JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 8, Number 3, Summer 1996

ON THE INVERSION OF
HIGHER ORDER WIENER-HOPF OPERATORS

L.P. CASTRO AND F.-O. SPECK

ABSTRACT. It is known that the Banach algebra gen-
erated by classical Wiener-Hopf operators on the half-line is
an algebra with symbol. This concept yields, in particular, a
Fredholm criterion and an index formula. In the present pa-
per we introduce a different symbol for the finitely generated
algebra. It is based on matricially coupling of operators and
implies a representation of a generalized inverse in terms of
matrix factorization. Some examples demonstrate how to use
these results for a discussion of properties of the solution of
singular equations.

1. Introduction. Our main objective is to construct generalized
inverses for particular classes of operators which are somehow related
to singular operators. This desire comes from mathematical physics
where analytical formulas are needed to obtain direct information about
the qualitative behavior of the solution of a linear operator equation,
for instance asymptotic expansion, which cannot be obtained from the
knowledge of a Fredholm pseudoinverse.

More precisely, if L~ denotes a generalized inverse of a bounded linear
operator L € L(X,Y) acting between Banach spaces, i.e. if

(1.1) LLTL=L
holds, then the equation
(1.2) Li=g

(for given g € Y and unknown f € X) is solvable if and only if
LL~g = g and the general solution in this case reads explicitly

(1.3) f=L g+(I-L Lk  heX.

One of the most popular examples where L™ can be represented in
closed analytical form is the Wiener-Hopf equation on the half-line

(L) WH@) =M@+ [ ke )W)y = (o)
0
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for f,g € LP(R), if the basic operator
(1.5) A=A +ks«=F'¢-F

admits a cross factorization A = A_C A, due to a generalized factor-
ization of the Fourier symbol ¢ = ¢_D¢,. This yields a generalized
inverse

(1.6) W~ =r A7'PC T'PATY,

where [y, 7, denote the operators of extension by zero from R, to R
and restriction from R on R, respectively, and P = lory = 1,- [4,
15, 17].

An asymptotic expansion of W™ g at zero is obtained from an expan-
sion of qﬁ;l at infinity by the help of Abel type theorems for the Fourier
transformation, provided the “physical data g are reasonable” (smooth
and decreasing), see [16].

Here we shall extend these ideas to WHOs of higher order

N M
(1.7) L=>Y [[w"

i=1j=1

(including the systems case) which are related to matrix WHOs, see
[5, 6], and define for this reason:

Definition 1.1. Let X C L(X,Y) be a class of operators acting
between Banach spaces. A measurable matrix function ¢ on R is called
a Gl-symbol for L € K, if

i) generalized invertibility of L can be expressed in terms of
properties of ¢, and

ii) provided L is generalized invertible, a generalized inverse L™ can
be represented in terms of a factorization of ¢ (and global parameters
of the class I but not of the particular operator L).

Remarks 1. In order to serve the purposes of asymptotic analysis,
it is important that the formula for L~ has “closed analytical form”.
For instance the representation of generalized inverses of WHOs on the
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quarter-plane is possible by the help of infinite products of operators
[14], but not very useful for asymptotic considerations.

2. In general, composition formulas for GI-symbols do not hold, since
the “reverse order law” (LiL2)” = Lj L7 is not satisfied. Thus the
word “symbol” does not have the meaning of “invertibility symbol” but
of “Fourier symbol of an associated translation invariant operator.”

2. Construction of an equivalence relation. Now we are going
to relate operators with matrices of WHOs.

Let X be a Banach space and M a linear manifold in the algebra of
all linear bounded operators acting in X, £(X), such that M contains
the identity operator I. We let K denote the set of operators of the

form
N M;
r=> [
i=1j=1
N,M;eN, TYeM

Theorem 2. The operator matrix

Ny M;
(2.2) L= [Z 117 € KM

i=1j=1 ] kl=1,...,n
(n € N) is equivalent after extension to an operator matriz

(2.3) T:ﬁ1 52]:X"@X"’—>X”@Xm
3 4

where, denoting by (T,),, the kl-element of T,, v=1,...,4,

0 if Mgy #1, V1 <@ < Nig

., )
T,zll otherwise

(2.4) (Th)y = {
(where i’ is the smallest i so that M, ;) = 1),

(2'5) (T2)kl € {0717 Tlg ’ (T3)kl € {07 _TIZ ’
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Ty is a lower triangular matriz with (Ts),, € {0,1, fT,i{}, (Ta), =1,
and

n n Nkl
m=>_ > > f(Miup)
k=11=1 i=1
with
Mz’(k,l) -1 fM;>2V Ny =1V
(Nk:l #1AM; =1ANM; #1,
27  f(Migp) = Vil <i)
1 ifM,»zl/\Nklz2/\Eli’<z':
M; =1

