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STABILITY OF QUALOCATION METHODS
FOR ELLIPTIC BOUNDARY INTEGRAL EQUATIONS

CLAUS SCHNEIDER

ABSTRACT. I.H. Sloan and W.L. Wendland analyzed thor-
oughly qualocation with spline trial and test spaces in the pa-
per Qualocation methods for elliptic boundary integral equa-
tions [9]. They derived a criterion for stability and computed
numerically weights and knots for some methods which are
suitable for equations in which the even symbol part of the
operator dominates and other methods for a dominant odd
part. Stability of these methods was ensured by numerical
computations. We simplify their stability result yielding a
representation which allows to prove which J-point quadra-
ture rules are leading to stable qualocation and which are
not. Furthermore, the existence of at least one stable method
follows for any J .

1. Introduction In previous papers [2], [9], [10], e.g., the qualocation
method has been introduced and applied to a large class of boundary
integral equations on smooth curves in the plane. Here we study the
stability of this method and of tolerant qualocation, cf. [11], as well.
Hence, we need the same assumptions as Sloan and Wendland, i.e., we
suppose that the equations are expressible in the form

(b+L+ + b−L− +K)u = f,

where L := b+L+ + b−L− +K is a classical periodic pseudodifferential
operator of order β. We assume that L : Hτ → Hτ−β defines
an isomorphic mapping for any τ ∈ R, Hτ = Hτ [0, 1] being the
Sobolev-space of 1-periodic functions. L+ and L− are the even and
the odd part of L, respectively. Both of them may have the order
β. K is a sufficiently smoothing perturbation. b+, b− are smooth, 1-
periodic coefficients. f is a given 1-periodic function in Hτ0−β for some
τ0 > β + 1

2 . Moreover, we assume either that L is uniformly strongly
elliptic or that L is uniformly oddly elliptic, i.e., either the even symbol
part of the operator dominates or the odd symbol part, see [10] again
for a formal definition.

We consider spline qualocation on a family of uniform meshes

{xk := k/N, k = 0(1)N − 1}.
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Hence, the trial space Sr
N is the space of smoothest 1-periodic splines

of order r ≥ 1 on these meshes. Sr′
N is the test space with r′ ≥ 1.

The qualocation method may be thought of as an improvement of
collocation, with respect to stability and order, which is achieved by a
convex combination of collocation at different points. Qualocation can
also be understood as a semi-discrete version of the Galerkin-Petrov
method with the outer integration replaced by a composite quadrature
rule. Surprisingly, as the analysis in [2] already showed, this rule has
not to perform the outer integration very well (that would yield a good
approximation of the Galerkin-Petrov solution); different qualities are
needed to achieve excellent approximation properties. They will be
summarized in the next chapter.

Anyway, we need weights w1, . . . , wJ and knots 0 ≤ ξ1 < · · · < ξJ < 1
for the basic quadrature rule or for the convex combination and the
different collocation points, respectively.

Then the qualocation method is Find uN ∈ Sr
N such that for all

v ∈ Sr′
N

1
N

N−1∑
k=0

J∑
j=1

wj((LuN )v̄)(xk + ξj/N) =
1
N

N−1∑
k=0

J∑
j=1

wj(fv̄)(xk + ξj/N).

If r′ = 1, then functions exhibiting jumps may be evaluated at break-
points. Therefore we define in such cases v(xk) := limξ↓0 v(xk + ξ). We
also assume that

r − β >
1
2

if ξ1 > 0, and r − β > 1 if ξ1 = 0,

in order to have a well-defined method for the equation Lu = f .

