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EFFICIENT ALGORITHMS FOR THE p-VERSION
OF THE BOUNDARY ELEMENT METHOD

NORBERT HEUER

ABSTRACT. We investigate the p-version of the boundary
element Galerkin method for a first kind integral equation. We
present a-priori driven algorithms which yield sparse Galerkin
matrices and do not destroy the convergence properties of the
boundary element method. Further, we show that the additive
Schwarz method is nearly an optimal preconditioner for the
Galerkin systems. Numerical results confirm the efficiency of
our methods.

1. Introduction. The p-version of the boundary element method
(BEM) is known to be very efficient in view of its convergence proper-
ties. For problems with singularities it converges twice as fast as the
usual h-version, see, e.g., [13]. To exploit these advantages in practice
one has also to take care of an efficient implementation. One aspect
is the treatment of generally fully occupied system matrices which are
characteristic of the BEM. Another aspect is the fast solution of the
linear systems which is of course not peculiar to the BEM. In case of
the h-version these aspects have been investigated by several authors,
see, e.g., [1, 8, 7, 20, 18]. In contrast, the structures of the system
matrices of the p-version are not known to be under investigation so
far. Also the construction of optimal preconditioners for the p-version
has just started to be under investigation, see [15].

For simplicity we will concentrate on the weakly singular integral
equation

(1) Ve(r)=g(z), €T

where V is the single layer operator defined as

1
Vo (z):= —;/F@(y) log |z — y| ds,.
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Here I' is the boundary of a polygonal domain 2 C R2. To ensure
injectivity we assume cap(I') # 1. Equation (1) models an interior
Dirichlet problem for the Laplacian in €.

Before introducing the boundary element method let us recall the
definition of the Sobolev spaces, see, e.g., [12]. Let J denote a straight
line covered by an edge of the polygon I'.

H*(Q) ={¢la; ¢ € H*(R?)}, sE€ER,
{¢lr; ¢ € H*F2(R?)} s >0,
H*(T) = ¢ L*(1) s =0,
(H~*(I"))" (dual space) s <0,
H*(J) ={¢ls; ¢ € H*(T)} >0,
H*(J)={p € H'(J);  H*(T)}  s=>0.
Here

- [¢ onJ
¢_{0 on I'\J

means the extension of ¢ by 0 outside J. Finally we define the dual
spaces on J

T
«
&
I
T
.
S

s <0,
H*(J)=(H*(J)) s < 0.

In order to solve equation (1) for a given g € H'/?(T") via the Galerkin
method we introduce a family of finite-dimensional subspaces Hpy of
fI‘l/Z(F). Then the Galerkin method for (1) reads: Find ®n € Hy
such that for all ¢ € Hy

(2) a(®n,v) == (VON,¥)r2(r) = (9, V) L2(1)-

The choice of specific subspaces Hy leads to various versions of the
Galerkin method. The h-version keeps a low degree p (usually p = 0
or p = 1) fixed and uses piecewise polynomials of degree p on a
sequence of refined meshes to approximate ®. The p-version keeps
the mesh fixed and increases uniformly the polynomial degrees. In
the following we will use scaled piecewise Legendre polynomials to
construct Hy. As shown in [5] V is a strongly elliptic operator mapping
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H~'/2(I") continuously into H'/?(T). The results in [17] guarantee the
quasi-optimal convergence of the Galerkin solution in the energy space

H-1/2().

The outline of this paper is as follows. In Section 2 we study the
local behavior of the single layer operator to justify a modified ver-
sion of the boundary element method with sparse matrices. Therefore
we present an a-priori estimate of the elements of the system matrices
(Lemma 1). This estimate can be used to implement the given rule
for making the matrices sparse and retaining the convergence rate of
the BEM (Theorem 1). In Section 3 we show that the condition num-
ber of the additive Schwarz operator is growing only logarithmically in
the degree p (Theorem 3). It is therefore a nearly optimal precondi-
tioner for the p-version. Section 4 presents various numerical results
regarding the sparsity of the system matrices and the additive Schwarz
method as preconditioner for the conjugate gradient method. In this
section we also give numerical results for a modified additive Schwarz
preconditioner. Both types of the additive Schwarz preconditioner do
not need any overlapping of the blocks and can therefore be performed
in parallel very easily.