Proof. This result is an iteration of the following operation
© :K:(n—i—r)x(n—i-r) N K(n+r+1)><(n+r+1)

2.8 "
( ) Lr — LT+1, re NO

beginning with Ly = L and defined by

] 0
] 0

(2.9) Loyt = Ly a
0

0

0 - 0 B 0 -~ 0IT]

where, after a reordering of the terms in (2.2) such that M; < Ms <
--- < My holds,

j=1

(2.10)
I if My,, =1

o {HM”Ml TN if My, > 2

indicates the term in the place (k, n + 7 + 1) of the matrix,

NiiMn,,

(2.11) g=-1)
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indicates the term in the place (n+r+1, 1) and L, is equal to L, with
the exception of the kl-element that is transformed from L, to L, by
the rule

Nt M Npi—1 M; %] .
ij ; Ty i N> 2
2.12 TY {Zz=1 HJ=1 kl Kl 2
e S [n {3

P ftet if Ny =1

where the operator Zfﬁ“{ HJNil T,z{ is the kl-element of the L, matrix.

This iteration (which begins with @o(L) = L;) is processed every
time when the L, matrix has kl-elements which are not in M.
For a unique determination of the procedure one may choose, for

instance, a lexicographical order, i.e., first L1y is reduced completely,
then L1, and so on.

Each step in the process yields an equation

L, 0
(213) 0o I = r+1Lr+1Fr+1
where
_ 0
0
(2.14) B, = I —a
0
0
L0 ol 1]
and
0
(2.15) Foiq= I :
0
0 - 0 -8 0 --- 011

From that we obtain
[L 0

(2.16) 0 1

}—ETF:X”EBX"‘—>X"®X"L
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in which

T I
r=[7 7]

has only elements of the form T}7, —T}7, I, 0 and Ty, Ty, T3, Ty fulfill
the conditions (2.4) and (2.5). The matrix F = Ej, for m = 1 and
E=(EolI® ---®l)---E, for m > 1, where I is m — 1 times
repeated, is an upper triangular matrix

(2.18) E:[é ?}:X"@X’"HX"@X"‘

where E only contains elements of the type 0, I, —Tk'{ ,
of those.

The operator matrix F = Fyifm=1and F = F,,, - - - (F1®I®---D1)
if m > 1 is a lower triangular matrix and has the form

Tlg or products

(2.19) F:[ %3 T%]:X"@X’"HX"@X’"
- 4

where T3 = Ty + T3, T3 = 0 or T3 is a matrix whose elements are
product of elements in —T5 or —T}, see (2.17); Ty =Ty + Ta, Tz is the
null matrix or have some elements different from zero that are product
of elements in —7}. Finally, the index m indicates the number of steps
that are necessary to obtain the W operator matrix, i.e., the number
of times that the iteration is processed, that is

n n Nkl
(2:20) m="3"3" (M)
k=11=1 i=1
where
Mi(k,l) —1 if M; >2V Ny =1V
N #1ANM; =1N M # 1,
(2.21)  f(Migka)) = Vil <)

1 if M; =1ANy >2A3 <
M; =1
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From (2.18) and (2.19) it follows that there exist inverses of E and
F, respectively, given by

(2.22) E~! = [é _IE] X" X" — X" X™
and
(2.23) =l Ylixrexm — xmexm
' TyT3 Ty |~ ’
respectively. This fact and equation (2.16) imply the statement. a

Ezample. The operator T 4+T21T22 ¢ K is equivalent after extension
to

11 21
(2.24) T— [ r, T

2x2

2 g ] €K%=
This can be proved by following the iteration presented in the last
theorem. If we apply that iteration we have the transformation, from

K to K2x2,
11 21
(2.25) ™ +T727%2 [_TTZZ TI ]

and so the correspondent to formula (2.16) is, in this case,

(2.26) T' 4+ T 7% 0] _ [I —Tﬂ] [ T TZI] [ I 0]

0 I 0 1 -T2 T T#2 T

which shows the initial statement.

Remark. We emphasize that the equation presented in (2.16) is a
factorization into simpler structured factors, that is, a lower-upper-
factorization, with invertible outer factors and the matrix W contains
only the particular elements of M that we found in L. The number
of steps can be eventually reduced, if we combine M elements in
linear combinations during the process. This leads only to a different
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identification of terms in (2.2) and, therefore, it can be considered as a
subcase of the present formulation.

3. Generalized inversion of L. An operator W : X5 — X5, which
is equivalent after extension to L : X; — X7, is also called an indicator
of L, see [1, 2].

