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POSITIVE SOLUTIONS OF SUPERLINEAR
HAMMERSTEIN INTEGRAL EQUATIONS
IN BANACH SPACES

BENDONG LOU

ABSTRACT. Some existence results of positive solutions
for superlinear Hammerstein integral equations in Banach
spaces are obtained by means of the fixed point index theory.
Some applications to superlinear Sturm-Liouville problems in
Banach spaces are given. We do not use the method of prior
estimate which is used in many papers for similar problems.
Our theorems extend some former results in this field.

1. Introduction. Let E be a Banach space. Consider the following
Hammerstein integral equation in E:

1
1) ol(t) = / K(t,5) (s 0(5)) ds = Ap(t),

where I = [0,1], k(t,s) € C[I x I, R'] is nonnegative, f € C[I x E, E|
and ¢ € C[I,E]. In this paper we get some existence theorems of
positive solutions of equation (1) by means of the fixed point index
theory and then give some applications to superlinear Sturm-Liouville
problems in Banach spaces.

Many authors have studied the existence of nontrivial solutions for
two-point boundary value problems (BVPs) of ordinary differential
equations, cf. [5, 8, 3, 6]. In [5, 8, 3|, the authors investigated the
superlinear Sturm-Liouville problems. In [5], the superlinear condition
is expressed as

o(f(t, u))

lim B8
b ew)
[lul|—+oo

uniformly in ¢ € [a, 8] C (0,1),

where P is a cone of E and ¢ is a positive linear functional. Clearly
this superlinear condition is not very sharp since the righthand side of
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it is +o00. In [8], the superlinear condition is expressed by an order
relation

ft,w) >a(t)u—0b(t), Vtel, ueP,

where a € C(I) with a(t) > 0 and b € C[I,E]. This condition is
sharp but the results for Sturm-Liouville problems cannot be extended
to integral equations easily, see [8]. The superlinear condition in [3] is
similar to that in [8], and the BVPs considered in [3] is a scalar one.
Furthermore, [3] used the method of prior estimate which is also used
in [6] and is complicated. In this paper we consider the Hammerstein
integral equation (1) instead of BVPs. Our superlinear condition is also
expressed by an order relation, see (H;) in Section 3, and is sharp. We
do not use the method of prior estimate. Our results generalize some
of the results in [5, 8, 3].

In what follows, let P be a normal cone of E¥ with a normal constant
N, see [1, 2]. 6 < u < v implies ||u]| < N||v||, where 6 is the zero
element of E. It is clear that C[I, E] is a Banach space with norm
¢llc = maxics llp(®)l, ¢ € CI1LE]. Let K — {g € C[L,E] | p(t) € P
for all t € I}, then K is a cone of C[I,E|. ¢ € C[I,E] is called a
positive solution of equation (1) if it satisfies (1) and ¢ € K\{6}. The
closed ball in E is denoted by T} = {u € E | ||u|| <1}, 1 > 0, and
the open ball in C[I, E] is denoted by B, = {¢ € C[I,E] | ||¢llc <},
1>0.

2. Some lemmas. Let k(t,s) € C[I x I, R'] be defined as in (1)
and h(t) € C(I). Define operators K, H : C(I) — C(I) by

1
Kuz(t) :/0 k(t, s)z(s) ds,
Hz(t) = h(t)z(t), =z € C(I).

Lemma 1. Let h(t) > 0 almost everywhere t € I. If k(t, s) satisfies
one of the following two conditions:

(i) k(t, s) is nonnegative, continuous and k(t,t) Z0, t € I;

(ii) k(t, s) is nonnegative, continuous and symmetric and k(t,s) Z 0,
t,sel.
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Then HK : C(I) — C(I) is a linear, completely continuous positive
operator and the spectral radius of HK, r(HK) = r, is positive.

Proof. 1t is clear that K : C(I) — C([I) is completely continuous and
H : C(I) — C(I) is a linear, bounded positive operator. Therefore,
KH, HK : C(I) — C(I) are linear, completely continuous positive
operators. We now prove that r(HK) > 0.

