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PALEY-WIENER THEOREM
AND THE FACTORIZATION

AMIN BOUMENIR

ABSTRACT. In this note we shall generalize the Paley-
Wiener theorem to self-adjoint operators similar to (−id/dx).
By using a simple factorization result, it is shown that the
Paley-Wiener theorem holds if Γ′(λ) is analytic, where Γ(λ)
is the spectral function.

1. Introduction. Recall that with each self-adjoint operator is
associated a transform or a unitary operator by which the self-adjoint
operator is equivalent to a multiplication by the independent variable.
For instance, −id/dx is self-adjoint in the Hilbert space L2

dx and
F(f)(λ) =

∫
R
f(x)eiλx dx defines a unitary operator called the Fourier

transform
L2

dx
F→ L2

dλ/2π.

One of the most interesting features of the Fourier transform is the
Paley-Wiener theorem: Let F (λ) be an entire function

|F (λ)| < Mea|λ|

F (λ) ∈ L2
dλ

}
⇐⇒

⎧⎨
⎩F (λ) =

∫ a

−a

f(x)eiλx dx

f(λ) ∈ L2
dx

eiλx are clearly the eigenfunctionals of the operator −id/dx. Our
question is: Characterize self-adjoint operators in L2

dM(x) such that
if eiλx is replaced by its eigenfunctionals, then does a similar Paley-
Wiener theorem hold? For the sake of simplicity, it is sufficient to
consider self-adjoint operators with a simple spectrum, σ say. Let L
be a self-adjoint operator acting in the separable Hilbert space L2

dM(x),
and let y(x, λ) be its eigenfunctionals, i.e., Ly(x, λ) = λy(x, λ) in the
weak sense, see [3]. This gives rise to the y-transform, Fy

∀ f ∈ L2
dM(x) Fy(f)(λ) ≡

∫
f(x)y(x, λ) dM(x).
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The inverse is simply defined by:

f(x) =
∫
Fy(f)(λ)y(x, λ)dΓ(λ)

where Γ(λ) is the spectral function associated with the operator L.
Parseval equality associated with the operator L is given by∫

Fy(f)(λ)Fy(ψ)(λ) dΓ(λ) =
∫
f(x)ψ(x) dM(x).

Recall that we have assumed that the spectrum σ = supp Γ(λ) ≡ R.

2. Statement of the problem. Let F (λ) be an entire function of
λ. Under what conditions would

|F (λ)| < Mea|λ| ⇐⇒ Fy(f)(λ) =
∫ a

−a

f(x)y(x, λ) dM(x).

In other words we would like to generalize the Paley-Wiener theorem
to different and more general transforms. Throughout this work we
shall need the following condition:

Condition [A]. Let L be a self-adjoint operator in the separable
Hilbert space L2

dM(x) having a simple spectrum, σ = R. The associ-
ated unitary operator will be called the y-transform and denoted by
Fy(f)(λ) =

∫
f(x)y(x, λ) dM(x).

The main idea is to compare the operator L with −id/dx. To apply
the comparison theorem we need to use rigged spaces, see [1]. However,
for the sake of simplicity we shall present a different method that would
not use rigged spaces. To this end, we introduce the following

Definition 1. Let condition [A] hold. W is said to be a transition
operator if

(1) Fy(f)(λ) ≡ F(Wf)(λ) ∀λ ∈ R

where F is the Fourier transform
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L2
dM �

W
�
�
�
��Fy

L2
dx

L2
dΓ(λ) ∩ L2

dλ/2π

�
�
���

F−1

Using equation (1) we easily deduce the following

Proposition 2. We have the following obvious properties

i) W is always densely defined in L2
dM

ii) DW ≡ {f ∈ L2
dM/

∫
σ
|Fy(f)|2 dλ <∞}

iii) RW ≡ {f ∈ L2
dx/

∫
R
|F(f)|2 dΓ(λ) <∞}.

iv) W is bounded if and only if L2
dΓ(λ) ⊂ L2

dλ/2π.

v) W−1 exists ⇔ ∫
σ
|Fy(f)|2 dλ = 0 ⇒ f = 0.

It is also clear that the operators W and W−1 are always well defined
but may be unbounded, depending on the nature of Γ(λ).

Remark. The operator W−1 is defined similarly by

Fy(W−1f)(λ) ≡ F(f)(λ).