If the weights and knots are chosen carefully, then an additional
(compared with collocation, i.e., J = 1, b = 0) order b > 0 is possible
with J > 1, if stability can be ensured. Indeed, it has been shown in
[9] that for τ > β + 1

2 , r
′ ≥ b, and any s < r − 1

2 , β − b ≤ s ≤ τ ≤ r

||uN − u||s ≤ cNs−τ ||u||τ+max(β−s,0)

can be achieved if u ∈ Hτ+max(β−s,0), in particular, with r = τ , r′ = b,
and s = β − r′

||uN − u||β−r′ ≤ cNβ−r′−r||u||r+r′ .
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Similar results are valid in the case of nonconstant coefficients, see
[10]. The tolerant qualocation does not even need the additional
smoothness of u because there these estimates remain true with ||u||τ
on the righthand side.

Anyway, the crucial assumption for these estimates to hold is stability
of the qualocation method. Up to now, stability was controlled by
examining numerically a stability criterion (see Chapter 3) for a given
quadrature rule. The results of such tests are given in [9] for some
J-point rules (J ≤ 4) and for different parameters r, r′, β. Here we will
prove which J-point rules (J ∈ N) ensure stability. And there will be
one for any case.

2. The quadrature rules lJ,b,r−β and gJ,b,r−β. For an additional
order of convergence b > 0 the quadrature rule

QJ (f) :=
J∑

j=1

wj f(ξj)

has to satisfy

(i) wj > 0, j = 1(1)J ,
∑J

j=1 wj = 1, i.e., QJ (1) =
∫ 1

0
1 dt, and

(ii) ξ1 = 0 and the remaining knots 0 < ξ2 < · · · < ξJ < 1 are
symmetrical with respect to 1

2 (Lobatto-type) or the knots 0 < ξ1 <
· · · < ξJ < 1 are symmetrical with respect to 1

2 (Gauss-type) and

(iii) symmetrical knots have the same weight, and

(iv) QJ (Gα) =
∫ 1

0
Gα(t) dt = 0 for α = r − β(1)r − β + b − 1

(constant coefficient case) or for α = 2(2)2
[

r−β−1
2

]
, r−β(1)r−β+b−1,

respectively, if variable coefficients appear and β ∈ Z. Here

Gα(t) := 2
∞∑

j=1

cos(2πjt)/jα.

The highest value of b we can expect to achieve with the given number
of free parameters is b = J−1 or b = J−1−[

r−β−1
2

]
, respectively. Such

rules are called lJ,b,r−β or LJ,b,r−β if ξ1 = 0, and gJ,b,r−β or GJ,b,r−β

otherwise (see [9]). In the sequel, we will not distinguish between l, g-
and L,G-rules because they do not differ with respect to existence and
stability.
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The unique existence of these rules has been shown in [4] and with
full details in [3]. The main result, which we will need later, tells us
that {1,−Gα1 , · · · ,−GαJ−1} is a Chebyshev-system over [0, 1

2 ] with
positive determinant for arbitrary 1 < α1 < α2 < · · · < αJ−1. (If
0 < α1 ≤ 1 then some technical modifications have to be performed
with an appropriate weight-function, because now Gα1(t) behaves like
tα1−1 if α1 < 1 or like log t if α1 = 1 for t→ 0).

Therefore, optimal order rules exist integrating exactly the appro-
priate Gα over [0, 1

2 ] (but
∫ 1/2

0
Gα(t) dt = 0 again). Their symmetric

extension to [0, 1) then yields the required unique l- and g-rules because
Gα(t) = Gα(1− t).

In order to decide which of these rules are leading to a stable
qualocation method, we introduce shortly the stability result from [9]
and prove a simplified version.

3. The stability function. At first we have to repeat some
definitions from [9] and earlier papers. Let α > 1

2 and x ∈ [0, 1].

G±
α (x; y) :=

∞∑
k=1

[ 1
(k + y)α

± 1
(k − y)α

]
cos(2πkx), y ∈

[
− 1

2
,
1
2

]
,

H±
α (x; y) :=

∞∑
k=1

[ 1
(k + y)α

∓ 1
(k − y)α

]
sin(2πkx), y ∈

[
− 1

2
,
1
2

]
.

