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ON CONJUGACY OF ABSTRACT ROOT BASES
OF ROOT SYSTEMS OF COXETER GROUPS

MATTHEW DYER

ABSTRACT. We introduce and study a combinatorially
defined notion of the root basis of a (real) root system of a
possibly infinite Coxeter group. Known results on conjugacy
up to sign of root bases of certain irreducible finite rank real
root systems are extended to abstract root bases, to a larger
class of real root systems and, with a short list of (genuine)
exceptions, to infinite rank irreducible Coxeter systems.

1. Introduction. It is well known that any two root bases (simple
systems of roots) for a root system of a finite Weyl group (or finite
Coxeter group) W are W -conjugate. This result has been extended
to W -conjugacy up to sign of root bases of root systems of certain
reflection representations of finite rank, irreducible Coxeter systems in
[16, 20], see also [19, Proposition 5.9].

In this paper, we extend these results in three ways. First, we refor-
mulate the results of [16] by asserting conjugacy up to sign of suitably
defined abstract root bases of abstract root systems of irreducible, finite
rank Coxeter systems (W,S); the main novel feature is that we provide
a characterization of root bases which does not require the linear
structure of the ambient real vector space. Second, we use the abstract
result to extend the above conjugacy result to (real) root systems of
more general reflection representations of finite rank irreducible Coxeter
systems. Third, we prove that two root bases for any (real or abstract)
root system of an irreducible Coxeter system of possibly infinite rank
are locally W -conjugate up to sign, with a small number of types of
exceptions.

In order to explain some of these results in more detail, let (W,S)
be a Coxeter system, and let Φ be the root system of the standard
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reflection representation of (W,S) (see [3, Chapter 5], [17, Chapter 5]),
with a standard set of positive roots Φ+ and corresponding standard
root basis Π. For α ∈ Φ, the reflection sα permutes Φ, and W identifies
with the group of permutations of Φ generated by the restrictions of
the sα to Φ (which we still denote as sα). We let the sign group {±1}
act on Φ by (±1)α = ±α for α ∈ Φ. The map α 7→ sα is a two-fold
covering of its image (the set T of reflections of (W,S)) with the orbits
of the sign group as fibers. We call the set Φ with its action by {±1}
and the map

α 7−→ sα : Φ −→ Sym(Φ)

the standard abstract root system of (W,S).

We say that a subset Ψ+ of Φ is a quasi-positive system if it is a set
of orbit representatives for the sign group acting on Φ. Then, α ∈ Ψ+

is said to be a simple root of Ψ+ if sα permutes Ψ+ \ {α}. Let Π′ be
the set of simple roots of Ψ+,

S′ = {sα | α ∈ Π′}

the set of simple reflections for Ψ+ and W ′ = ⟨S′⟩ the subgroup
generated by S′. It is easy to see that (W ′, S′) is a Coxeter system
(we prove this here as Proposition 2.7, although it also follows from
[9, 1.8]). We say that Ψ+ is a generative quasi-positive system if
W ′ = W . In this case, it need not be true that (W,S) is isomorphic
to (W,S′) as a Coxeter system; indeed, some (but not all) examples
of non-isomorphic finite rank, irreducible Coxeter systems (W,S) and
(W,S′) related by diagram twisting in the sense of [4] arise in this way
(see subsection 2.12, Corollary 2.21 and Example 2.22). Questions of
conjugacy or isomorphism of generative quasi-positive systems are of
interest in relation to reflection rigidity and strong reflection rigidity
(see [4, 6]) of Coxeter systems.

We say that γ ∈ Φ is between α ∈ Φ and β ∈ Φ if and only if
γ = aα+ bβ for some a, b ∈ R≥0. Say that Ψ ⊆ Φ is closed if α, β ∈ Ψ,
and γ ∈ Φ with γ between α and β implies γ ∈ Ψ. The closed sets
of roots are those which are closed for a closure operator considered in
[12, 21]. We define Ψ+ ⊆ Ψ to be an abstract positive system for Ψ if
it is a generative, closed, quasi-positive system. The above notions of
abstract root system, betweenness, abstract positive system, etc., may
all be reformulated purely combinatorially and algebraically in terms
of (W,S).
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Recall the Coxeter system of type A∞,∞ has, as an underlying
Coxeter group, the group of all permutations of Z leaving all but finitely
many elements fixed, with Coxeter generators given by the adjacent
transpositions (n, n + 1) for n ∈ Z. The Coxeter system of type A∞
is defined in the same manner, except with Z replaced by N. These
Coxeter systems are non-isomorphic, but any bijection N → Z induces
a reflection preserving isomorphism of the underlying Coxeter groups

W (A∞)
∼=−→ W (A∞,∞). The following results are proven in this paper.

Theorem 1.1. Let (W,S) be an irreducible Coxeter system which is
not necessarily of finite rank. Let Ψ+ be an abstract positive system
of Φ, and let Π′, S′ denote, respectively, the sets of simple roots and
simple reflections of Ψ+. Then:

(a) (W,S) and (W,S′) have the same finite rank parabolic subgroups.

(b) The Coxeter system (W,S) is isomorphic to (W,S′), unless per-
haps one is of type A∞ and the other is of type A∞,∞.

(c) If (W,S) and (W,S′) are isomorphic, then there is a permutation
σ of Φ and a sign ϵ ∈ {±1} with Ψ+ = ϵσ(Φ+) and Π′ = ϵσ(Π) such
that, for any subgroup W ′ of W which is generated by a finite subset
of T , there exists w = w(W ′) ∈ W such that σ(α) = w(α) for all
α ∈ Φ with sα ∈ W ′.

(d) If (W,S) is of finite rank, then, in (c), σ ∈ W , and moreover, σ
and ϵ are uniquely determined, provided ϵ = 1 if W is finite.

(e) A subset ∆ of Φ is a root basis of Φ if and only if it is the set of
abstract simple roots of some abstract positive system of Φ.

In the paper, we extend the theorem to a more general class of root
systems (see Section 3) roughly parameterized by what we call possibly
non-integral generalized Cartan matrices (NGCMs). The same class
is also considered in [13]. Most (reduced, real) root systems usually
considered in the literature (for instance, in [3, 11, 16, 17, 19]) are in
this class, and it has the important technical advantages of being closed
under passage to root subsystems for arbitrary reflection subgroups
and including the real root systems of Kac-Moody Lie algebras. In
general, for some of the reflection representations considered, it is not
possible to choose a “reduced” root system; however, we do not restrict
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to the subclass of “reduced” root systems since this would amount to
imposing an unnatural condition on the NGCM (compare subsections
3.3, 3.5 and [15]). Since, for non-reduced root systems, a given set
of simple reflections may correspond to several different sets of simple
roots differing by “rescaling” (multiplying each simple root by a positive
scalar), the statement of the theorems needs minor modification for
non-reduced root systems; for instance, conjugacy results hold only up
to sign and rescaling. The restriction to irreducible Coxeter systems
in (a)–(d) is merely a matter of convenience since those parts of the
theorem can be applied separately to the irreducible components; the
situation for (e), in general, is more complicated (see Theorem 4.2 and
Example 4.8).