We first suppose that (i) is satisfied. Since k(t,t) # 0, t € I, there
exists tg € I such that k(to,tp) > 0. On account of the continuity of
k, there exist a small interval Ny, (to) = {t|t € I,|t —to] < 61} and a
constant £ > 0 such that k(t,s) > ¢ > 0 for all ¢,s € Ny, (o). Since
h(t) > 0 almost everywhere ¢ € I and h is continuous, there exist
a small interval Nos(t1) = {t|[t € Ns,(to), [t — t1| < 26} # @ and a
constant €1 > 0 such that h(t) > e; > 0 for all ¢t € Nas(t1).

Define a real-valued function z¢(t) € C(I) by

1 ift e N5(t1),
.Z'o(t) = 0 if t ¢ Nzg(tl),
numbers between 0 and 1 if ¢t € Nas(t1)\Ns(¢1)-

Then, for t € Nos(t1), we have

1
KH:vo(t):/O k(t,s)h(s)zo(s)ds

> /Né(tl) k(t, s)h(s)zo(s) ds

> ee18 > ee1dzo(t).
By the definition of z((t), we have
(2) KHz(t) > ee1dxo(t), tel.

Let P, = {& € C(I) | =(t) > Oforallt € I}. Then Py is a
cone of C(I) and z¢y € Py\{#}. Since KH is a linear completely
continuous positive operator, it follows from (2) and Corollary 2.1 in
[9] that r(KH) > 16 > 0. Consequently, by the Krein-Rutman

theorem there exists z; € Py\{#} such that KHzy = r(KH)x;, and



332 B. LOU

so HK(Hz,) = r(KH)(Hxy). Clearly, Hz1(t) = h(t)z1(t) € Po\{0},
therefore r(HK) > r(KH) > 0.

If case (ii) holds, we can construct a function zy € Py\{6} in a similar
way such that K Hxo(t) > exzo(t), t € I, for some € > 0. Then a similar
discussion as above shows that (HK) > 0. This completes the proof.
]

Remark 1. Let K and H be as above, and let L : C(I) — C(I) be
defined by
1
La(t) = / k(s, £)h(s)a(s) ds.
0
Then it is not difficult to verify that »(L) = r(HK). So if k and h
satisfy all the conditions of Lemma 1, then (L) = r(HK) > 0.

3. Main theorems. We shall use the following conditions:

(Hy) f € C[I x P,P]. For any [l > 0, f is uniformly continuous on
I x (PNT;), and there exists a constant L; with 0 < I; < 1/(2M) such
that

a(f(t,D)) < Lija(D), tel, DC PNT,

where M = maxy serk(t,s) > 0 and «a(-) denotes the Kuratowski
measure of noncompactness.

(H,) There exist R > 0 and h(t) € C(I) such that
f(t,u) >r th(t)u, tel, ueP, llu|| > R,

where r = r(HK) is defined as in Lemma 1.
(H3) There exist Ry > 0, b(t) € C(I), b(t) > 0, ¢t € I, such that

1f (& w)ll < Aob(®)[[ull, tel, ueP,  |ull <R,

where Ao > 0 is the first eigenvalue of
1
3) a(t)=r / k(t, )b(s)a(s) ds = ABz(t), = € C(I).
0

(H3) There exist Ry > 0 and h(t) € C(I) such that

ft,u) >r~th(t)u, tel, ucP, llu]| < Ro.
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(H4) There exists n > 0 such that

n
t < —.
uwePNTy,

Our main result is:

Theorem 1. Assume that k and h satisfy all the conditions of
Lemma 1 and k(t,s) > ek(r,s), t,7,s € I for some e > 0. Suppose
that (Hy), (Hy1) and (Hs) are satisfied. Then equation (1) has at least
one positive solution in C[I, E].

Proof. By (Hp) and Lemma 2 in [5], we know that A: K N B; — K
is a kj-set-contraction with k; < 1 for any I > 0. Set Q = {p € K |
o(t) > ep(s),t,s € I}; clearly, Q # ¢ is also a cone of C[I, E]. Since
k(t,s) > ck(r,s), t,s,7 € I and f € C[I x P, P], we have for any
peK,

Ap(t) = / K(t, ) (s, o(s)) ds

1
>e / k(r, )£ (s, o(s)) ds

=cAp(r), t,T€l,
ie., Ap € Q. Thus,
(4) AK C Q.

By Lemma 1, HK : C(I) — C(I) is a linear, completely continuous
positive operator and 7(HK) > 0. By Remark 1, we know that
L : C(I) — C(I) is also a linear, completely continuous positive
operator and r(L) = r(HK) > 0. Then it follows from the Krein-
Rutman theorem, see [9], that there exists p(t) € C(I) with p(t) > 0,
p(t) # 0, such that

(5) Lp(t) = r(L)p(t) = rp(t).