For smoothness properties, integral representations, or different expan-
sions of these functions, cf. also [1], [2], [5]. The quadrature rule and
these functions are then combined in functions characterizing stability
of the qualocation method:

D±(y) :=
J∑

j=1

wj

(
1 + yr−βGσ

r−β(ξj ; y)
)(

1 + yr′
Gσ′

r′ (ξj ; y)
)

+ yr−β+r′
J∑

j=1

wjH
σ′
r′ (ξj ; y)Hσ

r−β(ξj ; y), y ∈
[
0,

1
2

]
,
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where

σ =
{

+ if r is even
− if r is odd

}
for the D+ case,

σ =
{− if r is even

+ if r is odd

}
for the D− case,

and

σ′ =
{

+ if r′ is even
− if r′ is odd

}
.

Then the Sloan and Wendland-stability result, [9, Theorem 3] for
constant coefficients reads as follows

Theorem. Consider the qualocation method with a symmetric
quadrature rule having positive weights.

1. Assume that r and r′ are of the same parity, and if J = 1 also
that ξ1 �= 1

2 if r and r′ are even, and ξ1 �= 0 if r and r′ are odd. The
method is stable for all strongly elliptic operators L if and only if

D+(y) ≥ |D−(y)| for all y ∈
[
0,

1
2

]
.

2. Assume that r and r′ are of opposite parity, and if J = 1 also that
ξ1 �= 0 if r is even and r′ is odd, and that ξ1 �= 1

2 if r is odd and r′

is even. The method is stable for all oddly elliptic operators L, if and
only if

D−(y) ≥ |D+(y)| for all y ∈
[
0,

1
2

]
.

With the next theorem we will prove that the absolute values can be
omitted in the previous theorem, the first step in our analysis yielding
a simpler criterion for stability. According to the stability result, we
have to show that D± ≥ 0 if σ · σ′ = −. Therefore, we will study for
those cases an arbitrary summand appearing in the definition of D±.

Theorem. Let a > 1
2 , b > 1

2 , 0 ≤ x < 1 and x > 0 if a ≤ 1 or b ≤ 1.
Define for y ∈ [0, 1

2 ]

(3.1)
D̃(y;x, a, b) := 1 + yaG−

a (x; y) + ybG+
b (x; y)

+ ya+b
(
G−

a (x; y)G+
b (x; y) +H−

a (x; y)H+
b (x; y)

)
.
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Then

1) D̃(0;x, a, b) = 1,

2) D̃ ( 1
2 ;x, a, b) = 0,

3) D̃(y;x, a, b) ≥ 0 for all y ∈ [0, 1
2 ].

Proof. Property 1) is obvious. The second one follows after a short
calculation proving that

(1
2

)a

H+
a

(
x;

1
2

)
= −2 sin(πx)

∞∑
l=0

cos((2l + 1)πx)/(2l+ 1)a,

(1
2

)a

H−
a

(
x;

1
2

)
= 2 cos(πx)

∞∑
l=0

sin((2l + 1)πx)/(2l+ 1)a,

1 +
(1
2

)a

G+
a

(
x;

1
2

)
= 2 cos(πx)

∞∑
l=0

cos((2l + 1)πx)/(2l+ 1)a,

1 +
(1
2

)a

G−
a

(
x;

1
2

)
= 2 sin(πx)

∞∑
l=0

sin((2l + 1)πx)/(2l+ 1)a.

In order to show property 3), we compute the derivative of D̃ with
respect to y by term-wise differentiation

∂

∂y
D̃(y;x, a, b) = aya−1G−

a (x; y) + byb−1G+
b (x; y)

+(a+b)ya+b−1
(
G−

a (x; y)G+
b (x; y)+H−

a (x; y)H+
b (x; y)

)
− a

(
yaG+

a+1(x; y) + ya+bG+
a+1(x; y)G

+
b (x; y)

+ ya+bH+
a+1(x; y)H

+
b (x; y)

)
− b

(
ybG−

b+1(x; y) + ya+bG−
a (x; y)G−

b+1(x; y)

+ ya+bH−
a (x; y)H−

b+1(x; y)
)
.