The arrangement of the paper is as follows. Section 2 contains
definitions of, and basic facts about, abstract root systems of Coxeter
systems. Some of the facts involving the relation of the root system
to the “reflection cocycle” extend to similar structures (which we
call quasi-root systems, to avoid confusion) attached to other groups.
Section 3 collects basic properties of the real reflection representations
of Coxeter groups, and corresponding root systems, which we consider
in this paper. The main results, involving the connection between the
abstract root systems of Section 2 and the real root systems of Section 3,
and including the statements and proof of more general versions of the
parts of Theorem 1.1, are given in Section 4.

There are two appendices. Appendix A recalls some definitions and
basic properties of possibly non-abelian cohomology, which provides
the natural setting for some of the special results proven in Section
2 involving reflection cocycles. In particular, the generalities in Ap-
pendix A are relevant to the classification of abstract root systems,
although this is not pursued here. Appendix B gives some examples
and further results involving general quasi-root systems, of which we
make no essential use in the body of the paper. We observe, in par-
ticular, that the definition of Bruhat orders (and their twisted versions
[9]) in terms of the reflection cocycle of a Coxeter system extends to
other groups with quasi-root systems, linearly realized over real vector
spaces, such as real orthogonal groups.

The main results of this paper have applications to the study of ini-
tial sections A of reflection orders of T , see [12], the twisted Bruhat
orders ≤A on W , see [9], and related structures. In particular, our
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principal motivation for proving Theorem 1.1 was to clarify the rela-
tionship between two different natural sets of Coxeter generators of a
reflection subgroup WA, defined in [9], which plays an important role
in the study of the order ≤A. Many of the refinements discussed in
[12] of long-standing conjectures and questions on initial sections in-
volve the closure operator on root systems considered in this paper.
Unfortunately, this closure operator has some quite unfavorable prop-
erties, even in the case of a finite Weyl group, see [21]. Another of our
motivations has been to establish some first favorable properties of this
closure operator for a general Coxeter group, as one tool for study of
these refined conjectures.

2. Abstract root systems.

2.1. Let Ψ be a set with a given function

F : Ψ −→ Sym(Ψ),

where Sym(Ψ) is the symmetric group consisting of all permutations
of Ψ. Set sα := F (α). We make the following assumptions:

(i) there is a fixed point free action of the sign group {±1} on Ψ
such that, for α ∈ Ψ, (−1)α = −α := sα(α) and s−α = sα;

(ii) ssα(β) = sαsβsα for all α, β ∈ Ψ.

These conditions imply that sα is an involution, that is, it is a per-
mutation of order exactly 2, commuting with the action of the sign
group.

To avoid any possible confusion with abstract root systems of Cox-
eter groups, which may naturally be regarded as examples of this for-
malism, see Proposition 2.5, we call such a pair (Ψ, F ) a quasi-root
system; other examples of quasi-root systems are mentioned in Appen-
dix B. By abuse of notation, we sometimes call Ψ itself a quasi-root
system.

An arbitrary family ((Ψi, F i))i∈I of quasi-root systems has a union
(Ψ, F ), where Ψ =

⨿
i∈I Ψ

i is the coproduct, that is, the disjoint union,

in the category of sets, and, for α ∈ Ψi ⊆ Ψ,

F (α)|Ψi = F i(α),
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while
F (α)|Ψj = IdΨj for j ̸= i.

2.2. A morphism (Ψ1, F 1) → (Ψ2, F 2) of quasi-root systems is defined
to be a function θ : Ψ1 → Ψ2 such that θ(sα(β)) = sθ(α)(θ(β)) for all

α, β ∈ Ψ1. Taking α = β shows that θ(−α) = −θ(α) for α ∈ Ψ1.

With the obvious definition of composition of morphisms, the quasi-
root systems form a category. In particular, this gives rise to the usual
(categorical) notions of an isomorphism of quasi-root systems, and of
the action of a group G on a quasi-root system; an isomorphism is a
bijective morphism of quasi-root systems, and an action of a group G on
a quasi-root system Ψ is a homomorphism from G to the group Aut(Ψ)
of automorphisms of Ψ. Observe that sα ∈ Aut(Ψ) for all α ∈ Ψ.

2.3. Up to Corollary 2.4, we fix a quasi-root system (Ψ, F ) and let G
be a group acting on Ψ by means of a homomorphism ι : G → GΨ :=
Aut(Ψ). Set

T = TΨ := {sα | α ∈ Ψ} ⊆ GΨ,

and let W = WΨ := ⟨T ⟩ be the subgroup of GΨ generated by T . We
call W the group associated to Ψ.

Regard the power set P(X) of any set X as an abelian group under
symmetric difference:

A+B := (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A) for A,B ⊆ X.

Then, P(T ) becomes a G-module with G acting by conjugation:

σ ·A = σAσ−1 := {σtσ−1 | t ∈ A}

for σ ∈ G and A ⊆ T . Define a map

τ = τΨ : Ψ −→ T

by τ(α) = sα. We call τ the reflection map of Ψ. The sets τ−1(t) for
t ∈ T are called the fibers of τ . Note that the set of fibers of τ is a
system of imprimitivity for the action of G on Ψ.

2.4. Consider two sets Ψ+,Ψ
′
+ of orbit representatives for the sign

group on Ψ, that is, Ψ+ is a subset of Ψ with −Ψ+ = Ψ \ Ψ+, and
similarly for Ψ′

+. We say that Ψ+ and Ψ′
+ are compatible if, for each
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t ∈ T , Ψ+∩τ−1(t) = ±(Ψ′
+∩τ−1(t)), or equivalently, if T is the disjoint

union
T = {sα | α ∈ Ψ+ ∩ −Ψ′

+} ∪ {sα | α ∈ Ψ+ ∩Ψ′
+}.

Note that Ψ+ and −Ψ+ are compatible. Compatibility is an equiva-
lence relation on the family of sets of orbit representatives for {±1}
on Ψ.

We say that Ψ+ is a quasi-positive system for G on Ψ if Ψ+ and
σ(Ψ+) are compatible for all σ ∈ G, or, equivalently, σ(Ψ+ ∩ τ−1(t)) =
±(Ψ+ ∩ τ−1(σtσ−1)) for all σ ∈ G and t ∈ T . Thus, Ψ+ is a quasi-
positive system if and only if

{ϵΨ+ ∩ τ−1(t) | t ∈ T, ϵ = ±1}

is a system of imprimitivity for the action of G on Ψ. In particular, if
{±1} acts simply transitively on each fiber of the reflection map, then,
any set of orbit representatives for {±1} is a quasi-positive system for
G on Ψ, and any two quasi-positive systems for G on Ψ are compatible.

Lemma 2.1. Let Ψ+ and Ψ′
+ be compatible quasi-positive systems,

ρ, ρ′ ∈ G and ϵ, ϵ′ ∈ {±1}. Then,

τ−1({sα | α ∈ ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′
+)}) = ρ(ϵΨ+) + ρ′(−ϵ′Ψ′

+).