Throughout the paper C denotes a generic constant which is inde-
pendent of the polynomial degree p.

2. The sparsity of the system matrix. Generally, system matri-
ces arising from the boundary element method are fully occupied. This
is disadvantageous for applying fast solvers and for efficient implemen-
tations. Here we study local properties of the single layer operator and
show, in contrast to the above, that one can deal with sparse matrices
instead of using the whole set of entries in the stiffness matrices. The
only requirement is the use of piecewise Legendre polynomials as basis
functions.

Let I, ; be the Legendre polynomial of degree p linearly transformed
onto the open line segment I C R%. By l;,l we denote the scaled
function v/2p + 11, 1. Iy is assumed to be extended by 0 outside I
on the entire line containing I where necessary. The usual Legendre
polynomials [, (1 1)x {0} are denoted by [,. Let J C R? be another
open line segment with I NJ = @. Then the following estimate holds.
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Lemma 1. There exists a constant C depending on I' such that

C max{|I], [J[}PitPi
7 2i+p5 dist (I, J)Pites’

(3) <Vl;,-,J7 Lo 1) L2 <

Proof. Using the Taylor expansion of log |z — y| and the orthogonal
properties of the Legendre polynomials we obtain

(1 1
Vi, oo = = [ [ 5a@)8,00) oo —vids, ds.

1
= [ ] 5@ 0) Ry (2.0 ds, ds.
TJrJg
where Ry p, jp,; is the remainder. The estimate

9lelylBl

(o] + 18] = 1)t
Oz dyP

‘3’; —y||‘1|+\/3‘

log|z — yl| < C()

for multi-indices o and [ yields the inequality

max{|1], | J|}P+ 75

‘Rlypiﬂ]vpj (l‘, y)| S C(F) 2Pi+Pj dlSt (I, J)Pi+Pj .

Therefore we obtain from (4) by applying the Cauchy-Schwarz inequal-
ity two times

(VIG5 o) L2 )]

1 . ) 1/2
p </lpi,1(x)2 dsg / lp,-,J(y)z ds, // R%pi,ij (z,y)ds, d8z>
1 J 1JJ

o max{|I], |J[}PPs
2pi+P; dist ([7 J)Pi+Pj
C_max{|1], [J|}P*Ps
= 2pitps dist (1, J)Pitrs’

IN

IN

2 gy V2] g1
s

which completes the proof. ]
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FIGURE 1. The functions V(zP|(—1,1)) for the degrees p =2,...,6.

Lemma 1 indicates a very local behavior of the single layer operator
applied to piecewise Legendre polynomials. Figures 1 and 2 demon-
strate this property. Figure 1 shows the values along the real line of
the single layer operator acting on monomials restricted to the interval
(—1,1). Figure 2 does the same for the Legendre polynomials. It can
be seen that the use of Legendre polynomials improves considerably
the locality of this integral operator.

In fact, many of the matrix elements are neglectible if the degree
p of the underlying finite-dimensional subspace Hy C HY 2(1) is
high enough. For a certain subspace Hy we obtain an approximation
&y to our exact solution ® by the Galerkin method. Usually this
approximation is not exact, and the practical question arises how many
of the matrix elements can be neglected without deteriorating the error
too much. A natural criterion for the additional error to fulfill is to
retain the convergence rate of the performed Galerkin procedure.

That means, if the Galerkin error behaves like

@ — Nl g-1/2q) < ON®
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FIGURE 2. The functions V (I, (_1,1)) for the degrees p=2,...,6.

for N := dim(Hy) and some a > 0 we want to achieve
(5) | — Nl g-1/2qr) S ONT*
where @ is the solution of a sparse linear system which is written as

(6) an(®n, %) = (9,%) 2y V¥ € Hy.

In order to derive a sufficient condition to ensure (5) we need to estimate
the condition number of the Galerkin matrix Ay, i.e. of the matrix of
the linear system (2). For the h-version this is already stated, see, e.g.,
[11]. In the following we assume that the scaled Legendre polynomials
L5 are used as basis functions for the p-version. This scaling already
improves the condition of Ay. If one uses pure piecewise Legendre
polynomials as basis functions the condition number of Ay behaves as
p%, a =~ 2.5 (cf. [9]). The scaling reduces this behavior at least to p?
as is shown below. For the finite element method the significance of

using special basis functions has been investigated in [3].
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Lemma 2. For the smallest and largest eigenvalues of the Galerkin
matrixz Ay there holds

(7) Amin(AN) > CN 2 and )\max(AN) < CN!
for the h-version and
(8) Amin(AN) > CN72  and Apax(An) < C

for the p-version.