(3.1) LAW

L 0 W 0
(32) [0 IZI]_E[O IZZ:|F
or

lz,(L) = Elz,(W)F

where £ : Xo® Zy - X1D 21, F : X180 Zy — Xo® Z; are invertible.
Here L = Iz, (L) denotes the extended operator on X; & Z; according
to the left hand side of formula (3.2) and rx, (L) the corresponding
restriction, which is also defined for any linear operator L: )?1 — )?/1
and any complemented subspace X7 of X;. In a different context the
operator matrix Iz, (L) is identified with L & I;,, see [2], and rx, (L) is
called a general (or abstract) Wiener-Hopf operator, usually written as
Tp(A) = PAjim p where A = L and P is the projector onto X; along
Z1, see [17]. Similarly, we use rx, and lz, (W), respectively, due to the

second space components.

It is known that

Corollary 3.1. L and W belong to the same regularity class (see
[17, p. 10]), i.e., the images are simultaneously closed, complemented,
of the same codimension or not, respectively, and the kernels also
complemented, of the same dimension or not, respectively.

Now, because of the construction realized in Theorem 2.1, we want
to find relations between the generalized inverses (if they exist) of
operators that are equivalent after extension.

Theorem 3.2. Let L and W be equivalent after extension, see (3.2);
then a generalized inverse W~ of W yields a generalized inverse of L
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and vice versa:

(3.4) L =rx,(FYz,(W)E™
(3.5) W~ =rx,(Flz,(L7)E).

Proof. By definition we have for a linear operator L on X; or L on
X1 @ Z1, respectively,

(3.6) rx,(lz, (L)) = L
lZl (TX1 (I:)) =

(i}

if and only if L = Iz, (L) for some L : X; — X; and, due to (3.2),
Therefore WW~W = W implies

(3.9)
Ely, W)F FYly,(W )E ! Ely,(W)F = Elyg,(W)F

(3.10) [ﬁ 12] [él g] [ﬁ Ig]=[ﬁ 12]

where the middle factor was just abbreviated, and, furthermore, we
have

(3.11) [LAL LB] _ [L 0 ]

CL D 0 Iz,

ie., A=rx, (F lz,(W )E 1) represents a generalized inverse of L.

An analogue proceeding proves (3.5). O

Corollary 3.3. If WW~-W = W and L is given by (3.2), then
projectors onto the image and the kernel of L, respectively, read

(3.12) P =rx,(Blz,(W)lz,( W )E™)
(313) PkerL =Tx, (F_I(I - lZz (W_)lzz (W))F)
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Proof. Although in general rx, (W1)rx, (Wa) # rx, (W1 Ws), we have
here

LL™ =r7x,(Elz,(W)F) rx,(F 'z, (W )E)

- ([5 n]) ([ 2])

(3.14) =LA

LA LB
~™\{|lc D

=Tx, (ElZ2(W)F F_llZZ(W_)E_l)

which yields the first statement, and the second part is proved similarly.
mi

Corollary 3.4. If L denotes the operator in (1.7), and if W satisfies
(3.2) and the symbol of W has partial indices k1, ... ,ks then

(3.15) dimker L =k~ = » K
j=1
(3.16) codimimL =kt =) "«
j=1
where
1
(3.17) Ky = 5 (ml = k)
+_ 1 :
(3.18) K = §(|K§J| +Kj), j=1,...,s.

Proof. It is an immediate consequence of (3.2), see [15].

Remark. The last information cannot be obtained from an invert-
ibility symbol that describes inversion in the Calkin algebra, cf. [7,
8].
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As a matter of fact, in these representations the defect numbers do
not depend on the transformations E, F, restriction or extension, but
the kernel itself and the image of L do. Therefore the Fourier symbol
of W is still not a GI-symbol of L. To achieve this property we need a
little more specialization of E and F'.

Proposition 3.5. If E~! and F~! have the particular form of
(2.22) and (2.23), respectively, and if

(3.19) Iz, (L) = EWF

then the formula for the generalized inverse of L, given in Theorem 3.2,
may be reduced to

(3.20) L™ = rx,(WD).

Proof. Formula (3.20) is a direct consequence of the definition of rx,
and the computation of F~'W~E~! with these particular operators
E~'and F~1. o

Theorem 3.6. If L denotes a higher order WHO and T is con-
structed by Theorem 2.1, then the (associated) Fourier symbol of T is
a GI-symbol for L.

Proof. Combine the last proposition with former results. u]

Conversely, for some applications it might be interesting to weaken
the assumptions on E and F":

Proposition 3.7. If L: X; > X1, W: Xo = Xo, W : X5 = X,
EZXQ@ZQ—)XlEBZ]_, E_ZXl@Zl—)XQ@Zz,FZX]_Ele—)
Xo® Zy, F™ : Xo® Zy — X1 D Z1 are operators such that

L 0 w0
(3.21) [0 IZJ_E‘[O IZ2]F
(3.22) E"E=1, FF =1

(3.23) WW-W =W
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then a generalized inverse of L is represented by

(3.24) L™ =y, (F g, (W)E).

