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A GENERAL THEOREM ON CONTINUITY AND
COMPACTNESS OF THE URYSON OPERATOR

MARTIN VATH

ABSTRACT. We consider the Uryson operator in a very
general class of spaces, which in particular contains ideal
spaces (e.g., Lp-spaces and Orlicz spaces). We will prove a
theorem which will allow us to construct growth conditions
on the generating function, which assure that the operator
is continuous and compact. The theorem is applied also for
linear integral operators and for nonlinear Volterra-Uryson
equations.

0. This paper is concerned with the continuity and compactness of
the Uryson operator

Ax(t):/sg(t,s,x(s))ds.

In the first section we will recall the concept of ideal spaces and prove
some lemmas. In the second section we will prove the main theorem.
In the last section we will give some sample applications of the theorem
in Lebesgue and Orlicz spaces.

1. Ideal spaces and Carathéodory functions. We first define a
rather big class of spaces:

Definition 1. Let Y be a Banach space and S some measure space.
We will call a set X of (classes of) measurable functions z : S — Y
together with some mapping || - || : X — [0, 00] projectable space, if it
has the property that for any measurable D C S and any =z € X the
projected function Ppz(s) = Xp(s)z(s) also belongs to X. We will call
X regular, if ||Ppz|| — 0 whenever the measure of D tends to 0.

The most important examples of projectable spaces are ideal spaces:
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Definition 2. A pre-ideal space X is a normed projectable space
with the property that, for any z € X and measurable y with |y(s)| <
|z(s)| almost everywhere, we have y € X and |ly|| < ||z|. If X is
complete, it is called ideal space.

For example, the Lebesgue spaces L,(S,Y), 1 < p < oo, are ideal
spaces, regular for p < co. Other examples are Lorentz, Marcinkiewicz
or Orlicz spaces. Regular projectable spaces, which are not pre-ideal
spaces, are L, (S,Y), 0 < p < 1, or the space of all measurable functions

with
o jas)
=il = /s T+ Je(s)] %

Definition 3. A normed linear space X of measurable functions has
the W-property, if ||z,|| — 0 implies z,, — 0 in measure.

Any pre-ideal space over a finite measure space has the W-property
[10].

Proposition 1. X has the W-property if and only if

(1) lim sup mes{s: |z(s)|>n} =0,

"m0 e <1 B
i.e., if its unit ball is bounded in measure.

Proof. Assume that there is some sequence with ||z,|| — 0 but
Zn 7 0 in measure. By passing to a subsequence, we may assume
that 0 < ||z,|| < n~ 2. Putting y, = ||za|| 'z, we have for n~1 < §
that mes {s : |z,(s)| > 6} < mes {s: |yn(s)| > n}, whence (1) implies
the contradiction z, — 0 in measure. Conversely, if (1) is false, there
exists a sequence &y, ||z,|| < 1, with mes{s: |z,(s)| > n} /4 0. Then
Yn = n_lz, converges to zero in norm, but not in measure. u]

For the Uryson operator, the Carathéodory condition is often impor-
tant:
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Definition 4. Let T and S be compact subsets of Euclidean spaces
and U and V Banach spaces. A function g : T x S x U — V is called
Carathéodory function, if g(-,-,u) is measurable on T x S for each u,
and g(¢, s, -) is continuous for almost all (¢,s8) € T x S.

A well-known consequence is that measurability is no problem: If g
is a Carathéodory function, then for any measurable = the function
(t,8) — g(t, s,z(s)) is measurable. In fact, this is obvious for simple
functions. Otherwise approximate x by simple functions x,, and observe
that g(t, s, zn(s)) — g(t, s, 2(s)).

Another consequence is an extension of Luzin’s theorem, the so-called
Scorza-Dragoni lemma. We recall a generalized form of the lemma:

Lemma 1. Let g : T xS xU — V be a Carathéodory function
where U is separable. Then, for any v > 0, there exists a compact
set M C T x S with mes(T x S\M) < v such that the restriction
g: M xU —V is continuous.

The proof may be found (even for more general measure spaces than
T x S) in [9]. We remark that the condition of separability may not
be dropped.

