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ALGEBRAIC TYPE OF SOLUTIONS FOR
SINGULAR INTEGRAL EQUATIONS OF THE FORM
(S+T)x =29 IN BANACH SPACES

RAM U. VERMA

ABSTRACT. The formulae of the algebraic type for the
solutions of the singular integral equations with positive in-
dices, by applying the analytic formulae of Buraczewski and
the integral model of Verma for the determinant systems, are
obtained.

1. Introduction. Buraczewski [1] generalized the Fredholm for-
mulae of Sikorski [10] to the case of Fredholm operators with nonva-
nishing indices in Banach spaces. Sikorski [10], first of all, gave an
integral model of the determinants in Banach spaces. Recently, Verma
[14-16] generalized the integral model of Sikorski and applied the de-
terminant formulae for the solutions of the singular integral equations
in the spaces of functions, satisfying the Holder condition with a fixed
exponent.

The main aim of this paper is to apply the integral model [16,
Theorem 1.2] and a theorem of Buraczewski [1, Theorem (x)] in
obtaining the general solutions of the singular integral equations of the
form (S+7T)x = x( in Banach spaces. We first introduce the necessary
definitions and notations. Let L be a closed curve in the complex
plane. Suppose that L does not intersect itself and is rectifiable. By
HH"(L), we shall mean the space of all those functions satisfying the
Hélder condition with exponent p, 0 < p < 1. If 0 < a < p, then
H*(L) D H*(L). The conjugate space of H*(L) is the same. The
functions x,y, e, v, &, n (with indices if necessary) will always represent
the elements of H*(L). For more details, see [8].

HH*(L) is a Banach space of all those functions z satisfying the Holder
condition with exponent p on L under the norm

to) — x(t
| | = max|z(t)] + sup z(tz) = 2(t1)]
teL titael [tz —t1]#
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For a small positive number ¢, and for a fixed point ¢ € L, set
L. = {7 € L:|r—t| >¢e}. The Cauchy principal value (abbreviated
by p.v.) of the integral is defined by

p.V./ﬂdT:Iim/ A
LT_t e—0 LET_t

For the following section, we introduce the operator J, defined by

(1.1) (To)(t) = i.p.v./LﬂdT.

T T—1

The operator J is defined in the space H*(L) and has the property
J?=1

Let a,b € H*(L), and a(t) — b*(t) # 0, t € L. Then it is well known
that the operator S, given by

(1.2) (52)(t) = a(a(t) + 2D pv. /L 1) 4

iy T—1

is well defined on H*(L) for a < p.

The integer 7(A) = min(v(A), v'(A)) is called the order of an operator
A, where v(4) = dim(N(A4)) and v'(A) = codim(R(A)). And the
integer d(A) = v(A) — v'(A) is called the index of operator A. An
operator B is said to be a quasi-inverse of an operator A if

ABA=A and BAB=B.

Thus, the operator S can be written in compact form, S = al + bJ,
where T is the identity operator on H*(L). The operator S = al + bJ
is called a singular integral operator which is a Fredholm operator with
a nonvanishing index.

In our present work, we restrict ourselves to the case when order
r(S) =0 and index d(S) =d > 0.

From now on, the letter T shall represent two objects: the kernel and
the operator given by the kernel. Let T'(¢,7) be a kernel on L x L of
the Holder class in both variables of the form

T(t,7)—T(t,1)

T(t,7)= p—
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such that the integral operator T is defined by
1
(1.3) (Tx)(t) = —/ T(t,7)x(T)dr
L

)

in H*(L) with @ < p/2. Then T is compact on the space H*(L)

Now we relate the following singular integral equation [9] to the
singular integral operator S + T

(14) azt)+ 2 p. /L 20 g o L [, ya(e) dr = wo(t),

T T—1 m J,
or, more briefly,
(1.5) (S+T)x = xo.
The adjoint equation of (1.5) can be written as
(1.6) v(S+T)=uvy forwv,vg € H*(L).

Next, we give an integral quasi-inverse of S + T when its order,
r(S+T), is zero. The operator S+1T is a generalized Fredholm operator
since the following conditions are satisfied:

(1.7) (al +bJ +T)(al — Jb) = (I +T1)(a® — b?)
and
(1.8) (al — Jb)(al +bJ +T) = (a* — b*)(I + T2),

where al + bJ = S and T; and T are compact operators.
Thus,
(i) if 71 =0, then index d(S+T) =d > 0, and
(ii) if Ty = 0, then index d(S +T)=d < 0.
It follows from this that the operator

(1.9) B= al — Jb),

1
@
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or

(1.10) (Ba)(t) = m{a(t)x(t)—%p.v. /L LGB dT}

T—1
is an integral quasi-inverse of S+ T when (S +T) = 0.