Proof. Let ¢ € Hy and qz_; € RY its N-dimensional representation.
Due to the equivalence

a(¢a ¢7) = <V¢a ¢7>L2(I‘) = ||¢||%T—1/2(F)
it suffices to estimate ||¢||z-1/2(r)- As an upper bound we can use

10l -1/2(r) < 1Ml 2 (r)-

By the inverse assumption (see [14]) we obtain (with h being the
minimal mesh-size)

161l 17200y = ChY?[16ll 2y ~ N2 6l|2(r)
for the h-version and

16l -1/ = Co 21l 2y ~ N2 éllzacry

for the p-version as a lower bound. That means there exist constants
c1,co > 0 such that

Vo, o) r2(r) <

aN 1< C2,
! T (Do) T 2

ie.,
Vo, d)2(r)
T

< )\max(AN) < cy sup %
¢eHy  ¢T¢

et N7 inf Mﬂ<
peHn @I

>\min (AN) S
(9)
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for the h-version and

Vv 2
e N-2 < (Vé, o) r2(r)

T (S Doy T @
i.e.,
eN-2 inf <¢:?>Lj(r) < Ain(An) < (Vé, o) r2(r)
(10) ¢€Hn  pT¢p B ¢T¢
(¢, ) L2(1)
< Amax(An) < c2 ¢S€1}L?N W

for the p-version. Now we have to estimate (9, ¢>L2(p)/(<ﬁT$). Let I’ =
U7L,I'; be the decomposition of I' into elements and p; the respective
degrees. Then ¢ € Hy can be written as ¢ = Z;nzl b cig lip,, and
there holds

m Pj m Pj
(11) ¢ ¢ L2(T) ZZCU‘FJ‘ ~ Z
j=11¢=0 j=11i=0
for a quasiuniform mesh where h = min{|I';|; j = 1,...,m}. Using

(9) this yields for the h-version

Amin(An) > ctN~'h ~ N72
)\max(AN) < cgh ~ N_l

and using (10) for the p-version

)\min(AN) Z ClN_27 )\max(AN) S C2. O

Corollary 1. The condition number of the Galerkin matrix with
respect to the I2-norm can be estimated as

FL(AN) S CN
for the h-version and as

Iﬁ‘,(AN) S CN2
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for the p-version.

Proof. This follows by dividing the bounds for the eigenvalues given
by Lemma 2. O

Now we investigate the allowed perturbation of the system matrix,
i.e., we give a sufficient condition for (5) to hold. Let Ay denote the
perturbed matrix of the linear system (2), i.e., Ay where some elements
have been neglected, and Ay = Axy — Apn. Then there holds

Theorem 1. Let w be the mazximum of the internal angles at the
corners of the polygon § and assume g € HY(T) for the righthand side
function g of (1). Suppose Ay is constructed such that

(12) ||(5AN1H/22 < CN—vr/w—3/2—€
4wl

in case of the h-version and such that
(13) I6AN]|2 < CN—2T/02e

in case of the p-version for some C' > 0 and € > 0. Then the rate of
convergence of ®n — @ is the same as the rate of &y — P, i.e.,

1@ — ®nllg-1/2qry < CNTT/97e
in case of the h-version and
1@ — SNl g-1/2(ry < ON—2m/e=e

in case of the p-version.

Proof. Let q; € RY denote the vector of coefficients of a function
¢ € Hy for our basis of scaled piecewise Legendre polynomials. Then
there holds for @ := &y — Py

2 =T > > 2
l6@nly = 6PN AnIPN < [|[AN]2][0PN]|2-
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Here || - |lv = || - [[g-1/2(r) denotes the norm induced by the bilinear
form a(-, -). Using the condition number x(Ay) of Ay the last term
can be estimated with the help of

. SAN|l2 . =
[0z < wldn) L 1B
and we obtain
i} SANy =
(14) [ox — dlly < n(AN)Wn@NHZ.
2

Due to (11) we have
[8xll2 < CRT2|1@n 22,

Since g € H(I') and since I is a polygon (with internal angles w; < 27)
we know that the exact solution ® of (2) belongs to L?(T'), and therefore