2. The main theorem. Let S and T be compact subsets of
Euclidean spaces. Let X be a normed linear space of measurable
functions over S, which take values in some separable Banach space,
and let Y be a Banach space of measurable functions over 1" which
take values in a finite-dimensional space. Let r > 0 and B, = {z € X :
[|z||x < r}. The Uryson operator

(2) Am(t):/gg(t,s,x(s))ds

is called k-bounded (with respect to some given functions a and b), if
g satisfies the Carathéodory condition and the growth condition

(3) 9(t, 5, u)| < K(t, 5)[a(t, s) + b(|ul)]-

A projectable space Z of functions k : T'x S — R is called forcing (with
respect to a,b, ¢, X,Y,r), if for any k € Z we have that any k-bounded
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Uryson operator A maps B, into Y, and

(4) |Az[ly < c([[kllz), =€ B

Theorem 1. Let S, T, X andY be as above, r > 0. Assume that X
has the W -property and that C(T) is continuously embedded in'Y . Let
a be measurable and nonnegative, b monotone increasing and positive,
and ¢ continuous at ¢(0) = 0. Let Z be forcing and regular, containing
the constant functions. Then each Uryson operator A, which is k-
bounded by some k € Z, defines a compact and continuous mapping

A:B, =Y.

Observe that the assumptions on X are satisfied if X is a subspace
of a pre-ideal space. For Y, it suffices that Y is an ideal space which
contains a nontrivial constant function.

We emphasize that the theorem does not imply that all linear integral
operators acting between X = L,(S,R) and Y = L (T, R) are compact
(which is not true), although such operators are always bounded (see,
e.g., [6]), and thus for a proper choice of a,b,c,r and Z, each linear
integral operator with kernel function k is k-bounded and satisfies (4).

But in order to apply the theorem for some given k-bounded Uryson
operator A, it is not enough to check (4) for this fixed k or for this fixed
A. Besides, it must also be verified that (4) is satisfied for all other
choices of pairs (k, A), where k € Z and A is k-bounded. The crucial
point here is that by the regularity of Z the size ¢(||Ppk||z) becomes
arbitrarily small for mes D — 0 and thus all Ppk-bounded operators
must become ‘uniformly small’ with D.

Proof. We use a reduction technique similar to [7]. Let such an
Uryson operator (2) be given.

a) We may assume that there exists some B > 0 with
l9(¢, 5, u)| < Bb(|ul).

To see this, observe that, by Lemma 1, there exist compact subsets
M,, C T'x S such that the measure of Q,, = T'x S\ M, tends to zero, and
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such that all of the functions g(t, s, u), k(t, s), k(t, s)a(t, s) are continu-
ous, if restricted to M,, x U. Then each g,(t, s,u) = X, (£, 5)g(¢, s, u)
satisfies the Carathéodory condition, (3), and the additional assump-
tion. Furthermore, the Uryson operator A,, generated by g, converges
on B, uniformly to A. Indeed, (3) holds if we replace g by g, = g — gn
and k by k, = Xo, k, and thus, by (4),

|Az — Anz|ly < c(||knl|lz) — 0 uniformly in = € B,.

b) We may assume that g is bounded, and for some N > 0 we have
g(t,s,u) =0 for |u| > N. We argue as in a) and define

g(t, s, u) if Jul <n
gn(tys,u) = (n+1—u])g(t,s, (n/[ul)u) ifn<|u <n+1
0 if |u| >n+ 1.

By the monotonicity of b and by a), each g,, satisfies (3) with k¥ = B and
the additional assumption (and the Carathéodory condition of course).
The Uryson operator A,, generated by g, converges on B, uniformly
to A. To see this, define M? = {s € S : |x(s)| > n} for z € B,. Then
(3) holds for g replaced by g7 (t,s,u) = Xnz=(s)[g(t, s,u) — gn(t, s, u)],
and k by k7, (t,s) = Xz (s)2B; hence, by (4),

Az — Anelly < c(lk2llz), @€ B,

By (1), the righthand side tends to zero uniformly in z € B,.

c¢) We may assume additionally that g is continuous. Let g be as in
b), bounded by some D > 0. By Lemma 1 there exist compact sets
M,, C T x S such that the measure of Q,, =T x S\M,, tends to zero,
and such that the restriction of g to M, X U is continuous. Define
gn(t, s,u) = g(t, s,u) for (t,s) € My, and g(t,s,u) =0 for |u| > N. By
the Tietze-Uryson lemma (see, e.g., [3, Theorem 7.2]) we may extend
each g, to T x S x U such that g, is continuous and still bounded
by D. Each g, satisfies the Carathéodory condition and (3) with &
replaced by k = D/b(0). Again, the Uryson operator A,, generated by
gn converges on B, uniformly to A. If we replace g in (3) by §n, = g—gn
and k by XQn2l~c, we have