Theorem 3. Let condition [A] hold and F (λ) be an entire function,
then

{
|F (λ)| < Mea|λ|

F (λ) ∈ L2
dΓ(λ) ∩ L2

dλ/2π

}
⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F (λ) =

∫
f(x)y(x, λ) dM(x)

f ∈ DW ⊂ L2
dM(x) and

suppWf ⊂ [−a, a]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Proof. The proof is a simple consequence of the definition of
the operator W . Assume that the righthand side is true. Then
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F (λ) ∈ L2
dΓ(λ) and, since Wf ∈ L2

dx, then |F(Wf)(λ)| < ea|λ|

and F(Wf)(λ) ∈ L2
dλ/2π. By using the definition of the operator

W , i.e., F(Wf) = Fy(f), we deduce F (λ) ∈ L2
dλ/2π ∩ L2

dΓ(λ) and
|F (λ)| < ea|λ|. Conversely, if F (λ) satisfies the lefthand side then
there exists f(x) ∈ DW such that F (λ) ≡ Fy(f)(λ) = F(Wf)(λ). By
the Paley-Wiener theorem we deduce that suppWf ⊂ [−a, a].

Definition 4. An operator L is said to have the Paley-Wiener
property if, for any entire function F (λ),

{
|F (λ)| < Mea|λ|

F (λ) ∈ L2
dΓ(λ) ∩ L2

dλ/2π

}
⇐⇒

⎧⎪⎨
⎪⎩
F (λ) =

∫ a

−a

f(x)y(x, λ) dM(x)

f ∈ DW ⊂ L2
dM(x)

⎫⎪⎬
⎪⎭ .

It is readily seen that for the Paley-Wiener property to hold we only
need W and W−1 to be support preserving operators, i.e., suppWf ⊂
[−a, a] if and only if supp f ⊂ [−a, a].

To proceed further, we shall need to define the concept of support
preserving operators.

Definition 5.

i) W is said to be Support Preserving (S.P.) if

suppWf ⊂ supp f for all f ∈ DW

ii) W is said to be Weak Support Preserving (W.S.P.) if

supp f ⊂ [−a, a] =⇒ suppWf ⊂ [−a, a] for all f ∈ DW .

Examples of S.P. operators. We now use the idea of chains of
projections. Let Pξf(x) ≡ 1[−|ξ|,|ξ|](t)f(t) and let X+ be a bounded
operator on L2

(a,b) where −∞ ≤ a, b ≤ ∞. Recall that an operator X+

is said to be upper triangular if

X+Pξ = PξX+Pξ.
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It is readily seen that upper triangular operators are W.S.P. opera-
tors. Indeed, let f be given such that supp f ⊂ [−c, c]. Then for all
ξ such that |ξ| > c, we obviously have Pξf = f and X+f = PξX+f .
Thus, suppX+f ⊂ [−c, c].

i) If X+ is a Volterra operator, of upper triangular type with respect
to the chain Pξ, then 1 + X+ is W.S.P. and its inverse [1 + X+]−1 is
also W.S.P. since it is of the same type, see [4].

ii) Let Wf ≡ f +
∫ −|x|
−∞ K(x, s)f(s) dM(s)+

∫ ∞
|x| K(x, s)f(s) dM(s).

If
∫∫ |K(x, t)2| dM(s) dx <∞, then W−1 is W.S.P. since

W−1f ≡ f +
∫ −|x|

−∞
H(x, s)f(s) dM(s) +

∫ ∞

|x|
H(x, s)f(s) dM(s),

iii) By the local property
∑

n≥0 an(x)(dn/dxn) is an S.P. operator.

iv) Let Uf(x) ≡ r(x)f(t(x)) where r(x) > 0 and t(x) ↗ and odd,
then suppUf ⊂ [−a, a] ⇐⇒ supp f ⊂ [−t(a), t(a)].
The operator U in this last example, is similar to a W.S.P. since the
supports are rescaled by the function t(x).

Thus, we have a simple

Corollary 6. Let condition [A] hold. If W and W−1 are W.S.P.
operators, then the Paley-Wiener property holds.

We now give necessary and sufficient conditions for W and W−1 to
be S.P. Recall that in [1] the following operator was introduced

L2
dM(t)

G→ L2
dM(t)

f → Gf(x) ≡
∫
Fy(f)(λ)y(x, λ)dλ/2π.