Choose a ug € P\{0} and R; > Ry such that Ry > NR/e, where N
is the normal constant of P. We assert that
(6) @#A(p_’_)‘u(h SOGK,
lellc = Ri, A=0.
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In fact, if there exist p; € K, ||p1]lc = Ry and Ay > 0 such that
p1 = Ap1 + Aug, then by (4) and uy € Q we have ¢; € Q, ie.,
v1(8) > ep1(7), 8,7 € I; thus ||p1(s)|| > €llo1(7)||/N, s,7 € I. Since
7 € I is arbitrary, we have

6“301”0 €R1
> = — > I‘

Without loss of generality, suppose that Ay > 0. Then by (7) and (H;),
we have

h(t)p1(t) = h(t) Apa(t) + Arh(t)uo

> b(t) [ k() f (s (s) ds
1
> rilh(t)/ k(t,s)h(s)p1(s)ds, ae. tel,

which implies by (5) that
/ O (6 de > / () de / (6 () (s) ds
Sy h(s)pa(s) ds / (6 h(t)p(0)
-/ ps)h(s)pa(s) ds,

a contradiction. Consequently, (6) is true and by the homotopy
invariance of the fixed point index, cf. [1], it is easy to get

(8) i(A,K N Bg,,K) =0.

By the proof of Lemma 1 and (Hz) we know that the operator
B : C(I) — C(I) defined by (3) is a linear, completely continuous
positive operator and Ag > 0, r(B) = 1/Ag. Without loss of generality,
assume that ¢ # Agp for all p € K, ||¢|lc = Ro.

We now prove that

o # pAp, €K,

9)
llellc = Ro, pel.
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In fact, if there exist p2 € K, ||pz2]lc = Ro and uy € I such that
@2 = 1Ay, then py € (0,1) and, by (Ha),

lea(t)]l = / K(t,5)1 (5, 02(5)) ds

< mho / K(t, 5)b(5)|lp2(s) | ds
= p1roB(|le2(2)]]),

which implies by Theorem 2.1 in Chapter 5 in [7] that 7(B) >
(u1Ao)~r > 1/, in contradiction with r(B) = 1/)g. Consequently,
(9) holds and

(10) i(A,K N Bg,,K) = 1.

Finally, it follows from 0 < Ry < Ry, (8), (10) and the additivity of
the fixed point index, cf. [1], that

i(A,K N (Bg,\Bgr,),K) = -1,

which implies that A has at least one fixed point in K N (Bg,\Br,)-
This completes the proof. o

In Theorem 1, let h(t) =1,t € I, and b(t) =1, t € I, then we get

Corollary 1. Suppose that k satisfies all the conditions of The-
orem 1, and f satisfies (Hy). Suppose also that there exist R > 0,
Ry > 0 such that

ft,u)>r"tu, tel, ueP,

(11)
[ull = R,

and
1f&u)| <r Hull, tel, ueP,

[ull < Ro,

where r = r(K) > 0. Then equation (1) has at least one positive
solution in C[I, E].
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Remark 2. Our superlinear conditions (H;) and (11) are expressed
by the first eigenvalue r~! and what we studied are integral equations,
so our results are more general and more essential than some former
results, cf. [5, 8, 3].

Theorem 2. Suppose that k and h satisfy all the conditions of
Theorem 1 and (Hy), (H1), (H3) and (Hy) are satisfied. Then equation
(1) has at least two positive solutions in C[I, E].

Proof. Choose 0 < Ry < min{Rp,n} and Ry > n such that Ry >
NR/e. From the proof of Theorem 1 we know that A: KN B; — K is
a strict-set contraction for any ! > 0. Thus, by (H;) and (Hs), in the
same way as establishing (8), we can get

i(A, KN Bg,,K)=1i(A, KN Bg,,K) = 0.