We conclude this section by giving an example of a singular integral
equation.

Example. We consider a real singular integral equation

1 2 _

(1.11)  a(s)z(s) + — p.v./ T(s,o)cot (U—s> x(o)do = y(s)
2T 0 2

with Hilbert kernel, where a(s) and T'(s, o) are real, 2m-periodic func-

tions of s and o, which satisfy Holder condition with exponent p.

If we set t = e, 7 = €, T(t,7) = T(—ilnt,—iln7), a(t)
a(—ilnt), g(t) = y(—ilnt), Z(t) = x(—ilnt), then cot((c — s)/2)
i((27)/(r = t) = 1), do = (1/i)(dt/7), and the equation (1.11) is
transformed into the equation
(1.12) )

a(t)z(t) + 1 p.V./L Mi(ﬂ dr — S /L T(t,T)f(T)d—T = g(¢),

™ T—1 2T T

where L is the unit circle in the complex plane. The operator

L[ 7,y

2 Jp, T

is compact in space H*(L) with o < p.

2. Formulae of algebraic type. Let us define a bilinear function
on H¥(L) x H*(L) by the formula

(2.1) vox = / v(t) - z(t) dt.
L
Let T'(s,t) be a function on L x L such that

(2.2) F(I):/LT(s,s) ds
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exists, and such that

(2.3) F(H) = / / T(t,s)H(s,t)dsdt,
LJL

for every integral operator H defined by

(2.4) H(s,t) = z(s) - v(t).

Then a quasi-nucleus F' is said to be an integral quasi-nucleus, and the
operator T is an integral operator determined by the kernel T'(s,t)

(2.5) vTx:/L/Lv(s)T(s,t):c(t) dsdt,
(2.6) (vT)(t):/Lv(s)T(s,t)ds,
and

(2.7) (T2)(s) = /L (s, )a(t) dt.

In order to write the integral formulae for the subdeterminants of an
integral quasinucleus F', we introduce a formal expression (s, t), which
is a substitute for the Dirac delta distribution, namely, we define

(2.8) /L(S(s7 Hx(t) dt = xz(s),
(2.9) /L o(s)5(s,1) ds = v(t),

(2.10) /L/L(S(s,t)T(t,s)dsdt:/LT(s,s)ds:F(I),

and

(2.11) /L/v(s)é(s,t)x(t) dsdt =v- .
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Now we recall the following result which is crucial to our solutions.

Lemma [16]. Let S = al + bJ be a singular integral operator of
order r(S) = 0 and index d(S) = d > 0, let Q be an integral quasi-
inverse of S, and let e1,... ,eq be all linearly independent solutions
of Sx = 0. Then, for any integral quasi-nucleus F, we have the
following determinant system, {D,} defined by the formula (2.12) for
the operator S + T, which does not depend on the choice of an integral
quasi-inverse Q:

(2.12)

Dn(F)(vla R U?L+d>

L1y ooy In

_ S1, -+ Sn+d
[ [ (5 )
~v1(81) - VUnga(Sntd) - T1(t1) - xn(tn) - e1(ur) - - - eq(uq)

~dsy...dspqq-dty ... dty - duy ... dug,

where



Aﬁﬁrﬁsk\v%

(Pn*L)g
(PnPHus)e

(Pntts)e

A.:@ ngk\v%

(tn‘ls)e
AHS\ Aﬁ+:%v%

(in*1s)¢

A\EL"EL\VrH@
AE&AH&VH\Q
AE&REATQ%VrN@

AE& prVrN\@

nEL\%...H&NO.

(T15) 70 () - (T) Y
(L) (Mo e ()Y
()Ll (9 Py e (1P
o . s

o (M)
T T 0= u Cun ¢
\ \A-S\._Hv”w = AEATM% G AHHMV Enﬁﬁa
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with Q(s,t), QT (s,t),T(s,t) and §(s,t), respectively, the kernels of the
operators Q,QT,T and 6.

Let us define the series

ZDW

s N DY s 8
jn m ! ntd : Ul(sl) e Un-l—d(sn-l-d)
tla Tty tn

:El(tl X (tn) - er(ur) ... equg) - dsy...dspiq
dtldnduldud
The series Y.~ Dym(F) converges to D, (F) in the space N of all

bounded bi-skew symmetric (2n + d)-linear functionals with respect to
norm topology in N given by

v1, S [3) d
|D| = (Sup Dn(é, R )‘:|Ui|=1a||$i||=1>-

We are just about ready to write the solutions of the singular integral
equations (S + Tz =z and v(S +T) = vp.