[N L2y < (|2 — @nll2) + (| @ll L2y < C

for a constant C' independent of N, cf. [14, Theorem 3.7]. Using this
bound (14) can be estimated with the help of Corollary 1 together with
assumption (12) as

(15) |@n — Pnlly < CNT/e
for the h-version and together with assumption (13) as

N—27r/w—s

16 Sy —Bylly <O
1o | ” 1 An]ly"

for the p-version. Because Ay is a normal matrix we have ||Ayx|2 =
Amax(AN). Due to the hierarchical construction of the subspaces Hy
for the p-version Apax(An) and therefore also || A |2 is a nondecreasing
function of N. That means in that case ||Ay||2 is bounded from below
by a positive constant and we obtain from (16)

(17) |®n — S|y < C N72/we
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for the p-version.

In fact, (15) and (17) lead to the same convergence rates as those
of |® — ®y||v, see [14]. Therefore, the triangle inequality gives the
desired estimate

1 = Enllg-12ry = |2 = Enlv < [|@ = @nllv + |28 — SV
<Cle—enllv = 12 = 2nllg-1/2r)

where C' is a constant independent of V. a

Theorem 1, together with Lemma 1, serves as an a-priori criterion to
make the system matrices sparse. Numerical results will be presented
in Section 4.

3. The additive Schwarz method. Due to the positive defi-
niteness of the Galerkin matrix Ay the conjugate gradient method is
the method of choice to solve (2). In order to reduce the number of
iterations which are necessary to reach a given accuracy one needs a
preconditioner. In view of parallel computer architectures with dis-
tributed memory the additive Schwarz method (ASM) received much
attention, see e.g. [4]. For the h-version several variants of the addi-
tive Schwarz preconditioner have been considered, see [7, 18] for the
single layer operator and [18] for a hypersingular operator. Here we
investigate the p-version of the BEM and consider two different types
of decompositions of the underlying discretization to define the addi-
tive Schwarz preconditioner. The first type which is based on a domain
decomposition is investigated theoretically (cf. Theorem 3) and for the
second type we only present numerical results in Section 4. For further
variants which deal with overlapping decompositions and with global
terms in the decompositions we refer to [15]. In fact, we prove that
no overlapping and no global block (which stems from functions with
support on the whole boundary T') is necessary in our case. However,
we note that then the condition numbers may depend on the number
of subdomains.

Let us recall the abstract setting of the additive Schwarz method. Let

(18) Hy =SUSU---USy
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be a decomposition of Hy into k subspaces and
Pj!HN—>Sj, jzl,...,k,
the corresponding projections:

a(P]¢7¢):a(¢a¢) V¢€SJ
The ASM consists in solving the equation

k
(19) POy =) Pidy =g,

Jj=1

where g* = Z?:l P;® y can be computed without knowing the solution
@N of (2) by

a(Pj®N,v) = a(®n, ) = (9,%)L2(r) Vi € S;.

The usual way to choose the decomposition (18) is to divide the
boundary element space Hy into subspaces where each two of them
have different supports (intersecting or nonintersecting), e.g., in case of
discontinuous functions

(20) Sj={Ylp,s v € Hy},  j=1,... kK

where [' = U?Zlf‘j is some decomposition of the underlying mesh into
sets of elements. This is the so-called domain decomposition (dd) used
in most finite element applications and recently also for the h-version
of the boundary element method (see [7]).

But, especially in view of the p-version of the boundary element
method, there is another obvious way to choose a decomposition (18),
in the following referred to as degree decomposition (pd):

(21) S; :=span{v;; ¥;

Fi:lj7ri7i:17"'7m}7 j:O,...,p.

Here [; r, is the Legendre polynomial of degree j linearly transformed
onto I';, I'; is a single element of the m elements defining the mesh,
and p stands for the largest degree of the basis functions defining Hy
(here k in (18) would equal p + 1). Clearly, this is a special choice for
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a subspace Hp built of discontinuous piecewise Legendre polynomials
and fits well to the case of the single layer potential.

Note that one can obtain also for the degree decomposition a constant
number of subspaces even for increasing p by collecting different S;s.
This is similar to the classical domain decomposition applied to the
h-version where one has a fixed number of domains and gets increasing
subspaces by decreasing the element sizes.