|Az — Az|ly < c(||knl|lz) — 0 uniformly in = € B,.
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d) Assume that g satisfies b) and c). Then g is uniformly contin-
uous and bounded. This implies that the family of functions AB, is
equicontinuous and uniformly bounded, hence precompact in C(T') by
the theorem of Arzela-Ascoli (see, e.g., [4]). Thus, A is compact as
a mapping of B, into the space C(T"). This mapping is also continu-
ous. It suffices to prove that any sequence x, — x in B, contains a
subsequence with Az,, — Az in C(T). Choose a subsequence such
that Az, — y converges in C(T') and z,, — x almost everywhere.
Since, for almost all (¢,s), we have g(t, s, z,, (s)) = g(t,s,z(s)), we
have Az, (t) — Az(t) for almost all ¢ by Lebesgue’s dominated con-
vergence theorem; hence, y = Az as stated.

Now we have proved that A : B, — C(T') is continuous and compact.
Since C'(T') is continuously embedded in Y, we are done. o

An obvious modification of part a) of the proof shows that we may
replace (3) by the apparently more general formula

l9(t, 5,u)| < k(t, 5)[a(t, s) + d(t, 5)b(|ul)],

where d : T'x S — [1,00) is a given measurable function. But this
yields the same result since we just have to apply the theorem, where we
replace a by a/d, Z by Z = {kd : k € Z} U{Xpconst : D measurable},
l|h||; = inf{c(||k||z) : k € Z,kd > h}, and c by the identity.

3. Applications. Observe that especially part b) of the proof
essentially makes use of nonlinear operators, even if g is linear in wu.
However, we will first use the theorem to regain some well-known results
for linear integral operators

(5) Ka(t) = /S k(t, )2 (s) ds.

For those, it is usually enough to choose a = 0, b(Ju|) = 1+ |ul,
c(t) = (|[tf[x +r)t.

First consider X = L,,(S),Y = Ly(T),1 < p < 00,1 < g < 00, where
the functions in X and Y take values in finite-dimensional spaces. Let
Z1 and Zs consist of T' X S-measurable matrix-valued functions with
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finite norms

iz = ([ [ e ds)w dt)l/q,
iz = ([ ([ |k(t,s)th)pl/q ds)w,

where 1/p+ 1/p’ = 1. A straightforward application of Holder’s and
Minkowski’s inequality shows that, for k € Z;, (5) maps X into Y with

(6) IKzl|ly < [k|

Z; acHX, zeX, =12

Thus, it is easy to see that Z; and Z5 are forcing for each r» > 0 (a, b, ¢
as above). In particular, K is a compact mapping L,(S) — L¢(T) if
ke Z orkéeZ.

On the other hand, the linear estimate (6) can be used in connection
with the following simple observation to get more nonlinear results:

Theorem 2. Let S, T, X and Y be spaces as in Theorem 1, Y
being an ideal space, Z a regular projectable space over T'x S and W a
linear space of real measurable functions over S with the property that
for each k € Z the linear integral operator (5) maps W into Y with
norm

K| < d(]|El|2),

where d is continuous at d(0) = 0. Assume that b : [0,00) — (0,00)
1§ monotone increasing, such that the stationary superposition operator
Bz(s) = b(Jz(s)|) maps B, = {x € X : ||z||x < r} into a bounded set
of W (let this set be bounded by M > 0).

Then, for each a(t,s) = a(s) with a € W, a > 0, the space Z is
forcing with c(t) = (M + ||a|lw) d(t).

In particular, if a Carathéodory function g satisfies the growth con-
dition

lg(t, s,u)| < k(t, s)(a(s) + b(|ul))

for some a € W, a > 0 and k € Z, the Uryson operator (2) maps
B, into Y and is continuous and compact. The image is bounded by
(M + |[allw)d(||k]|2)-
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Proof. Consider for a € W, k € Z, the operator
Cz(t) = / k(t,s)(a(s)+ b(|z(s)])) ds, z € B,.
5
Then Cz = K (a + Bz), hence Cz € Y, and

ICz[ly <[|K]|lla + Bzllw < d([[k||lz)(allw + M), =€ B,

which implies Az € Y and ||Az||y < c(||k|2)- O

The same idea for estimation is used for Orlicz spaces in [7, Lemma
19.1], but the lemma there is inadvertently stated with a(t,s) = a(t)
instead of a(t,s) = a(s) (the lemma as stated has easy counterexam-
ples).