Theorem 2.1. Let the singular integral operator S + T be of order
r(S+T)=r and index d(S+T) =d > 0. Let {D,}, defined by (2.12),

be a determinant system for the operator S + T, and let ny,... ,Nriq
and yi, ...,y be fixed elements such that
D=, (I e )

(i) Then there exist elements z; € H*(L), i = 1,...,r +d, and
& e HY(L),i=1,...,r, such that

(2.13)

vz = [1/DT]D7~ <7717 oty Thi—1, v, Ti+1, 777"+d) ,

yl, DY e e e '.0’ yT
for every v € H*(L), and
(2.14)
~ /)717 DR DY DY o e ...7 ?7',‘+d
i = 1 DT DT
¢ /D] (yh s Yi-1, Ty Yils oty Yr )

for every x € H*(L).
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The elements z1,...,2r4q and &1,...,&. are linearly independent
solutions of the equations (S+T)x =0 and v(S+T) = 0, respectively.

(ii) Then the operator B, defined by

I U, M, -y Mr4d
2.15 vBx =(1/D,|D, ,
(2.15) 1/D 1D (0 M T )

18 a quasi-inverse of the operator S+ T.

(iii) Then the equation (S+ T)x = xo has a solution x if and only if
&xo =0 fori=1,...,r, and the adjoint equation v(S + T) = vy has
a solution v if and only if voz; =0, fori=1,... ;r+d.

(iv) Then the general solution of the equation (S+T)x = xg is given
by

(216) r=DBxryg+aiz1+---+ Olr 4 dZr4d,
and the general solution of the equation v(S +T) = vg is given by
(217) v=v9B + f1&1 + - + Br&sr,

where ay, ... ,Qryq, and By, ..., B, are arbitrary constants.

Proof. The formulae for the solutions of the equations (S+T)z =
and v(S 4+ T) = vy follow from an application of the identities [16,
Theorem 2.2]:

D 1 UO(S"FT); U1, "y Unid
n
Zo, Ty, - ) T
n
. /l) PR PR PR P PR v
_ § :(_1)ZUO'xi'Dn 1 ) n+d ,
i—0 Zo, X, Ti—1, Jf‘i-i—lv T, Tn
and
D 41 Vo, V1, T Un-i—d
n
(S+T)I0a Il? Tty ITL
n+d
. v v DY /1)7 v PR U
_ 2 :(—1)Zﬂi'l‘o'Dn 0, 1y ’ i—1, i+1s ) n+d
. a’;l, DR DR P ... ... s {I/‘n
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for n = r, and replacement of z and v, respectively, by (S + T)z and
v(S + T) in (2.15). As a consequence of this, we get the following

expressions:
r+d

vB(S+T)x =vr — szi v,
i=1

and

v(S + T)Bx = vz — Z vx; - &,

i=1

or, equivalently,
r+d

(2.18) B(S+T)=1-> zuv;,
i=1

and

(2.19) (S+T)B=1-) &
i=1

Multiplying the equation (2.18) on the left by vy and the equation
(2.19) on the right by x¢, and assuming that voz; = 0 and &;zo = 0 for
i=1,...,r+d,j=1,...,r, we get

(220) DoB(S + T) = Vo
and
(221) (S + T)B,’EO = Xo-

This completes the proof. ]

Corollary 2.2. Let the singular integral operator S + T be of order
r(S+T) =0 and index (S+T)=d >0. Let z; € H*(L), i =1,... ,d,
be linearly independent solutions of (S+T)x = 0. Let B be an integral
quasi-inverse of S+T. Then the solution of (S +T)x = xq is given by

(2.22) = Bro+ 121 + - + agza,
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and the general solution of v(S +T) = vy is given by
(2.23) v =B,

where B = {1/(a® — b*)}(al — Jb) and o, ... ,aq are arbitrary con-
stants.

Corollary 2.3. For S =1 and d = 0, the general solutions of the
equations (I +T)x = xo and v(I +T) = vg are, respectively, given by

(224) xr = BlIQ + a1z 4+ Q2
and
(2.25) v=v9B1 + (11 + -+ 6.
for vByz = {1/D,}D, 11 (Z Zi ZT), where
~ 171, . 5 777"
D, =D 0.
" <y1a Tty yr> #
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