For the h-version with piecewise constant ansatz functions the dd-
type ASM with overlapping has already been proved to be an optimal
preconditioner (compare Corollary 1):

Theorem 2 (M. Hahne, E.P. Stephan [7]). Let Hy be decomposed
into subspaces S; according to (18) and (20). Let the subdomains T';,
j=1,...,k, fulfill the overlapping condition

dist (0; N oL, T, N L) > vk

for neighboring subdomains T, f‘j and a constant vy independent of k.
Then the condition number of the additive Schwarz operator P in (19)
s bounded independently of N if the h-version with piecewise constant
functions is performed for (2), i.e.,

k(P) <C.

Now we present the main result of this section which proves the
efficiency of the additive Schwarz method in the case of the p-version.
We note that no overlapping of the subspaces S; and no block of global
functions in the decomposition (18) is used.

Theorem 3. Let Hy be decomposed into subspaces S; according to
(18) and (20). The sets T'; of elements T'; are supposed to be distinct.
Then the condition number of the additive Schwarz operator P in (19)
s bounded by

K(P) < C (1 + log(1 + p))?

if the p-version of the boundary element method is performed. Here C
18 a positive constant independent of p.
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Proof. Let ¢ € Hy and define ¢; := (f)\fj €Sj,j=1,... k. Then

we have .
6=> ¢;
j=1

and because the I';s are nonintersecting this representation is unique.

Applying .

> ¢

j=1
(cf. [19, Lemma 3.2]) we obtain

2

5 < ZH(ﬁ]HH 1/2(1‘

H—1/2

a(¢,6) = 1¢I5 /2 Zqﬁ]
j=1 H-1/2(T)
< Z H¢7]HH 1/2(T) = Za ¢]7¢]

j=1 j=1

This means that the largest eigenvalue of P is bounded,

Amax(P) < C.

Now we look for a lower bound to the smallest eigenvalue A, of P.
Let

P k
¢ = ¢ji=djo+w; and ¢o:=> ¢j0
i=0 j=1
where ¢; ; is piecewise exactly of degree i, i.e., ¢;; € S; defined by (21).

First let us consider ¢;o. Let Cjo € RY and & € RY denote the
N-dimensional representation of ¢; o and ¢, respectively. Then there
holds [|¢j0ll2 < ||o||2 and therefore

165,05 2/2(7,) = @(®50, B.0) = Ej0ANCj0 = [1E0l13
< ||60H2 — ||¢0||H 1/2()

since only a fixed block of the positive definite stiffness matrix Ay is
involved. Due to the inequality

160l1% -1 2y < CL+ 108 (1L + ) [9113 -5t
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(cf. [15, 24]) this yields

(22) sl saqr,, < O+ 1081+ P)IGIG 1o

It remains to estimate the norm of w;. Using the antiderivative
operator
M2 H=YX(T,) — HY*(T;)

of [7, Lemma 3 (ii)] and estimating the H'/2-norm in terms of the
H'/2_norm by [2, Theorem 6.5 we obtain

lwill 12,y 2 1 2w5ll gase e,
(23) < C(1+1og(L+ p)I )]l e r, )
~ (1+1log(1 + p))llw;ll gr—v/2(r,)-

The norm of ¢; = ¢; 0 + w; can be estimated the following way:

(6, ) L2(r)

10l -srnqey = l6llzoey = sup OO
A-1/2(1) H'/2(T) $EH/2(T) ||7/)||H1/2(F)

Z?:l (B, ) L2(1)

= sup

wem /2wy [Pllae )
22?21 (D5 ) L2(m)
> sup
e H/2(T;) ||1/’\|H1/2(r)

_ <¢j,¢>L2(fj)
= sup —

vein/a®;) 1Uae e,

I
—
&=

=¢illzgrz,y = 19illg-rr2@,y, 3
Thus we have together with (22) and (23)

lwjll 172,y <C(L+log(L+ ) wjll -1zt )
<C(1+log(1+p))(llwj+dj0ll g-1/2r,) + D50l gr-rr2i )
(24) <CO(L+log(L +p)4ll g-1/2(r)-
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Combining (22) and (24) we obtain

k

k
Za ¢Ja¢] ZH(ZsJHH 1/2(1"
j=1

j=1

k
CZ H(ﬁ] 0”2 1/2 )+ ||wj||H 1/2(F ))
j=1

< C(k)(1 +log(1 +p))? ||¢||H 1/2(T)
~ (1 +1log(1 +p))%a(e, B).