Proof. Since ρ(ϵΨ+) and ρ′(ϵ′Ψ′
+) are compatible quasi-positive sys-

tems, it follows that, if α ∈ ρ(ϵΨ+)∩ρ′(ϵ′Ψ′
+), then τ−1(sα)∩ρ(ϵΨ+) =

τ−1(sα) ∩ ρ′(ϵ′Ψ′
+) and τ−1(sα) ∩ −ρ(ϵΨ+) = τ−1(sα) ∩ −ρ′(ϵ′Ψ′

+),
whence

τ−1(sα) ∈
(
ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′

+)
)
∪ −

(
ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′

+)
)
.

Thus,

τ−1
(
{sα | α ∈ ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′

+)}) ⊆
(ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′

+)) ∪ −(ρ(ϵΨ+) ∩ ρ′(ϵ′Ψ′
+)).

Since the reverse inclusion is clear, and the right hand side is (ρ(ϵΨ+)\
ρ′(−ϵ′Ψ′

+)) ∪ (ρ′(−ϵ′Ψ′
+) \ ρ(ϵΨ+)), the result follows. �
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Proposition 2.2. Let Ψ+ be a quasi-positive system for G on Ψ.
Define the function NΨ+

: G → P(T ) by

NΨ+(σ) = {sα | α ∈ Ψ+ ∩ σ(−Ψ+)}.

(a) The function NΨ+ is a cocycle on G with values in P(T ).

(b) TΨ+ := T × {±1} is a G-set with the action

σ(t, ϵ) = (σtσ−1, η(σ−1, t)ϵ),

η(σ, t) :=

{
1, t /∈ NΨ+(σ)

−1, t ∈ NΨ+(σ).

(c) Define the map FΨ+
: TΨ+

→ Sym(TΨ+
) by

(t, ϵ) 7−→ (α 7−→ t(α)),

regarding TΨ+ as a G-set via (b). Then, (TΨ+ , FΨ+) is a quasi-root
system with G-action. Furthermore, {±1} acts simply transitively on
each fiber of the reflection map for TΨ+ , and T ×{1} is a quasi-positive
system for G on TΨ+

(d) The map
ρ : Ψ −→ TΨ+

defined by α 7→ (sα, ϵ) for ϵ ∈ {±1} and α ∈ ϵΨ+ is a surjective mor-
phism of G-sets. Furthermore, the map

Ψ′
+ 7−→ ρ(Ψ′

+)

is a bijection between the set of quasi-positive systems of Ψ compatible
with Ψ+ and the set of quasi-positive systems for TΨ+ . Finally, ρ is
an isomorphism if {±1} acts simply transitively on each fiber of the
reflection map for Ψ.

Proof. Write N for NΨ+ . For (a), we have to check the cocycle
condition (see A.1)

N(σρ) = N(σ) + σN(ρ)σ−1, σ, ρ ∈ G.

Define M : G → P(Ψ) by M(σ) = τ−1(N(σ)) for σ ∈ G, where τ is the
reflection map. Since τ is a G-equivariant surjection, it will suffice to
check that M(στ) = M(σ) + σM(τ) for all σ, τ ∈ G, that is, we must
show that M is a cocycle for the action of G on P(Ψ) induced by the
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G-action on Ψ. However, Lemma 2.1 and the definition of N imply
that, for any σ ∈ G, M(σ) = Ψ+ + σ(Ψ+). This shows that M is a
coboundary, and hence, a cocycle, as required to prove (a).

Part (b) follows from (a) by straightforward calculation (more gen-
erally, see Proposition A.1 and its proof, noting the identification

P(T ) ∼=
∏
t∈T

{±1}

of groups with G-action). Finally, (c)–(d) follow from (b) and the
definitions. �

Proposition 2.3. Let Ψ+ and Ψ′
+ be compatible quasi-positive systems

for Ψ.

(a) Let A := {sα | α ∈ Ψ+ ∩ −Ψ′
+}. Then, for σ ∈ G,

NΨ+(σ) + σAσ−1 = {sα | α ∈ Ψ+ ∩ σ(−Ψ′
+)} = NΨ′

+
(σ) +A.

(b) The cocycles NΨ+ and NΨ′
+
are cohomologous, that is, the coho-

mology classes of NΨ+ and NΨ′
+
in H1(G,P(T )) are equal.

(c) The map TΨ+ → TΨ′
+
, given by

(sα, ϵ) 7−→ (sα, ϵϵ
′)

for ϵ, ϵ′ ∈ {±1} and α ∈ Ψ+ ∩ ϵ′Ψ′
+, is a G-equivariant isomorphism of

quasi-root systems.

Proof. For (a), it suffices to show that the three sets in the displayed
equation all have the same inverse image under the reflection map τ .
Using Lemma 2.1,

τ−1(NΨ+(σ) + σAσ−1) = τ−1(NΨ+(σ)) + τ−1(σAσ−1))

= (Ψ+ + σ(Ψ+)) + (σ(Ψ+) + σ(Ψ′
+))

= Ψ+ + σ(Ψ′
+).

Similar calculations show that Ψ+ +σ(Ψ′
+) is also the inverse image of

the other two sets.
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Note that (a) provides an explicit cohomology between NΨ+ and
NΨ′

+
, proving (b) (see A.1). Then, (c) follows from (b) by simple cal-

culation (more generally, see A.2). �

Corollary 2.4. Let X denote the set of quasi-positive systems for the
quasi-root system TΨ+ , with G-action (σ,Ψ′

+) 7→ σ(Ψ′
+). Then, the

map X → P(T ), given by

Ψ′
+ 7−→ {t ∈ T | (t,−1) ∈ Ψ′

+}

is a G-equivariant bijection, where P(T ) has the G-action

(g,A) 7−→ NΨ+(g) + gAg−1,

see Appendix A.2.

Proof. This follows using Proposition 2.3. �

2.5. Now, we recall some useful characterizations of Coxeter systems
which are all either implicit or explicit in the literature. For general
references on Coxeter groups, see [2, 3, 17].

Consider a pair (W,S) consisting of a group W and a set S of
involutions generating W . The function l : W → N, defined by

l(w) = min{n ∈ N | w = s1 · · · sn for some s1, . . . , sn ∈ S}

is called the length function of (W,S). Let

T =
∪

w∈W

wSw−1

and P(T ) denote the power set of T , regarded as an abelian group
under the symmetric difference. We let W act on P(T ) by conjugation

and the group {±1} act on T̂ := T × {±1} by multiplication on the

second factor. Set T̂+ = T × {1} ⊆ T̂ .

Proposition 2.5. The following conditions are equivalent :

(i) the pair (W,S) is a Coxeter system.

(ii) There is an action of the group W by permutations on the set

T̂ such that s(t, ϵ) = (sts, (−1)δs,tϵ) for s ∈ S, t ∈ T , ϵ ∈ {±1}.
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(iii) There is a function N : W → P(T ), satisfying

N(xy) = N(x) + xN(y)x−1 for x, y ∈ W,

N(s) = {s} for s ∈ S.