We recall that, from the factorization theorem, it follows that

(2) G = W ′W.

We also have a similar factorization if we consider W−1,

(3) S = [W−1]′[W−1]
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where

Sf(x) ≡
∫

F(f)(λ)e−iλx dΓ(λ).

Recall that in case Γ′(λ) is locally summable, then equation (3) reduces
to

(4) 2π
dΓ
dλ

(−id
ix

)
= [W−1]′[W−1].

For details of the above results, see Theorem 4 in [1].

Theorem 7. Let condition [A] hold and let

a) W be S.P.,

b) G−1 be S.P..

Then W−1 is S.P. and the Paley-Wiener property holds.

Proof. We would like to see when W−1 is S.P. To this end it is
sufficient to show that if supp f = [a, b], then suppW−1f ⊂ supp f .
Thus, we first need to show that

∫
W−1f(x)ψ(x) dM(x) = 0 ∀ψ ∈ DW ′−1 ∈ L2

dM

such that suppψ ∩ supp f = ∅.

From equation (2),

∫
W−1f(x)ψ(x) dM(x) =

∫
f(x)W−1′ψ dx

=
∫
f(x)WG−1ψ(x) dx.

Recall that WG−1 is support preserving and therefore
supp f ∩ suppWG−1ψ ⊂ supp f ∩ suppψ = ∅, thus

(5)
∫
W−1f(x)ψ(x) dM(x) = 0.
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To end the proof we need to see that DW−1′ is dense in L2
dM . From

the previous remark W and W−1 are densely defined. Therefore
W−1′

= W ′−1, thus

DW−1′ = DW ′−1 = RW ′ = {KerW}⊥ = 0⊥ = L2
dM .

Hence we have that W−1′
is a densely defined operator. Denote by

LK ≡ {ψ(x) ∈ L2
dM(t)/suppψ(x) ⊂ K}.

Then clearly LK ⊂ L2
dM(t); we have DW−1′ ∩ LK dense in LK , and

so equation (5) means suppW−1f = 0 if supp f ∩K = ∅. Therefore,
W−1 is S.P.

We can also use equation (4) to obtain a more practical result, which
is the main result in this section.

Theorem 8. Assume that condition [A] holds and let W be S.P.
If (dΓ/dλ)(λ) is analytic, then W−1 is S.P. and the Paley-Wiener
property holds.

Proof. It is sufficient to observe that equation (4) holds and

W−1 ≡ 2πW ′ dΓ
dλ

(−id
ix

)
.

Therefore∫
W−1f(x)ψ(x) dM(x) = 2π

∫
W ′ dΓ

dλ

(−id
ix

)
f(x)ψ̄(x) dM(x)

= 2π
∫
dΓ
dλ

(−id
ix

)
f(x)Wψ(x) dx

= 0.

Since (dΓ/dλ)(−id/dx) and W are S.P. operators and
supp f ∩ suppψ = ∅. To end the proof use the fact that W−1′

is
densely defined.
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Proposition 9. Let W ′ ≡ 1 + X∗
+ where X∗

+ is a lower triangular
Volterra operator with respect to the chain Pξ ≡ 1[−|ξ|,|ξ|](t), then the
Paley-Wiener property holds.

Proof. This is a simple consequence from the fact that the inverse
of a Volterra operator of the second kind is a Volterra operator of the
second kind, see [4].

What remains is to obtain simple conditions such that W is S.P.

If the solution

y(x, λ) =
∑
n≥0

an(x)λneiλx

y(x, λ) =
∑
n≥0

an(x)
(−id
ix

)n

eiλx

Then formally

Wf(x) ≡
∑
n≥0

(−id
ix

)n

[an(x)f(x)]

and so W is S.P. .

We also have

Proposition 10. Let

y(x, λ) = P (λ)eiλx +
∫ |x|

−|x|

∑
n≥0

an(x, t)
dn

dtn
eiλt dt

where P (λ) is entire. Then W is W.S.P.

Proof. This defines the shift operator explicitly, see [1].