Note that the number of domains k is constant for the p-version.
Therefore, we have

Amin(P) > C(1 +log(1 + p))~2

and £(P) = Amax(P)/Amin(P) < C(1 +log(1 + p))%. o

4. Numerical results. We consider the Dirichlet problem for the
L-shaped domain 2 (see Figure 3)

—Au=0 inQ
u=f on T =00

where f is chosen such that

u(z,y) = (23 for z=uz+y.

This problem is substituted by our integral equation (1). The finite-
dimensional subspaces Hy of H 1/2 (T") are constructed by discontinu-
ous piecewise Legendre polynomials on a decomposition of I'. For more
details see [6].

First we present numerical results for the boundary element method
where we used sparse matrices for our Galerkin equations instead of
calculating all the entries, see (6). To this end we neglect as many
matrix elements as possible (starting with the smallest ones) until the
bounds (12) for the h-version and (13) for the p-version are reached.
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FIGURE 3. The L-shaped domain.

It has to be emphasized that the corresponding matrix elements need
not to be calculated. Instead, we use the inequality

1AIZ < 145 =) af;

(2]

to estimate the spectral norm of A and apply Lemma 1 to get an
estimation of the elements of § Ay. The constant in Lemma 1 is simply
replaced by 1 and the constants in (12) and (13) are chosen such that
the first Galerkin matrix we start with is nearly diagonal. For the
h-version we have to take |Ax||2 into consideration, cf. (12). Since
Ap is a normal matrix there holds [|[Ax|]2 = Amax(An) < cN71, cf.
Lemma 2. Numerically it turns out that this estimate is asymptotically
exact (cf. [16]) and ||An||2 is implemented this way. The so obtained
matrices are in fact rather sparse. Figure 4 shows a typical system
matrix for 16 elements and degree 4. The unknowns are ordered with
respect to the degrees (as indicated at the margin of the matrix) and for
each degree with respect to the boundary elements. Therefore we have
5 X b blocks for the pairs of degrees and in each block 16 x 16 entries
corresponding to testing each boundary element against each other.
All the entries which are zero or have been neglected by our procedure
are replaced with spaces. The remaining entries are characterized by
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p=0

00001110011 1000
0000000001 11000
0000000001111100
0000000001111111
100000000111111
10000000001111 1
1000000000011111
0000000000000000
0000000000000000
1111100000000001
1 11110000000001

111111000000001
1111111000000000
0011111000000000
00011 1000000000
0001 11001110000

1

0112111112 1110
0 01211111 21111
10 0111 11221112
110 01 111211112
1110 0111111122
11110 01111122 2
111 10 011111221
11 1110 01111221
12211110 0111 11
122111110 01 111
2 22111110 01111

2211111110 0111
211112111 10 011
21112211 1110 01
11112 11111210 0
0111 2111112110

N. HEUER

2

1122333433333221
1112234223333342
2111242223333432
2211122233335333
3221112443353333
3342111224433333
3422211124433333
4222421112243223
3223422111242224
3223344211122243
3333344221112433
3333533442111223
2335333322211122
2343333222421112
2433333224322111
1223333343322211

34

3
3
43
433
4533
443
43 3
4444
4444

44

444

3354
334

3

444445
444344
333 44
3 345

3344

443
5433
444
44

3344

3
33
433
4433
4433
4433
453

43 333

33444444
3344444

333 34

3

4334443
45444443

4

54
54
544
5544
554544
5555554

445

4

45 45
455455
54545
4455
544
454
544
4545555
545454
4454
545
45
45
4

54
545
55

544
554
544
5544
54544
555554
55 54

0111111112 2210
0 01111122 21111
10 0111 22221111
110 01 111211111
2210 0111111122
11110 01111122 2
111 10 011111111
11 1110 01111111
11111110 0111 11
111111110 01 111
2 22111110 01111

2211111110 0122
111112111 10 011
11112222 1110 01
11112 22111110 O
0122 2111111110

0122323322223221
1012223223222222
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FIGURE 4. The system matrix for 16 elements and degree 4. An entry n means
that the corresponding matrix element has an absolute value < 10™" times the
maximal one.
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FIGURE 5. The relative error in the energy norm for the h-version.

numbers 0 < n < 9 to give an overview of the absolute values. A
number n stands for a matrix entry a;; with |a;;| < 10 "amax where
Amax := max {|a;;|; i, =1,... ,N}.