After adding and subtracting ayb−1G+
b (x; y), bya−1G−

a (x; y), and 1 as
well, we have

(3.2)
∂

∂y
D̃(y;x, a, b) =

1
y

(
(a+b)D̃(y;x, a, b)

− aD̃+(y;x, a+1, b) − bD̃−(y;x, a, b+1)
)
,
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where for τ ∈ {+,−}
D̃τ (y;x, a, b) := 1 + yaGτ

a(x; y) + ybGτ
b (x; y)

+ ya+b
(
Gτ

a(x; y)G
τ
b (x; y) +Hτ

a (x; y)Hτ
b (x; y)

)
.

We know from [1] that D̃τ (y;x, a, b) ≥ 0 with equality if and only if
τ = + and (y, x) = ( 1

2 ,
1
2 ) or τ = − and (y, x) = ( 1

2 , 0). Therefore,
formula (3.2) shows that D̃ remains negative if it becomes negative at
some 0 < y < 1

2 . Hence, the first two parts of the theorem complete
the proof that D̃ cannot change sign on [0, 1

2 ].

Remark. Property 2) of D̃ is the reason why qualocation is not stable
for strongly (oddly) elliptic operators if r and r′ have opposite (the
same) parity.

The theorem shows that the Sloan and Wendland-stability results
still hold if |Dτ | is replaced by Dτ because the function Dτ is just a
positively weighted sum of D̃−functions. Hence, the stability analysis
will become (slightly) easier. We only have to study the stability
function S depending on y, r′, r − β, and the quadrature rule QJ :

r′ even:

(3.3) S(y; r′) :=
J∑

j=1

wj

(
D̃+(y; ξj , r − β, r′)− D̃(y; ξj , r − β, r′)

)
,

where r has to be even in the strongly elliptic case and odd in the oddly
elliptic case, and

r′ odd:

(3.4) S(y; r′) :=
J∑

j=1

wj

(
D̃−(y; ξj , r − β, r′) − D̃(y; ξj , r′, r − β)

)
,

where r has to be odd in the strongly elliptic case and even in the oddly
elliptic case.

Inserting the definition of the D̃−, D̃−−, and D̃+−functions finally
unifies both formulas:

σ′ :=
{

+ if r′ is even
- if r′ is odd

}
=⇒
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S(y; r′) = yr−β
J∑

j=1

wj

(
Gσ′

r−β(ξj ; y) −G−σ′
r−β(ξj ; y)

)(
1 + yr′

Gσ′
r′ (ξj ; y)

)

+ yr−β+r′
J∑

j=1

wjH
σ′
r′ (ξj ; y)

(
Hσ′

r−β(ξj ; y) −H−σ′
r−β(ξj ; y)

)
.

The stability conditions of Sloan and Wendland are then equivalent to
the nonnegativity of the appropriate stability function for all y ∈ [0, 1

2 ].
Property 1) in the last theorem, which also holds for D̃τ , and wj > 0
indicates that stability may easily be destroyed in a neighborhood of 0.

4. The stability function at y = 0. Fortunately, the behavior at
y = 0 can be derived from [1] or [9, p. 464], respectively. With these
results we get the expansion

(4.5)

S(y; r′)

= (−1)r′
(
β−r
b

)
(−1)b

( J∑
j=1

wjGr−β+b(ξj)
)
yr−β+b +O(yr−β+b+1)

+
J∑

j=1

wj

{
Gr′(ξj)Gr−β(ξj), r′ even
Hr′(ξj)Hr−β(ξj), r′ odd

}
yr−β+r′

+O(yr−β+r′+1),

if r′ ≥ b, where b is the additional order achieved by the method.
This result immediately implies the following necessary condition for
stability because

(
β−r

b

)
(−1)b =

(
r−β+b−1

b

)
> 0.