W ′f ≡ P

(−id
ix

)
f +

∫ |x|

−|x|

∑
n≥0

an(x, t)
dn

dtn
f(t) dt.
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Therefore

Wf ≡ P

(−id
ix

)
f(x) +

∑
n≥0

dn

dxn

∫ −|x|

−∞
an(t, x)f(t) dt

+
∑
n≥0

dn

dxn

∫ −∞

|x|
an(t, x)f(t) dt.

Corollary 11. Let y(x, λ) be an entire function of λ of order one
and type |a(x)|. If |a(x)| is increasing, then W is W.S.P.

As a consequence of the special factorization, see [4], one obviously
obtains a necessary condition

Proposition 12. Let W ′ ≡ 1+X∗
+ where X∗

+ is a Volterra operator.
Then 2π(dΓ/dλ)(−id/dx) − 1 ∈ σ∞, i.e., is a compact operator.

3. Examples.

A) Consider the following self-adjoint operator in L2
dx

L(y) ≡ idy

dx
+ q(x)y, x ∈ (−∞,∞)

where q(x) ∈ L1,loc
dx . The eigenfunctionals are solutions of{

iy′(x, λ) + q(x)y(x, λ) = λy(x, λ)
y(0, λ) = 1.

Thus

y(x, λ) = e−iλxe
i
∫ x

0
q(t) dt

,

i.e.,

Wf(x) = f(x)e−i
∫ x

0
q(t) dt

.

In this case W and W−1 are both S.P. since |Wf | = |f |.
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B) Consider the operator defined by

L(f) =
−i
w(x)

df

dx
x ∈ (−∞,∞)

where w(x) ≥ 0 and w(x) ∈ L1,loc
dx . Hence L is self adjoint in L2

wdx.
The eigenfunctionals are given by

y(x, λ) = e
+iλ

∫ x

0
w(s) ds

.

Using the definition of the operator W

Fy(f)(x) =
∫
e
+iλ

∫ x

0
w(s) ds

f(x) dx.

Therefore
Wf(x) = f(a(x))a′(x)

where a(x) is the inverse of
∫ x

0
w(s) ds.

C) Second order differential operators. It is well known that

⎧⎨
⎩Lf ≡ −d2

dx2
f(x) + q(x)f(x), x ≥ 0

nf(0) − f ′(0) = 0,

defines a self-adjoint operator in L2
dx[0,∞).

The eigenfunctionals are solutions of

{−y′′(x, λ) + q(x)y(x, λ) = λy(x, λ)
y(0, λ) = 1 and y′(0, λ) = n.

Gelfand and Levitan have shown the existence of two functions H(x, t)
and K(x, t) such that

{
y(x, λ) = cos(x

√
λ) +

∫ x

0
K(x, t) cos(t

√
λ) dt

cos(x
√
λ) = y(x, λ) +

∫ x

0
H(x, t)y(t, λ) dx.
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In this case the operator W is given by

Wf(x) = f(x) +
∫ ∞

x

K(t, x)f(t) dt

W−1f(x) = f(x) +
∫ ∞

x

H(t, x)f(t) dt.

Clearly, W and W−1 are W.S.P. in L2
(0,∞).

D) Generalized second order differential operators. Consider the
following self-adjoint operator acting in the Hilbert space L2

w(x) dx and
defined by ⎧⎨

⎩Lf ≡ −1
w(x)

d2

dx2
f, x ≥ 0

f ′(0) − nf(0) = 0

where w(x) ≥ 0, w(x) �
�xα as x → 0, w(x) ∈ L1,loc

dx and α + 1 > 0. It
is known that the eigenfunctionals ϕ(x, λ) are solutions of⎧⎨

⎩
−1
w(x)

d2

dx2
ϕ(x, λ) = λϕ(x, λ)

ϕ(0, λ) = 1, ϕ′(0, λ) = n.