Figures 5 and 6 show that even for the h-version one can neglect many
matrix elements without degrading the convergence properties of the
Galerkin method and without using sophisticated basis functions for
constructing the subspaces Hpy. In this example we used the fixed
degree p = 2.

Taking a closer look at the matrix in Figure 4 one observes a
dominant band structure in the blocks for higher degree elements.
This confirms the natural guess that the lower degrees and neighboring
elements represent the largest, i.e., most important, matrix elements.
To investigate this observation we test another method for the p-version
to make the Galerkin matrices sparse. We take a fixed degree p* and
calculate all the matrix elements (V 1% , l;ij>L2(F) for max{p;,p;} <
p*. The remaining matrix elements are just calculated if dist (I, J) = 0.
That means we have a very simple method which neglects many matrix
elements if the chosen degree p is larger than p*. It turns out that it
suffices to choose p* = 2 to retain the original convergence rate for our
example. Figure 7 presents the relative errors in the energy norm for
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FIGURE 6. The numbers of matrix elements used for the Galerkin matrices
of the h-version.

the original p-version and the two sparse variants. The underlying mesh
consists of 16 elements. Figure 8 shows the corresponding numbers of
matrix elements which were used for the Galerkin systems. As can be
seen, both of our sparse methods considerably reduce the density of the
Galerkin matrices.

Now we consider the additive Schwarz preconditioner. Recall that
we mentioned two different types. The usual dd-type preconditioner
implicitly defined by a decomposition of the discretized boundary I'
(cf. (18) and (20)) results in a fixed number % of local linear systems.
The pd-type preconditioner consists of an increasing number k of
small local linear systems for increasing p. Therefore the pd-type
preconditioner can be implemented efficiently in a natural manner in
parallel. Table 1 shows the computed smallest and largest eigenvalues
of the original system (using scaled piecewise Legendre polynomials)
and of the preconditioned systems for the two types. The parameter o
describes the behavior Apin = ¢(1 + p)®. The largest eigenvalues are
bounded in either case. The smallest eigenvalue of the original system
seems to asymptotically behave as p~2. This rate is covered by the
predicted bound given by Lemma 2. The smallest eigenvalues of the
ASM-preconditioned systems decrease much slower. In case of the dd-
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FIGURE 8. The numbers of matrix elements used for the Galerkin matrices
of the p-version.
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FIGURE 9. The condition numbers of the Galerkin matrices of the p-version
for different preconditioners.

type preconditioner they decrease as p~® with a < 0.5 and the rate «
becomes smaller for higher polynomial degrees. This is not far off the
asymptotic prediction by Theorem 3. The smallest eigenvalue obtained

by the pd-type preconditioner appears to behave like p~!.

Figure 9 shows the behavior of the improved condition numbers
compared to the original ones in a log-log plot. The curve for the
trivially preconditioned system tends to a straight line with about
two times the slope as that of the line for the pd-type preconditioned
system. The curve for the dd-type preconditioned system becomes
flatter for higher degrees as predicted by Theorem 3.

The numbers of iterations of the conjugate gradient method which
are required to solve the Galerkin system up to the accuracy of the
Galerkin error are given also in Table 1. Note that for our example
the exact solution is known and therefore the Galerkin error is com-
putable. The numbers for the pd-type preconditioned CG-method are
generally smaller than those for the original system using scaled Legen-
dre polynomials. The number of dd-type preconditioned CG-iterations
is even constant for the degrees 8 up to 14. This confirms the efficiency
particularly of the dd-type preconditioner for the CG-method.
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Of course, the application of the ASM-preconditioners is not as simple
as the use of scaled Legendre polynomials. But we point the reader to
the possibility of combining both types. This would result in the very
simple diagonal preconditioner since the decomposition of the ansatz
space Hpy with respect to all elements and with respect to all degrees
yields IV subspaces, and each of them is defined by exactly one basis
function. Then, one would expect the condition number to behave like
N(log N)2. For theoretical investigations of this preconditioner we refer
to a forthcoming paper [10].
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