Suppose that these conditions hold. Then, for w ∈ W , t ∈ T and ϵ =
±1, we have:

(a) N(w) = {t ∈ T | l(tw) < l(w)} = {t ∈ T | w−1(t, 1) ∈ −T̂+}.
(b) |N(w)| = l(w).

(c) Write

η(w, t) =

{
1 if t /∈ N(w)

−1 if t ∈ N(w).

Then, w−1(t, ϵ) = (w−1tw, η(w, t)ϵ)

(d) The action of W by permutations on Ψ := T̂ is faithful.

(e) Set sα = r ∈ Sym(Ψ) for α = (r, µ) ∈ T̂ , and let F : Ψ →
Sym(Ψ) be the function α 7→ sα. Then, (Ψ, F ) is a quasi-root system

for W with T̂+ as a quasi-positive system.

Proof. For completeness, we sketch direct proofs of all the implica-
tions amongst (i)–(iii). For (i) implies (ii), see [3, Chapter 4, subsection
1.4]; for the converse, note that the arguments of [3, Chapter 4, subsec-
tions 1.4–1.5] work with minor changes under assumption (ii) instead
of (i). If (ii) holds, it is easy to see that (Ψ, F ) is a quasi-root system
with T × {1} as a quasi-positive system, and then, (ii) implies (iii) fol-
lows readily from Proposition 2.2 (a). A proof of the equivalence of
(i) and (iii) can be found in [8, 11], although the proof that (i) im-
plies (iii) found there proceeds via (ii) (or a similar result). A direct
proof that (i) implies (iii) can be given by noting that a cocycle on a
group G with values in an abelian group can be arbitrarily specified on
a set of generators of G, provided it preserves (in an obvious sense) a
set of defining relations for G in terms of those generators; it is then
straightforward to deduce existence of the cocycle N , as in (iii), from
the standard presentation of W .

A direct proof of the equivalence of (ii) and (iii) is implicit as a
special case of the proof of Proposition A.1. Specifically, there is a
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bijection between the set of functions

N : W −→ P(T )

and the set of functions

η : W × T −→ {±1},

given by sending N to η as defined by the formula in the statement
of the Proposition 2.5. It can be immediately verified that N is a
cocycle if and only if η(xy, t) = η(x, t)η(y, x−1tx) for all x, y ∈ W ,
t ∈ T . This holds if and only if w(t, ϵ) = (wtw−1, η(w−1, t)ϵ) defines a

representation of W on T̂ . Furthermore, for s ∈ S, N(s) = {s} if and
only if s(t, ϵ) = (sts, (−1)δs,tϵ), where δs,t is the Kronecker delta.

The remaining assertions (a)–(e) are clear from the above references
and the preceding arguments. �

2.6. Whenever the conditions of the proposition hold, we call l the
standard length function, T the set of reflections and N the reflection

cocycle of (W,S). We call the quasi-root system (T̂ , F ) the standard
abstract root system of (W,S). The sets

T̂+ := T × {1} ⊆ T̂ and Ŝ := S × {1} ⊆ T̂+

are called the standard set of positive roots and standard root basis

of T̂ , respectively. When convenient, we identify W with a group of

permutations of T̂ , in the natural way.

Here, we recall a well-known fact from [3], which will be used several
times in the sequel.

Lemma 2.6. For any Coxeter system (W,S), S is a minimal (under
inclusion) set of generators of W .

2.7. Consider a quasi-root system (Ψ, F ) with a specified quasi-positive
system Ψ+. If t = sβ with β ∈ Ψ+, then sβ(β) = −β ∈ −Ψ+. We say
that β ∈ Ψ+ is a simple quasi-root for Ψ+ if, for each α ∈ Ψ+ with
sβ(α) ̸∈ Ψ+, we have sβ = sα. Note that we may have distinct simple
quasi-roots β, γ for Ψ+ with sβ = sγ . The reflection sβ in a simple
quasi-root β for Ψ+ is called a simple reflection for Ψ+.
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Let S′ be any subset of the set of all simple reflections for Ψ+, and
let

Π′ := {β ∈ Ψ+ | sβ ∈ S′}

be the set of all simple quasi-roots β for Ψ+ with sβ ∈ S′. LetW ′ = ⟨S′⟩
denote the subgroup of W = ⟨sα | α ∈ Ψ⟩, generated by S′,

Φ′ := {w(α) | w ∈ W ′, α ∈ Π′},

T ′ := {sα | α ∈ Φ′}
and

Φ′
+ := Φ′ ∩Ψ+.

From the definitions of Π′ and T ′,

Φ′
+ = {α ∈ Ψ+ | sα ∈ T ′}.

Proposition 2.7.

(a) For α ∈ Φ′, sα restricts to a permutation s′α of Φ′.

(b) Define the map F ′ : Φ′ → Sym(Φ′) by α 7→ s′α. Then, (Φ′, F ′) is
a quasi-root system with Φ′

+ as a positive system.

(c) The pair (W ′, S′) is a Coxeter system with reflection cocycle

N ′ : W ′ −→ P(T ′),

given by

N ′(w) = {sα | α ∈ Ψ+ ∩ w(−Ψ+)} = {sα | α ∈ Φ′
+ ∩ w(−Φ′

+)}.

(d) Restriction induces an isomorphism

W ′ = ⟨sα | α ∈ Φ′⟩
∼=−→ ⟨s′α | α ∈ Φ′⟩.

(e) Π′ is the set of all simple roots for Φ′
+ in Φ′.

(f) Let (T̂ ′, F ′′) be the standard abstract root system of (W ′, S′).

Then, there is a W ′-equivariant surjection Φ′ → T̂ ′, given by α 7→
(sα, ϵ) for α ∈ ϵΦ′

+, where ϵ ∈ {±1}. If {±1} acts simply transitively
on the fibers of the reflection map of (Φ′, F ′), this surjection is an
isomorphism

(Φ′, F ′) −→ (T̂ ′, F ′′)

of quasi-root systems.
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Proof. Part (a) follows from the definition of Φ′ if α ∈ Π and from
(B.1), in general.

Part (b) readily follows from the corresponding facts for Ψ. Define
the function

NΨ+ : W −→ P(T )

by
NΨ+(w) := {sα | α ∈ Ψ+ ∩ w(−Ψ+)}.

By Proposition 2.2 (a), NΨ+ is a cocycle, and from the definition of S′,
NΨ+(s) = {s} for s ∈ S′. The cocycle condition implies NΨ+(w) ⊆ T ′

for all w ∈ W ′; thus, NΨ+ restricts to a cocycle

N ′ : W ′ −→ P(T ′),

satisfying N ′(s) = {s} for all s ∈ S′. By Proposition 2.5, (W ′, S′) is a
Coxeter system with reflection cocycle N ′, where N ′(w) = {sα | α ∈
Ψ+ ∩ w(−Ψ+)}.

To prove (c), it will suffice to show that, for w ∈ W ′,

Ψ+ ∩ w(−Ψ+) = Φ′
+ ∩ w(−Φ′

+).