Remark. Whenever we say in this paper that a method in not stable
then it always means that the method does not satisfy the stability
conditions of Sloan and Wendland.

Theorem. If r′ > b then a method is not stable, if

(4.6) (−1)r′
sgn

( J∑
j=1

wjGr−β+b(ξj)
)
< 0.
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Remark . If we set J = 1 and b = 0, then midpoint collocation
(ξ1 = 1

2 , r−β > 1
2 ) and collocation in the meshpoints (ξ1 = 0, r−β > 1)

are covered by this theorem and the stability results to come as well.

A first application of the theorem yields instability results for the
simplest qualocation rules with J = 2, b = 1. They were introduced
in [7], [2] and [8]. Indeed, stability of the rules was shown under the
assumption that either L is purely odd or purely even. In these cases
symmetry even yields b = 2. But in our general setting (L is the sum
of an even and an odd part) stability for all such L does not hold.

Lemma 1. 1) The l2,1,r−β−rule is not stable for even r′ (r−β > 1).

2) The g2,1,r−β-rule is not stable for odd r′ > 1 (r − β > 1
2 ).

Proof. Let α := r − β.

1) J = 2, ξ1 = 0, ξ2 = 1
2 , b = 1, w1 = (2α−1 − 1)/(2α − 1), w2 =

2α−1/(2α − 1), and Gα+1(0) = 2ζ(α+1), Gα+1( 1
2 ) = 2ζ(α+1)(2−α − 1)

imply

(−1)r′
sgn

( 2∑
j=1

wjGα+1(ξj)
)

= (−1)r′
sgn

(
ζ(α+1)

(
2α−1− 1 +

1
2
− 2α−1

)
/
(
2α− 1

))
= −(−1)r′

.

2) J = 2, w1 = w2 = 1
2 , b = 1, ξ1 = 1 − ξ2 = unique zero of Gα in

(0, 1
2 ). Therefore, Gα+1(ξ1) = Gα+1(ξ2) > 0, cf. [1] and

(−1)r′
sgn

( 2∑
j=1

wjGα+1(ξj)
)

= (−1)r′
.

The criterion (4.6) is easy to check for a given rule but obviously more
difficult to apply to general lJ,b,r−β-rules, e.g., because then the weights
and knots are not given explicitly. Nevertheless, a generalization of
Lemma 1 can be derived.

Theorem. Let r′ > b.
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1) The lJ,b,r−β-rule is not stable for even J + r′, r − β > 1.

2) The gJ,b,r−β-rule is not stable for odd J + r′, r − β > 1
2 .

Proof. We have to study the term
∑J

j=1 wjGr−β+b(ξj), which is
simply QJ (Gr−β+b), QJ ∈ {lJ,b,r−β , gJ,b,r−β}. But the integral over
Gr−β+b vanishes. Therefore, −QJ (Gr−β+b) is just the error of the
quadrature rule. And that rule has been constructed from a quadra-
ture rule QJ̃ for a Chebyshev-system over [0, 1

2 ], namely the system
{1,−Gα1 , . . . ,−GαJ−1}, where α1 < · · · < αJ−1 < r−β+ b are the in-
dices appearing in the definition of QJ in Section 2, cf. [3]. Indeed, QJ

has been derived from QJ̃ by a symmetric extension. Going backwards

now, QJ̃ (f) :=
∑J̃

j=1 w̃jf(ξj) is reconstructed by

(i) J̃ is the largest index such that ξ1 < · · · < ξJ̃ ≤ 1
2 and

(ii) w̃j := wj if ξj ∈ (0, 1
2 ) and w̃j := 1

2 wj otherwise, j = 1(1)J̃ .
Then obviously QJ (f) = 2QJ̃ (f) for all functions satisfying f(t) =
f(1−t), t ∈ [0, 1]. On the other hand, {1,−Gα1 , . . . ,−GαJ−1 ,−Gr−β+b}
is also a Chebyshev-system over [0, 1