On the other hand, we have

Ap 2 ¢, peK,

(12)
lelle =n-

In fact, if there exist ¢ € K with ||@ollc = n such that Apy > @,
then

eg¢awsﬁkmﬁﬂa%w»m

S M o f(sa 300(5)) d87

and so, by (Hy),

1
WWWSMNAHﬂ&%@W%<m tel

Since ¢ € I is arbitrary, we have n > ||¢o]lc = 1, a contradiction. Thus
(12) is true. Consequently, by the homotopy invariance of the fixed
point index, it is easy to get

(13) i(A, KN By, K) =1.
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It follows from (12), (13) and the additivity of the fixed point index
that .
i(A, KN (Bg,\By),K) = -1,

i(A, K N (B,\Bg,),K) = 1.

Therefore A has at least one fixed point in K N (Bg, \B,) and K N
(By\BRrs,), respectively. This completes the proof. O

4. Superlinear Sturm-Liouville problems in Banach spaces.
In this section we consider the Sturm-Liouville problem:

Ly = f(t, ), tel,
(14) aop(0) — Boy’ (0) =0,
a1p(l) + B¢’ (1) =0,

where Lo = —(p(t)¢'(t))' + q(t)e(t), p(t) € C(I), p(t) > 0, t € I,
q(t) € C(I), q(t) >0,t €1, a;, B, i = 0,1, are nonnegative constants
satisfying a2 + 82 > 0, a? + 3% > 0. Assume that 0 is not an eigenvalue
of the problem:

where ¢ € C(I). Then it is well known that BVP (14) is equivalent to
(1) with

o(Oy(s)/d 0<t<s<l,
(15) Kt s) = {x<s>y<t>/d 0<s<t<l,

where d > 0 is a constant and z,y € C(I) satisfy

—(p(t)2'(t)) + q(t)z(t) =0,  x(0) = Bo, «'(0)= a,
—(pt)y' (1)) +q(t)y(t) =0,  y(1) =51, y'(1)=—a.

Theorem 3. Let $yB1 > 0 and (Hy) and (H3) be satisfied. Suppose
that there exists h € C(I), h(t) > 0 almost everywhere t € I such that
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(Hy) is satisfied. Then BVP (14) has at least one positive solution in
ClI,E].

Proof. By Lemmas 1-2 in [10] and SBo; > 0, we know that z(t)
is increasing on I with z(0) = By > 0, y(t) is decreasing on I with
y(1) = B1 > 0. Consequently, z(t) > 0, y(t) >0, t € I, i.e., k(t,s) > 0,
t,s € I. Then there exists an ¢ > 0 such that k(t,s) > ek(r,s),
t,s,m € I. Therefore, Theorem 3 follows from Theorem 1. This
completes the proof. |

Example. Counsider the infinite system of differential equations:

—(p(t)zy) + q(t)zn = h(t) 3272 |2il /20 2 tET,
(16)  q @ozn(0) — Boz;,(0) =0
a1z, (1) + 1zl (1) =0 n=12,...,

where h(t) € C(I) with h(t) > 0 almost everywhere ¢ € I and
P, 4, i, Bi, 1 = 0,1, are as in (14).

Conclusion. If 8y8; > 0, then system (16) has at least one solution
{z,(t)} satisfying x,(t) >0 for allt €I, n=1,2,....

Proof. Let E = {z = (@1,%2,... ,@n,...) | Yooy |2i]/28 < +oo}.
Then it is easy to verify that F is a Banach space with norm ||z| =
Yoo |zil/2 for x € E. Set P ={z € E |z, > 0,n = 1,2,...}
Clearly P is a normal, reproducing cone in F and system (16) can be
regarded as a BVP in E:

—(p)z") +q(t)x = f(t,z) tel,
(17) apz(0) — Boz'(0) = 6
ayz(l) + B12'(1) = 6,

where ¢ = (z1,22,... ,&n,...), ¢’ = (2},24,...,2},...) and f =

(fi, f2r- -+ fry--.) with
falt, 21,22, @0, ) = Bt lllzn, n=1,2,3,....

It is easy to see that f is uniformly continuous on I x (P NT;) for any
1 >0, where T} = {z € E | ||z|| < }. In a similar way as proving the
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examples in [8, 4], we can show that, for any D C PNT}, t € I, f(¢,D)
is relatively compact in P, i.e., (Hy) is satisfied for f.

For any R > 0 sufficiently large, Ry > 0 sufficiently small and for any
fixed b(t) € C(I) with b(t) > 0, t € I, it is clear that f satisfies (H;)
and (Has).

Finally, our conclusion follows from Theorem 3. This completes the
proof. i
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