Clearly, the right hand side is included in the left. However, if α ∈ Ψ+

with w−1(α) ∈ −Ψ+, then, from above, sα ∈ T ′, so α ∈ Φ′
+ and

w−1(α) ∈ −Φ′
+, which proves equality.

Now for (d), suppose that w ∈ W ′ has restriction w|Φ′ = IdΦ′ . Then,

Φ′
+ ∩ w(−Φ′

+) = Φ′
+ ∩ w|Φ′(−Φ′

+) = ∅;

thus, N(w) = ∅ and w = IdΨ by Proposition 2.5.

For (e), it is clear that Π′ is a subset of the set of all simple roots for
Φ′

+ in Φ′. On the other hand, if α ∈ Φ′ is a simple root for Φ′
+ in Φ′,

then the definitions readily give that N ′(sα) = {sα}, and thus, sα ∈ S,
which implies α ∈ Π.

Finally, (f) follows from Proposition 2.2 (d). �

Definition 2.8. A quasi-positive system Ψ+ for a quasi-root system
(Ψ, F ) will be said to be generative if, for some set S′ of simple
reflections for Ψ+, we have Φ′ = Ψ (or equivalently, W ′ = W ) in
subsection 2.7 above. From Lemma 2.6, S′ is necessarily the set of all
simple reflections for Ψ+.
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We then call (W,S′) the Coxeter system attached to Ψ+. As we
observe later, the isomorphism type of (W,S′) as a Coxeter system
in general depends upon the choice of Ψ+. The sets of quasi-positive
systems and of generative quasi-positive systems are clearly both stable
under the W -action.

Example 2.9. Let (W,S) be a Coxeter system of type B2 with
S := {r, s} as its set of simple reflections (so rs has order 4). The set
of reflections is T = {r, rsr, srs, s}. We consider the standard abstract

root system T̂ = T×{±1} of (T, S), which has standard positive system

T̂+ := T × {1}. It can readily be verified that

Ψ+ := {(s, 1), (srs, 1), (r, 1), (rsr,−1)}

is a generative quasi-positive system for T̂ , with ∆ := {(s, 1), (srs, 1)}
as the corresponding set of abstract simple roots and S′ := {s, srs} as

the corresponding set of abstract simple reflections. Observe that T̂+

and Ψ+ are not W -conjugate.

Definition 2.10. An abstract root system is a quasi-root system (Ψ, F )
for which there exists some generative quasi-positive system. Elements
of Ψ will then be called roots instead of quasi-roots.

Note the pair (W,T ), where T = {sα | α ∈ Ψ} depends only on
(Ψ, F ) and not on the choice of generative quasi-positive system.

2.8. Fix a Coxeter system (W,S). For any J ⊆ S, let WJ denote
the subgroup of W generated by J . The subgroups WJ are called
standard parabolic subgroups of (W,S), and their W -conjugates are
called parabolic subgroups. A reflection subgroup of W is a subgroup
W ′ which is generated by W ′ ∩ T . A dihedral reflection subgroup is a
reflection subgroup which may be generated by two distinct reflections
of (W,S).

2.9. Here, we recall some properties of reflection subgroups; for proofs,
see [8, 11]. For any reflection subgroup W ′ = ⟨W ′ ∩ T ⟩ of W ,

(2.1) S′ = χ(W ′) = χ(W,S)(W
′) := {t ∈ T | N(t) ∩W ′ = {t}}
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is a set of Coxeter generators for W ′. The corresponding set of
reflections and reflection cocycle for (W ′, S′) are

T ′ := W ′ ∩ T

and
N ′ : w −→ N(w) ∩W ′,

respectively. If R ⊆ T is any set of reflections of W with W ′ = ⟨R⟩,
then ∪

w∈W ′

wRw−1 = T ′

and |S′| ≤ |R|. In particular, if R is a set of Coxeter generators for W
with R ⊆ T , then

T =
∪

w∈W

wRw−1

and |R| = |S|. We call |S| the rank of (W,S); it depends only on
the pair (W,T ). It is known that any dihedral reflection subgroup is
contained in a unique maximal (under inclusion) dihedral reflection
subgroup.

The following result follows directly from the above facts and Propo-
sition 2.5.

Proposition 2.11. Let T̂ ′ = T ′ ×{±1} and, for α ∈ T̂ ′, let s′α denote

the restriction of sα to a permutation of T̂ ′. Let

F ′ : T̂ ′ −→ Sym(T̂ ′)

denote the map α 7→ s′α. Then, (T̂
′, F ′) is equal to the standard abstract

root system of (W ′, S′).

Proposition 2.12. Let ∆ ⊆ T̂+. Then, ∆ is the standard set of simple
roots of the standard abstract root system T ′ ×{±1} of some reflection
subgroup W ′ of W , with T ′ = T ∩W ′, if and only if, for each α ̸= β
in ∆, {α, β} is the set of simple roots of the standard positive system
of the standard abstract root system (⟨sα, sβ⟩ ∩ T )× {±1} of ⟨sα, sβ⟩.

Proof. This is a direct translation using [11, subsection 3.5, Propo-
sition 2.5]. �
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2.10. If W ′ is a reflection subgroup of (W,S) and w ∈ W , there is a
unique y ∈ wW ′ with N(y−1) ∩W ′ = ∅. Then,

χ(wW ′w−1) = yχ(W ′)y−1,

by [10, Lemma 1]. As in subsection 2.9, regard the (underlying
sets of) abstract root systems attached to (W ′, χ(W ′)) and (wW ′w−1,

χ(wW ′w−1)) as subsets of T̂ .

Proposition 2.13. For W ′, w and y as in subsection 2.10, the map

α 7−→ y(α) : T̂ −→ T̂

restricts to an isomorphism from the standard abstract root system
of (W ′, χ(W ′)) to the standard abstract root system of (wW ′w−1,
χ(wW ′w−1)). This bijection restricts to a bijection between correspon-
ding sets of abstract positive roots, and, similarly, for abstract simple
roots.

Proof. This follows easily using Proposition 2.5 and the definitions.
�

We record the following lemma for use in Section 4.

Lemma 2.14. Let J ⊆ S be such that (WJ , J) is an infinite irreducible
Coxeter system. If w ∈ W with l(wr) > l(w) for all r ∈ J and wJw−1

⊆ S, then w ∈ WK , where

K := {r ∈ S \ J | rs = sr for all s ∈ J}.

