
that one has

Gr (Y ) = [(h(·, ·) − lh(·))−1(0) ∩ (A× T \ Gr (Mh))]
∪ [(h(·, ·) − uh(·))−1(0) ∩ (A× T \ Gr(mh))]
∪ [A× T \ (Gr (mh) ∪ Gr (Mh))].

Consequently, Gr (Y ) is T ⊗ B(A)-measurable. Again by [8, Theorem
3.5], to achieve the conclusion it is enough to prove that Gr (H) is
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T ⊗ B(J) ⊗ B(A)-measurable. This latter fact comes out from the
following equality

Gr (H) = {(t, x, y) ∈ T × J ×A : h(t, y) = g(t, x) and y ∈ Y (t)}.

This ends the proof.

Proof of Theorem 1.1. Once the preliminary results have been
established, the proof of Theorem 1.1 essentially follows the one of [1,
Theorem 1.1], to which we will often refer in the sequel. Without loss
of generality, we can assume that (3), (4), (5) and also assumption (ii)
hold for all t ∈ I. Moreover, we can assume that j < +∞ and that
h(t, · ) is continuous for all t ∈ I.

As shown in the proof of Theorem 1 of [1], the functions v(t) and z(t)
are measurable in I. Let l : I → R be any measurable function such
that

v(t) ≤ l(t) ≤ z(t) for all t ∈ I,

and let f̂ : I × J → R be defined by

f̂(t, x) =
{
f∗(t, x) if x /∈ E2

l(t) if x ∈ E2.

As in [1], it can be checked that for each t ∈ I one has

(11)
{
x ∈ J : f̂(t, · ) is discontinuous at x

}
⊆ E2,

the function f̂ is L(I) ⊗ B(J)-measurable and one has

(12) v(t) ≤ f̂(t, x) ≤ z(t) for all (t, x) ∈ I × J.

For each t ∈ I, let Y (t) ⊆ A be defined as in (10). From now on, for
simplicity, we put Yt := Y (t). By assumption (ii) and by [11, Theorem
2.4], one has that for each t ∈ I the function

ht|Yt : Yt −→ ht(A)

is open and ht(Yt) = ht(A). It follows that for each t ∈ I the multi-
function Tt : ht(A) → 2Yt defined by

Tt(s) = h−1
t (s) ∩ Yt
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is lower semi-continuous in ht(A) with nonempty values. Let G :
I × J → 2A be defined by

G(t, x) = Tt(f̂(t, x)) = h−1
t (f̂(t, x)) ∩ Yt

(G is well defined by (5) and (12)). By Lemma 2.4, the multi-function
G is L(I) ⊗ B(J)-measurable, with closed values and, by (11), for all
t ∈ I one has{

x ∈ J : G(t, · ) is not lower semi-continuous at x
}
⊆ E2.

Put

E3 = λ

{
p

2m
: p,m ∈ N, p ≤ 2m

}
.

By [1, Lemma 8], there exists a function k : I × J → R such that

k(t, x) ∈ G(t, x) for all (t, x) ∈ I × J.

Moreover, for a.a. t ∈ I, one has

(13)
{
x ∈ J : k(t, · ) is discontinuous at x

}
⊆ E2 ∪ E3

and for each x ∈ J \ (E2 ∪ E3) the function k(· , x) is measurable. For
each t ∈ I, let us put

α(t) := inf h−1
t ([v(t), z(t)]).

By the continuity of ht, taking into account (5) and (12), we get

k(t, x) ∈ h−1
t (f̂(t, x)) for all (t, x) ∈ I × J,

and also

0 < α(t) ≤ k(t, x) ≤ β(t) for all (t, x) ∈ I × J.

Let T1 ⊆ I be such that m(T1) = 0 and (13) holds for all t ∈ I \ T1.
Define ψ : I × R → R by putting

ψ(t, x) =
{
k(t, x) if (t, x) ∈ (I \ T1) × (J \ E2)
β(t) otherwise.
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Then, for each t ∈ I \ T1, one has
{
x ∈ R : ψ(t, · ) is discontinuous at x

}
⊆ E2 ∪ E3.

Let P ′ := (λ(Q ∩ I)) \ E3 (where Q denotes the set of rational real
numbers), and let P ′′ be any countable dense subset of R \ J . Then
the set P ∗ := P ′ ∪ P ′′ is countable and dense in R, and by the above
construction the function ψ(·, x) is measurable for all x ∈ P ∗.

Since the assumptions of Proposition 2 of [2] are fulfilled, the multi-
function F : I × R → R defined by

F (t, x) :=
⋂

m∈N

co

( ⋃
y∈P∗

|y−x|≤(1/m)

{ψ(t, y)}
)

satisfies the conclusion of the same Proposition (note that, since
co (A) = co (A) for A ⊆ Rn, we have removed the closure of the union
in the definition of F given in Proposition 2 of [2]). Moreover,

F (t, x) ⊆ [α(t), β(t)] for all (t, x) ∈ I × R.

Applying [1, Theorem 1] exactly in the same way as in [1], we get the
existence of a function û ∈ Ls(I) and a set T2 ⊆ I, with m(T2) = 0,
such that

û(t) ∈ F
(
t ,

∫
I

g(t, z)û(z) dz
)

for all t ∈ I \ T2.

At this point, we can argue exactly as in proof of Theorem 1 of [1] (the
set λH being replaced by E3) to deduce that û satisfies equation (2).

Example. We present an example of application of Theorem 1.1
where the nonlinearity f is discontinuous at each point with respect
to the second variable. Let s ∈ ]1,+∞[, λ,m, γ > 0 and σ ∈ R with
σ < 1 − (1/s). Let α ∈ C([0, 1] × [0, λ]) positive and satisfying

∥∥∥ max
x∈[0,λ]

(α(·, x))1/m
∥∥∥

Ls([0,1])
≤ λ

2

(
s(1 − σ) − 1

s− 1

)
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and put f(t, x) = α(t, x)(1 +χQ(x)) for all (t, x) ∈ [0, 1]× [0, λ], where
χQ(x) = 1 if x ∈ Q and χQ(x) = 0 if x ∈ R \ Q is the characteristic
function of the set of the rational number Q.

Finally, put
h(t, y) = |y|mety

for all (t, y) ∈ [0, 1] × [0,+∞] and

g(t, z) =
(1 + t+ z)γ

zσ

if (t, z) ∈ [0, 1] × ]0, 1] (and arbitrarily defined in [0, 1]× {0}).
Then, Theorem 1.1 applies choosing j = s′, f∗ = α, P =

E1 = Q, E2 = ∅, φ1(z) = γ, φ0(z) = γ3γz−σ and β(t) =
maxx∈[0,λ](2α(t, x))1/m.
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