2 ]. Hence, there exists a best
one-sided L1-approximation of −Gr−β+b in 〈1,−Gα1 , . . . ,−GαJ−1〉,
say ΠJ(−Gr−β+b), interpolating −Gr−β+b at the knots ξi ∈ [0, 1

2 ]
and satisfying either −Gr−β+b(t) − ΠJ(−Gr−β+b)(t) ≤ 0, if 1

2 is a
knot, or −Gr−β+b(t) − ΠJ(−Gr−β+b)(t) ≥ 0, if 1

2 is not a knot,
t ∈ [0, 1

2 ] (see [6], proof of Theorem 5.9, for the second case and
[3] for the first one). Furthermore, ΠJ (−Gr−β+b) is integrated

exactly by QJ̃ , 2
∫ 1

2
0

ΠJ (−Gr−β+b)(t) dt = 2QJ̃ (ΠJ(−Gr−β+b)) =∑J
j=1 wj(−Gr−β+b(ξj)), and 0 =

∫ 1

0
Gr−β+b(t) dt = 2

∫ 1
2

0
Gr−β+b(t) dt

for symmetry reasons.

Hence, 2
∫ 1

2
0

(−Gr−β+b(t)−ΠJ(−Gr−β+b)(t)) dt=
∑J

j=1 wjGr−β+b(ξj).
Therefore

∑J
j=1wjGr−β+b(ξj) is negative if 1

2 is a knot and positive
otherwise. Taking into account that 1

2 is a knot of an l-rule for an even
J and a knot of a g-rule for an odd J completes the proof.

Remark. If −Gr−β+b would be replaced by −Gτ , τ > αJ−1, then all
arguments of the proof still apply showing that indeed

(4.7) sgn (QJ(Gτ )) = sgn (QJ(Gr−β+b)) for all τ > αJ−1.
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With these results we are now in a position to prove the stability
theorem.

5. Stable qualocation methods. Here we assume constant
coefficients in the operator L. The general case will be discussed in
the next chapter.

Theorem. Let r′ ≥ b and r, r′ of the same parity in the strongly
elliptic case and of opposite parity in the oddly elliptic case.

1) Qualocation with the lJ,b,r−β-rule is stable for odd J+r′ (r−β > 1).

2) Qualocation with the gJ,b,r−β-rule is stable for even J+r′ (r−β >
1
2 ).

Proof. The functions f to be discussed here are satisfying f(t) =
f(1− t). Therefore we will use the QJ̃ from the previous proof instead
of QJ .

If r′ is odd, then we have to consider the stability function (3.4):

2yr−β
J̃∑

j=1

w̃j

(
G−

r−β(ξj ; y) −G+
r−β(ξj ; y)

)(
1 + yr′

G−
r′(ξj ; y)

)

+2yr−β+r′
J̃∑

j=1

w̃jH
−
r′ (ξj ; y)

(
H−

r−β(ξj ; y) −H+
r−β(ξj ; y)

)
.

As H−
r′ (x; y)

(
H−

r−β(x; y) −H+
r−β(x; y)

) ≥ 0 for all x ∈ [0, 1], see [1], it
remains to study

QJ̃

((
G−

r−β(·; y) −G+
r−β(·; y)

)(
1 + yr′

G−
r′(·; y)

))
.

According to [1], see also [9, p. 464], this expression is equal to
∞∑

k=0

(−1)k

(
β − r
k

)
yk

( −QJ̃

(
Gr−β+k

(
1 + yr′

G−
r′(·; y)

)))
.