To exploit (6), we have to know conditions which ensure that Bz (s) =
b(|z(s)|) maps L, into L,. Sadly, by [5], a restrictive growth condition
is necessary: b(|u|) < B+ v|u|"/P. For b(|u|) = 1 + |u|"/P, we arrive at
the

Corollary 1. Let X = L,(S), Y = Lg(s), W = Ly(S) with
1<r<oo,1<p<oo,1<qg<oo. Let the Carathéodory function g
satisfy the growth condition

lg(t, s,0)] < [k(t, 5)[(la(s)] + [ul"/?)

for some a € W, k € Zy or k € Zy. Then the Uryson operator (2)
maps X into Y and is compact and continuous.

One sees that the worse the nonlinearity in u, the more restrictive are
the growth conditions on k. If g grows exponentially in u, Lebesgue
spaces are too small. Here the appropriate spaces are Orlicz spaces:

Definition 5. A Young function ® : R — [0,00] is a convex even
function ® : R — [0,00] with ®(0) = 0, ®(t) — oo for ¢ — oo,
®(t) < oo for some ¢t > 0. Its complementary function is defined by

U(s) = sup{t|s| — ®(¢) : t > 0}.
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The Orlicz space Lg(S) consists of all measurable functions, for which
the (Luxemburg) norm

Hmb=ﬁﬁ{a>0:é¢<ggl>wgl}

is finite.
Similarly as in [8, Proposition 6.1.1], one can prove the linear result:

Theorem 3. Let ®,®,, Py be Young functions, ¥ and Vo comple-
mentary to ® and ®4 such that, for some a >0, ug >0

P(auv) < @1 (u)Ty(v), u,v > uo,
C = ®(au])mes Smes T + 1 (ug)mes S + ¥y (ug)mesT + 1 < oo.

Then, for any k € Lg(T x S) the linear integral operator (5) maps
Loy (S) into La,(T) with | |K]| < 20~C[H[1, (rs)-

If Z C Lg(T x S) is a regular projectable space which contains the
constant functions, Theorem 1 yields the linear result that the mapping
in the previous theorem is even compact for k£ € Z. Recall that you
may (and should) choose (see [8], respectively [7])

Z = My(T x S)
_ {k € Ly : / W(alk(t, ) d(t,s) < oo for all a > o},
TxS

which contains the constant function, if ¥ is finite everywhere. Observe
that we don’t have to know that Z is a linear space!

If we use the well-known conditions for the superposition operator to
act in Orlicz spaces (see [2]) we get similarly as before the

Corollary 2. Let the conditions of the previous theorem be satisfied,
U being finite. Let @3 be a Young function, X = Le,(S), W = Le, (5),
Y =Ls,(T) and Z = Mg (T x S).

Assume that, for some monotone increasing continuous b : [0,00) —
(0,00) and for some r,7, 3 > 0, we have

D (b(u)) < v+ BP3(u/r), u>0.
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Then, if a Carathéodory function g satisfies the growth condition

l9(t, 5, w)| < |k(E, 5)|(la(s)] + b(|ul))

for some k € Z and a € W, the Uryson operator (2) maps B, = {z €
X :||z||x < r} into Y, and this mapping is continuous and compact.

Finally we consider the Volterra-Uryson operator

(7) V:v(t):/ g(t,s,z(s))ds

and prove similarly to [1] that the conditions of Theorem 1 ensure that
the nonlinear Volterra equation

(8) 2(t) = / olt, s,2(s)) ds + 1)

has a local solution in B, for ||f|| < r. Observe that in all previous
applications the conditions of the following theorem are satisfied:

Theorem 4. Let T = S = [r,7+ o], and assume that all conditions
of Theorem 1 are satisfied with X =Y. Then to each Carathéodory
function g satisfying the growth condition (3) for some k € Z, and to
each 0 < e <r, there exists some 0 < 0 < dg, depending only on € and
k such that (8) has, for any f € X, ||fllx < r — € a solution © € B,
on I = [r,7 + 0] satisfying ||z — f||x <e.

Proof. Let A = {(t,s) : 7 < s <t < 7+ 6} and Psk(t,s) =
Xa(t, s)k(t,s), Psg(t,s,u) = Xa(t,s)g(t,s,u). For § small enough, we
have c(||Psk||) < e. Theorem 1 implies that

Agw(t):/ngg(t,s,w(s)) ds

maps B = {z € X : ||z — f||x < e} C B, continuously and compact
into X with ||Asz||x < e. Hence, by Schauder’s fixed point theorem
the mapping x — Asx + f has some fixed point = € B. Since on I the
operators As and (7) coincide, we are done. o
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