Proof. This directly follows from a result of Deodhar [5, Proposition
2.3] on conjugacy of parabolic subgroups and is even implicit as a very
special case of the discussion after the statement of Theorem A in loc
cit. In order to prove it explicitly, we use induction on l(w). If w ̸= 1W ,
choose a ∈ S ∩ N(w−1). From Proposition 2.3 of loc cit., a /∈ J,
and the irreducible component of (WJ∪{a}, J ∪ {a}) containing a is a
finite Coxeter system, that is, in the notation of loc cit., the element
v[a, J ] is defined. Since WJ is infinite and irreducible, this implies
that this irreducible component has a as its only simple reflection,
and hence, that a ∈ K. Now, l(war) > l(wa) for all r ∈ J , and
(wa)J(wa)−1 = wJw−1 ⊆ S; thus, by induction, wa ∈ WK , and the
proof is complete. �
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2.11. Next, we more closely examine the result Proposition 2.7 in the

special case that (Ψ, F ) is the standard abstract root system (T̂ , F ) of

a Coxeter system (W,S). For a quasi-positive system Ψ+ ⊆ T̂ , let ∆Ψ+

and SΨ+ denote the sets of simple roots and simple reflections for Ψ+,
that is,

∆Ψ+ := {α ∈ Ψ+ | sα(Ψ+ \ {α}) ⊆ Ψ+}(2.2)

SΨ+ := {sα | α ∈ ∆Ψ+}.(2.3)

Let WΨ+ := ⟨SΨ+⟩ denote the subgroup of W generated by SΨ+ . (The
fact in Proposition 2.7 (c) that (WΨ+ , SΨ+) is a Coxeter system also
follows from [9, subsection 1.8] using Proposition 2.5.) For example, if

Ψ+ = T̂+, then ∆Ψ+ = S × {1} and SΨ+ = S, as is well known.

Definition 2.15. A subset S′ of T is an abstract set of simple reflec-

tions for T̂ if S′ = SΨ+ for some generative quasi-positive system Ψ+.

A subset ∆ of T̂ is an abstract set of simple roots for T̂ if ∆ = ∆Ψ+ for
some generative quasi-positive system Ψ+.

Note that any abstract set of simple reflections of T̂ is a set of Coxeter
generators of W contained in the set of reflections of (W,S), but that
the converse does not hold, see Example 2.22.

Lemma 2.16. The map

Ψ+ 7−→ ∆Ψ+

is a bijection between the set of generative quasi-positive systems and

the set of abstract sets of simple roots of (T̂ , F ).

Proof. Clearly, Ψ+ determines ∆Ψ+ , for any quasi-positive system
Ψ+. On the other hand, if Ψ+ is a generative quasi-positive system,
then, by Proposition 2.5,

SΨ+ = {sα | α ∈ ∆Ψ+},
W = ⟨SΨ+⟩, and

Ψ+ = {w(α) | w ∈ W,α ∈ ∆Ψ+
, lΨ+

(wsα) > l(w)},

where lΨ+ is the standard length function of (W,SΨ+). This shows that
∆Ψ+ determines Ψ+. �
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The next lemma will be crucial in Section 4.

Lemma 2.17. Let Ψ+ be a generative quasi-positive system for the

standard abstract root system (T̂ , F ) of (W,S) and W ′ a reflection
subgroup of (W,S). Set S′ = χ(W ′). Regard the abstract root system

T̂ ′ of (W ′, S′) as a subset of T̂ , as in Proposition 2.11. Then, Ψ′
+ :=

Ψ+ ∩ T̂ ′ is a generative quasi-positive system for T̂ ′, and the set of
simple reflections of Ψ′

+ is the set χ(W,SΨ+
)(W

′)of canonical generators

of W ′ with respect to the Coxeter system (W,SΨ+).

Proof. Clearly, Ψ′
+ is a quasi-positive system for T̂ ′

+. By Lemma 2.6,
it suffices to show that, if α ∈ Ψ′

+ with sα ∈ χ(W,SΨ+
)(W

′), then α ∈ Π′,

where Π′ is the set of simple roots for Ψ′
+, that is, sα(Ψ

′
+ \ {α}) ⊆ Ψ′

+.
Now by subsection 2.9, NΨ+(sα) ∩W ′ = {sα}, that is, if γ ∈ Ψ+ with
sγ ∈ W ′ and sα(γ) ∈ −Ψ+, then γ = α. Since, for γ ∈ Ψ+, we have
sγ ∈ W ′ if and only if γ ∈ Ψ′

+, this gives the desired conclusion. �

Example 2.18. Let {Ci}i∈I be the conjugacy classes of reflections
in W . For each i ∈ I, choose ϵi ∈ {±1}. Then,

Φ+ :=
∪
i∈I

(Ci × {ϵi})

is a quasi-positive system. It is easy to verify that S ⊆ SΦ+ , so WΦ+ =
W and SΦ+ = S by Lemma 2.6. The non-standard generative quasi-
positive system Ψ+ for type B2 in Example 2.9 arises by conjugation
of one of the quasi-positive systems arising as above.

Proposition 2.20 below shows, in particular, that any generative
quasi-positive system with S as the corresponding set of simple re-
flections arises, as in the preceding example. For the proof, we use
the following fact about conjugacy of simple reflections, which read-
ily follows from the exchange condition and is a special case of the
more general results of Deodhar and Brink-Howlett [5] on conjugacy
of parabolic subgroups.

Lemma 2.19. Let (W,S) be a Coxeter system and r, s ∈ S, w ∈ W
satisfy wrw−1 = s and l(wr) = l(w) + 1. Then, there exist k ∈ N and
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sequences w1, . . . , wk in W , J1, . . . , Jk ⊆ S, a0, a1, . . . , ak in W , with
the following properties:

(i) a0 = r, ak = s;
(ii) ai−1, ai ∈ Ji for i = 1, . . . , k;
(iii) |Ji| = 2 for i = 1, . . . , k;
(iv) wi ∈ WJi , wiai = ai+1wi and l(wiai) = l(wi) + 1 for i =

1, . . . , k;
(v) w = wk · · ·w2w1 with l(w) = l(w1) + l(w2) + · · ·+ l(wk).

Proposition 2.20. Let S′ ⊆ T be such that (W,S′) is a Coxeter
system. Consider a family of roots

Π′ = {αr}r∈S′ ⊆ T̂ ,

such that sαr = r for all r ∈ S′. Then, Π′ is the set of simple roots

of some (generative) quasi-positive system Ψ+ for T̂ if and only if
(rt)m(αr) = αt whenever r ̸= t are in S′ with the order of rt an odd
integer 2m+ 1.

Proof. The “only if” direction is clear, since, under the above
conditions on r and t, if we write β = (rt)m(αr), we have sβ =
(rt)mr(rt)−m = t so β ∈ ±{αt}; however, β ∈ Ψ+ since l′((rt)mr) >
l′((rt)m), where l′ is the standard length function of (W,S′).

For the “if” direction, we shall first show that, for any x, y ∈ W ,
r, t ∈ S′ with xrx−1 = yty−1, l′(xr) > l′(x) and l′(yt) > l′(y), we have
x(αr) = y(αt). In fact, using Proposition 2.5, the conditions imply that
zrz−1 = t and l′(zr) > l′(z) with z = y−1x. By Lemma 2.19, the proof
that z(αr) = αt under these conditions reduces to its special case in
which z ̸= 1 and z, r, t all lie in some finite rank two standard parabolic
subgroup of (W,S′), say, of order 2m. If m is even, z(αr) = αt is
automatic, whereas, if m is odd, z(αr) = αt by the assumptions.

Next, we set

Ψ+ := {x(αr) | x ∈ W, r ∈ S′, l′(xr) > l′(x)}.