From [1] we also know that
(
1+yr′

G−
r′(·; y)

)
is nonnegative and mono-

tonically increasing in [0, 1
2 ] whereas Gτ is monotonically decreasing for

all τ > 0. All this implies that

−QJ̃

(
Gr−β+k

(
1 + yr′

G−
r′(·; y)

))
> −QJ̃

(
Gr−β+k

)(
1 + yr′

G−
r′(λk; y)

)
,
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where λk is the smallest knot of QJ̃ such that Gr−β+k(λk) ≤ 0.
Such a knot λk exists, because for the rules we are just discussing
QJ̃ (Gr−β+k) = 0 holds for k = 0(1)b − 1 and QJ̃ (Gr−β+k) < 0 holds
for k ≥ b, see (4.7) and the Proof before that remark. Stability then
follows with the positivity of (−1)k

(
β−r

k

)
.

If r′ is even, then the stability function is given by (3.3) and has the
following form:

2yr−β
J̃∑

j=1

w̃j

(
G+

r−β(ξj ; y) −G−
r−β(ξj ; y)

)(
1 + yr′

G+
r′(ξj ; y)

)

+2yr−β+r′
J̃∑

j=1

w̃jH
+
r′ (ξj ; y)

(
H+

r−β(ξj ; y) −H−
r−β(ξj ; y)

)
.

Again H+
r′ (x; y)

(
H+

r−β(x; y) − H−
r−β(x; y)

) ≥ 0 holds for all x ∈ [0, 1].
But now the nonnegative

(
1+yr′

G+
r′(·; y)

)
is monotonically decreasing.

On the other hand, meanwhile we have sgn (QJ̃ (Gτ )) = +1 for τ ≥
r − β + b, and

G+
r−β(ξj ; y)−G−

r−β(ξj ; y) = +
∞∑

k=0

(−1)k

(
β − r
k

)
ykGr−β+k(ξj).

Therefore, stability follows again with the monotonicity of Gr−β+k on
[0, 1

2 ]:

QJ̃

(
Gr−β+k

(
1 + yr′

G+
r′(·; y)

))
> QJ̃

(
Gr−β+k

)(
1 + yr′

G+
r′(µk; y)

)
≥ 0,

where µk is the greatest knot of QJ̃ such that Gr−β+k(µk) ≥ 0.

6. Conclusions. Hence, for all orders r′ of test functions there
exist stable J-point qualocation rules for strongly, and for oddly,
elliptic operators. If the operators have constant coefficients, then an
additional order b = J − 1 is ensured. For nonconstant coefficients
(cf. [10]) the qualocation method also needs r > β + 1, r′ ≥ 2, and
some polynomial exactness of the quadrature rule. Then, for β ∈ Z, an
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additional order b = J −1− [
r−β−1

2

]
is achieved by the methods which

are stable according to the last theorem. Therefore, stable rules with
more than only two points are really useful. Furthermore, all stability
results apply to the tolerant qualocation as has been shown in [11].

There remains one case not covered by the previous theorems, namely,
r′ = b for those rules which are not stable according to (4.6) if
r′ > b. If r′ = b, however, then one has to study (4.5) instead of
(4.6) for y = 0. The first sum in (4.5) is negative in that case, but
the second one is positive: Hr′Hr−β is positive in (0, 1) \ { 1

2} and
QJ (Gr′Gr−β) = QJ (Gr−β(Gr′ − Gr′(ηr−β))) with the unique root
ηr−β of Gr−β in [0, 1

2 ] because those rules integrate exactly Gr−β.
Furthermore, Gr−β(Gr′ − Gr′(ηr−β)) is positive in [0, 1] \ {ηr−β, 1 −
ηr−β} for monotonicity and symmetry reasons. Thus, the positive
term may dominate. This happens indeed in the case r′ = b = 1
for the g2,1,r−β-rule, as we can show because the knots and weights are
known. Unfortunately, that does not yet mean stability. Anyway, all
computations lead to the:

Conjecture. Methods which are not stable if r′ > b are stable if
r′ = b and that was already part of a conjecture given in [9]. This
means that an l- and a g-rule as well are stable if r′ = b. Numerical
experiments support the conjecture. They also indicate that the rule
being stable for r′ > b yields smaller errors than the other one.
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