Clearly, ϕ(x, λ) is entire and satisfies |ϕ(x, λ)| ≤ e
√

|λ|t(x) where

t(x) =
√

2x
∫ x

0
w(s) ds. As λ → ∞ we have the following asymptotics

derived from the WKB method,

ϕ(x, λ) �
�

√
ξ(x)
p(x)

{
c1λ

−1/(2(α+2))J1/(α+2))(ξ(x))

+ c
1/(2(α+2))
2 J−1/(α+2)(ξ(x))

}

where α + 2 > 1, p(x) =
√
λw(x), ξ(x) =

∫ x

0
p(t) dt, and c1 and

c2 are just constants. For fixed x, the above estimates show that
ϕ(x, λ) = O(λ1/2). Hence, for all x > 0,

ϕ(x, λ) − cos(x
√
λ) − n sin(x

√
λ)√

λ

λ
∈ L2

(0,∞)
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is entire of order 1 and type b(x) ≡ max(x, t(x)). In this case, by the
Paley-Wiener theorem, there exists a function K(x, t) such that

ϕ(x, λ) − cos(x
√
λ) − n

sin(x
√
λ)√

λ
= λ

∫ b(x)

0

K(x, t) cos(t
√
λ) dt,

which can be rewritten as
(6)

ϕ(x, λ) = cos(x
√
λ) − n

∫ x

0

cos(t
√
λ) dt+ λ

∫ b(x)

0

K(x, t) cos(t
√
λ) dt.

The operator W can be obtained very easily by using the definition

Wf(x) = f(x) − n

∫ ∞

x

f(t) dt+
−d2

dx2

∫ ∞

a(x)

K(t, x)f(t) dt

where a(b(x)) = x, i.e., the inverse of the function b(x). Therefore, W
is W.S.P. For the inverse we need to write equation (6) as a Volterra
type equation. The inverse would be

cos(x
√
λ) = ϕ(x, λ) +

∫ b(x)

0

R(x, t, λ)ϕ(t, λ) dt,

where R(x, t, λ) ≡ ∑
n≥0 an(x, t)λn, i.e., is an entire function of λ.

Thus W−1 can be written as

W−1f(x) = f(x) +
∫ ∞

a(x)

∑
n≥0

an(x, t)Lnf(t) dt

and since Lf = (−1/w(x))(d2/dx2)f is S.P., we deduce that W−1 is
W.S.P. in the following way.

Here
supp f ⊂ [0, γ] ⇐⇒ suppWf ⊂ [0, b(γ)].

E) The following operator was studied in [2].

Lf ≡ −1
A(x)

d

dx

(
A(x)

d

dx
f

)
x ≥ 0
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where A(x) ≥ 0 and 1/A(x) ∈ L1,loc . This defines a symmetric
operator in L2

A(x) dx[0,∞). Let the eigenfunctions ϕ(x, λ) be solutions
of ⎧⎨

⎩
−1
A(x)

d

dx

(
A(x)

d

dx
[ϕ(λ)]

)
= λϕ(λ)

ϕ(0, λ) = 0 limx→0A(x)ϕ′(x, λ) = 1.

Clearly, if we set

t(x) =
∫ x

0

1
A(s)

ds and therefore A(x)
d

dx
=

d

dt
,

y(t, λ) ≡ ϕ(x(t), λ)
w(t) ≡ [A(x(t))]2

then
−1
w(t)

d2

dt2
y(t, λ) ≡ λy(t, λ).

Then from y(t, λ) ≡ ϕ(x(t), λ) and the previous example, see equation
(6), we deduce that W and W−1 are W.S.P. with rescaled support.

F) Let us consider the generalized second order differential operator,

Lf ≡ −1
p(x)

d2

dx2
f(x) +

q(x)
p(x)

f(x), x ≥ 0,

where p(x) ≥ 0 and q(x) ∈ L1,loc . Clearly L is symmetric in L2
p(x) dx.

If the spectrum is bounded below, then there exists a λ0 < 0 such that

Ly(x, λ0) = λ0y(x, λ0)

and y(x, λ0) > 0. Let us set u(x) ≡ y(x, λ0) and clearly y(x, λ)/u(x) is
a solution of

u2(x)
d

dx

[
u2(x)

d

dx

(
y(x, λ)
u(x)

)]
+ (λ− λ0)p(x)u4(x)

(
y(x, λ)
u(x)

)
.

In this case the change of variable is obvious

ϕ(η, λ) ≡ y(x(η), λ)
u(x(η))

and η(x) ≡
∫ x

0

1
u2(s)

ds.
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Hence ϕ(η, λ) is a solution of

−1
u4p(x(η))

d2

dη2
ϕ(η, λ) + (λ− λ0)ϕ(η, λ) = 0.

The transition operator in this case is defined by

ϕ(η, λ) ≡ y(x(η), λ)
u(x(η))

.

By using equation (6), we have that W and W−1 are W.S.P.
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