The above implies that Ψ+ is a quasi-positive system for T̂ . Using the
exchange condition for (W,S′), we see that Π′ is contained in the set
of simple roots of Ψ+, and equality follows by Lemma 2.6. �
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2.12. We illustrate the preceding result in relation to isomorphisms of
Coxeter groups obtained by diagram twisting, as introduced in [4].

Let (W,S) be a Coxeter system with Coxeter matrix (mr,s)r,s∈S .
Thus, for r, s ∈ S, mr,s ∈ N≥1 ∪ {∞} denotes the order of the product
rs ∈ W . Suppose that S is the disjoint union S = J ∪ K ∪ L ∪ M ,
where WK is finite with longest element wK ,

M ⊆ {s ∈ S | ms,r = ∞ for all r ∈ J}

and mr,s = 2 for all r ∈ L, s ∈ K. We let

J ′ = wKJwK and S′ := J ′ ∪K ∪ L ∪M ⊆ T.

Then, [4] (W,S′) is a Coxeter system, said to be obtained from (W,S)
by a diagram twist. The Coxeter matrix (m′

r,s)r,s∈S′ of (W,S′) is given
as follows. If r, s ∈ K ∪ L ∪ M , then m′

r,s = mr,s. If r ∈ J ′ and
s ∈ K ∪ L ∪ M , then m′

r,s = m′
s,r = mwKrwK ,s. Finally, if r, s ∈ J ′,

then m′
r,s = mwKrwK ,wKswK

.

Corollary 2.21. Suppose, in Lemma 2.20, that (W,S′) is obtained by
twisting (W,S) with notation as in subsection 2.12. Set αr = (r, ϵr)
with ϵr ∈ {±1} for all r ∈ S′. Then, Π′ := {αr}r∈S′ is the set of

simple roots of some generative quasi-positive system for T̂ if and only
if the following conditions (i)–(iii) hold :

(i) ϵr = ϵs whenever r ̸= s are in K ∪ L ∪ M and m′
r,s is finite

and odd ;
(ii) ϵr = −ϵs when r ∈ J ′ and s ∈ K with m′

r,s finite and odd ;
(iii) ϵr = ϵs whenever r ∈ J ′, s ∈ L and m′

r,s is finite and odd.

Proof. The corollary readily follows on applying Lemma 2.20 to both

S′ and S × {1} ⊆ T̂ and noting that each pair of distinct elements
of S′ which are not both in S and whose product has finite order is
conjugated to a pair of elements of S by wK . �

Example 2.22. Consider the Coxeter system (W,S) with S =
{r, s, t, u} and Coxeter graph, as at left in Figure 1. Twisting, as in
2.12 using J = {r}, K = {s, t}, M = {u} and L = ∅, gives the Cox-
eter system (W,S′), where S′ = {r′, s, t, u} with r′ = stsrsts and with
Coxeter graph as at right:
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FIGURE 1.

In this case, Corollary 2.21 implies that {(r′,−1), (s, 1), (t, 1), (u, 1)} is
the set of abstract simple roots of some generative quasi-positive sys-
tem, with S′ as the corresponding set of simple reflections. In particu-
lar, this shows that the non-isomorphic (irreducible, finitely-generated)
Coxeter systems (W,S) and (W,S′) have isomorphic standard abstract
root systems.

On the other hand, take (W,S) with S = {a, b, c, d} and the Cox-
eter graph as on left hand side of Figure 2. Twisting with J = {d},
K = {a}, L = {b} and M = {c} give the isomorphic Coxeter system
(W,S′) with S′ = {a, b, c, d′} where d′ = ada, and Coxeter graph as on
right hand side of Figure 2.
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FIGURE 2.

Here, Corollary 2.21 shows that there is no generative quasi-positive
system with S′ as its corresponding set of simple reflections. This
shows that arbitrary diagram twists do not necessarily extend to twists
of the standard abstract root system.

Question 2.23. The above suggests the problem of determining when
(finitely generated, irreducible) Coxeter systems have isomorphic stan-
dard abstract root systems. We might also ask whether there is some
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natural way of attaching an abstract root system Φ̂(W,S) to each Cox-
eter system (W,S) so that two (say, finitely generated, irreducible) Cox-
eter systems (Wi, Si) are isomorphic if and only if they have isomorphic

abstract root systems Φ̂(Wi, Si).

In order to limit the, somewhat pathological, behavior seen in ex-
amples such as Examples 2.9, 2.18 and 2.22, we now combinatorially
introduce a notion which corresponds to that of betweenness considered
in the introduction, Proposition 4.1 (c).

Definition 2.24. Let α, β, γ ∈ T̂ . We say that γ is between α and β
if one of the following conditions holds:

(i) α = ±β and γ ∈ {α, β}.
(ii) α ̸= ±β and, for any maximal dihedral reflection subgroup W ′

of (W,S), all w ∈ W ′ and all ϵ ∈ {±1} with ϵw(α), ϵw(β) ∈ T̂ ′
+ :=

(W ′ ∩ T )× {1}, we have ϵw(γ) ∈ T̂ ′
+.

We let [α, β] denote the set of all γ ∈ T̂ such that γ is between α and β.
We shall refer to [α, β] as an interval of roots with endpoints α and β.

If α ̸= ±β, the only possible maximal dihedral reflection subgroup
W ′ as in (ii) is that containing sα and sβ (although, possibly, several
pairs (w, ϵ) may satisfy the conditions of (ii)). On the other hand,
using subsection 2.10, Proposition 2.13 and the fact that the set of
maximal dihedral reflection subgroups ofW is closed under conjugation
by elements of W , we see that an equivalent condition to (ii) would be
obtained by replacing “w ∈ W ′” in (ii) by “w ∈ W .” From this, it is

clear, for any w ∈ W , ϵ ∈ {±1} and α, β, γ in T̂ , that γ ∈ [α, β] if and
only if ϵw(γ) ∈ [ϵw(α), ϵw(β)].

2.13. We provide here, without proof, a more concrete description

of betweenness, compare Proposition 4.1 (c). Let α, β ∈ T̂ with
α ̸= ±β. Let W ′ be the maximal dihedral reflection subgroup W ′

of W containing {sα, sβ}, and set

T ′ = W ′ ∩ T.

Let χ(W ′) = {r, s} and m = |T ′|. Consider the diagram in Figure 3 of
m straight lines through the origin • = (0, 0) in the plane R2:
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If m is finite, the lines are supposed to pass, say, through the vertices
of some regular k-gon with centroid at •, where k = m if m is odd and
k = 2m if m is even, while, if m is infinite, the lines are taken as those
passing through, say, the points (n,±1) for n ∈ Z \ {0}. The result-
ing 2m (closed) rays with • as endpoint are labeled by the elements of

T̂ ′ × {±1}, as suggested by the diagram, so that each line is the union
of rays with labels (t, 1) and (t,−1) for some (unique) t ∈ T .

Now, for γ ∈ T̂ , we have γ ∈ [α, β] if and only if the ray labelled γ is
in the convex closure of the union of the rays labelled α and β. (This
is easy to see either directly from the definition, or using Proposition
4.1 (c).)