Proof. Changing E~! and F~! to E~ and F~, respectively, in the
proof of Theorem 3.2 we obtain relations that prove the statement.
]

Clearly if E and F' are not invertible we cannot obtain, in general,
W~ from L~ which can be proved by counterexamples.

Corollary 3.8. Under the conditions of the last proposition, if

E‘:[I I]:Xleazl—ug@zm
(3.25) |
F:[ :]:X269Z2—>X1®Z1,

where x denotes any bounded linear operator acting between the corre-
sponding spaces, or

E—[I I]3X1@Z1—>X269Z2a
(3.26) Lo
F_:|: *:|ZX2@Z2—>X1€BZ1

then a generalized inverse of L is represented by

(3.27) L™ =rx,(lz,(W")).

Proof. It is a direct computation of (3.24) for these particular E~
and F~. O

4. Examples. Various examples are directly obtained, if we
interpret the generalized inverse W~ in (1.6) as the composition of
operators that come from a generalized factorization of the Fourier
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symbol matrix function ¢ of A. Here we like to present a less immediate
example.

We know that a general WHO
(4.1) W = PApx

where X is a Banach space, A, P € £(X), P? = P, is equivalent after
extension to a paired operator PA + ). This in brief is

(4.2) PAP+Q = (I — PAQ)(PA+ Q)

or, by identification of X = PX & QX with vectors of two components
in PX and QX, respectively,

(4.3) [W 0 }: [Im PAQX] [W PAQX]
0 Iox 0 Iox 0 Iiox |’

i.e.,

(4.4) WA PA+Q.

As a particular case let us now think of a WHO of second kind on
a finite interval Q = [0, 1], W, say, which can be seen as a restriction
from the half-line Ry, ie., X = L?(R,), P = Xq-, and A is the WHO
on (1.4) denoted by W.

So the projector Q@ = I — Xq- = X[1,00[* 00 LP(Ry) is itself a higher
order WHO, namely
(4.5) Q=WW_

where W}, has the Fourier symbol ¢, (£) = € due to an h-shift. This
yields

(4.6) Wao ~ PW +Q
(47) =W -W{W_{W+W{W_4

(4.8) ~ w Wl]

[W_l(W— I I

(4.9) ~ [W;/l VH
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with a Fourier symbol, see [10],

(4.10) 60=|Ce) | €eRr

where ¢ = A + Fk and k is an extension of the convolution kernel of
Wgq from [0,1] to R.

The last relations are explicitly given by

(4.11) [W - WlV‘g—l(W —1I) ?]

= [é —ng} [Wl(?/l//—f) V[Ifl] [—Wl(IW_I) ?]

Proposition 4.1. i) The Fourier symbol
[ e® eig]
1 #0= |G -n

1s a GI-symbol for Wq,.
il) ¢ is not a GI-symbol for Wg.

Proof. i) The relation (4.11) is obtained by Theorem 2.1 so that, see
Theorem 3.6, 9 is a GI-symbol for PW + @. Thus, Corollary 3.8 and
relation (4.3) yield the first statement.

ii) Combining (4.11) and (4.12), we have

(4.14) [W - ng_l(W ) ?]

Wi I-WiWa],, I 0
-1 W_, —W_ (W —=1) I
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where
W1 0
(4.15) W = [ W W1:| .
Thus, if
__|A B
(4.16) W = {C D}

is a generalized inverse of W, Theorem 3.2 shows that

(4.17)
= ([wwon o W)

(4.18) =ry <W [WI‘I V&])

(4.19) = AW_, +B

is a generalized inverse of L = PW + Q.

Thus, in general, rx(W~) = A is not a generalized inverse of L
(consider, for instance, the possible case A = W7, B = 0 and as a
consequence L = LQL # LW1L). From (4.3) and (4.6) we also have
that, in general, rx (V™) is not a generalized inverse of Wq,. O

The last proposition gives one of the reasons why it is useful to
construct equivalence after extension relations based on the iteration
presented in Theorem 2.1.

For the practical use of some of the relations presented here we need
to test the generalized factorization of the symbols ¢ and ¢. For this
purpose, if these symbols are in the class of (semi-) almost periodic ma-
trix functions (which has various applications in mathematical physics)
we refer to [9, 10, 11 and 12] where a particular case of generalized
factorization, the P-factorization, is defined and for some classes a gen-
eralized factorization can be effectively constructed.

A different approach to the convolution operator on a finite inter-
val, based on relations with a singular integral operator acting on a
particular space of functions, is presented in [3] and [13].
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