Lemma 2.25. For any α, β ∈ T̂ , sβ(α) is completely determined by α,
β, the function

(γ, δ) 7−→ [γ, δ] : T̂ × T̂ −→ P(T̂ ),

and the action of {±1} on T̂ .

Proof. First, if β = ±α, then sβ(α) = −α, so we suppose hencefor-

ward that β ̸= ±α. Consider the smallest (under inclusion) subset T̂ ′

of T̂ containing {α, β}, closed under the action of {±1} and such that,

if γ, δ ∈ T̂ ′, then [γ, δ] ⊆ T̂ ′. It is easy to see that T̂ ′ = T ′ × {±1},
where W ′ is the maximal dihedral reflection subgroup of W containing

{sα, sβ} and T ′ = W ′ ∩ T , that is, T̂ ′ is the standard root system of
W ′.

Now, there is a unique element γ ∈ T̂ ′ such that α ∈ [β, γ] and
[γ,−β] = {γ,−β}. In fact, {β, γ} is the set of simple roots of some

quasi-positive system Φ+ of T̂ ′, given by Φ+ = ϵw′(T ′ ×{1}), for some
ϵ ∈ {±1} and w′ ∈ W ′. Furthermore, [β, γ] = ϵw′(T ′×{1}). Note that
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[γ, β] \ {β} = [γ, sβ(γ)] contains α and is sβ-stable. We claim that the
action of sβ on the interval of roots [γ, sβ(γ)] containing α is uniquely
determined by the facts that sβ interchanges the endpoints γ and sβ(γ)
and preserves betweenness.

To prove the claim, observe that both sets

{[γ, α′)] | α′ ∈ [γ, sβ(γ)]}

and
{[α′, sβ(γ)] | α′ ∈ [γ, sβ(γ)]}

are totally ordered by inclusion. For any α′ ∈ [γ, sβ(γ)], attach
the ordered pair (mα′ , nα′) of cardinalities mα′ = |[α′, sβ(γ)]| and
nα′ = |[γ, α′]|. Note that, at most, one of mα′ and nα′ is infinite.
The preceding observation involving total orders, therefore, shows that
α′ is uniquely determined by (mα′ , nα′). Take α′ := sβ(α) ∈ [γ, sβ(γ)].
Since sβ preserves betweenness, it follows from the definitions that
(mα′ , nα′) = (nα,mα). Hence, α′ = sβ(α) is determined by α in the
required manner. �

Definition 2.26. A subset P of T̂ is said to be closed (in T̂ ) if, for any

α, β ∈ P and γ ∈ T̂ such that γ is between α and β, we have γ ∈ P .

We say that P is biclosed (in T̂ ) if P and T̂ \ P are both closed in T̂ .
Similarly, for a reflection subgroup W ′ of W , we may say that a subset

P of T̂ ′ is closed or biclosed in T̂ ′ = T ′ × {±1}.

There should be no confusion with the notion of a closed subset of
the root system of a finite Weyl group as defined in [3], which will not
be used in this paper.

Example 2.27. Suppose that (W,S) is a dihedral Coxeter system, say
S = {r, s}, where r ̸= s. Let B denote the set of all biclosed quasi-

positive systems Ψ+ for T̂ . It is easy to see that, if W is finite, then

B = {w(T̂+) | w ∈ W}. If W is infinite,

B = {ϵw(T̂+) | w ∈ W, ϵ ∈ {±1}} ∪ {Ψ+, T̂ \Ψ+},

where

Ψ+ = {(t, 1) | t ∈ T, r ∈ N(t)} ∪ {(t,−1) | t ∈ T, s ∈ N(t)}.

Hence, if P ∈ B is generative, then P is W -conjugate to ±T̂+.
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Definition 2.28. A subset Ψ+ of T̂ is an abstract positive system for

(W,S) if Ψ+ is a biclosed, generative, quasi-positive system of T̂ . Then,
∆Ψ+ is called the corresponding abstract root basis for Ψ+, and SΨ+ is
called the set of simple reflections of W corresponding to Ψ+. Recall
from subsection 2.11 that (W,SΨ+) is a Coxeter system.

When confusion with the notion of a positive system of roots of a
real root system (as considered in Section 3) seems unlikely, we may
call abstract positive systems merely positive systems.

2.14. Let (W,S) be a Coxeter system with irreducible components

(Wi, Si) for i ∈ I. Then, the standard abstract root system (T̂ , F ) of
(W,S) identifies (as quasi-root system) with the union as in subsec-
tion 2.2 of the (quasi-root systems arising as) standard abstract root

systems (T̂i, Fi) of (Wi, Si), for i ∈ I. Under this identification, the

standard root basis of (T̂ , F ) is the union of the standard root bases of

(T̂i, Fi). The analogous statement for standard sets of positive roots,
instead of standard root bases, also holds.

Lemma 2.29. Let Ψ+ ⊆ T̂ and other notation be as in subsection 2.14.

(a) Ψ+ is a generative quasi-positive system of T̂ if and only if for

each i, Ψi
+ := Ψ+ ∩ T̂i is a generative quasi-positive system of T̂i. In

that case, the corresponding set of simple roots is

∆Ψ+ =
∪
i

∆i
+,

a disjoint union, where ∆i
+ is the set of simple roots of Ψi

+ in T̂i.

(b) In (a), Ψ+ is a positive system of T̂ if and only if, for each i,

Ψi
+ := Ψ+ ∩ T̂i is a positive system of T̂i.

Proof. Observe that, if t ∈ Wi ∩ T and s ∈ Wj ∩ T with i ̸= j are
reflections of W which are contained in distinct irreducible components
of W , then st = ts and the maximal dihedral reflection subgroup
containing s and t is merely {1, s, t, st}. Using this, the lemma is easily
proven from the definitions. Further details are omitted. �
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Lemma 2.30. Let W ′ be a reflection subgroup of (W,S). Set S′ =

χ(W ′). Regard the abstract root system T̂ ′ of (W ′, S′) as a subset of

T̂ . Fix α, β, γ ∈ T̂ ′ and P ⊆ T̂ .

(a) γ is between α and β in T̂ ′ if and only if γ is between α and β

in T̂ .

(b) If P is closed in T̂ , then P ∩ T̂ ′ is closed in T̂ ′. Similarly, if P

is biclosed in T̂ , then P ∩ T̂ ′ is biclosed in T̂ ′.

(c) If Ψ+ is a positive system for T̂ , then Ψ+∩ T̂ ′ is a positive system

for T̂ ′.

(d) Suppose that W ′ is a dihedral reflection subgroup. If Ψ+ is a

positive system for T̂ , then Ψ+ ∩W ′ is conjugate in W ′ to T ′ ×{ϵ} for
some ϵ ∈ {±1}, where T ′ = W ′ ∩ T . Furthermore, the abstract root

basis of the abstract root system T̂ ′ of W ′ corresponding to the positive

system Ψ+ ∩ T̂ ′ is then conjugate by an element of W ′ to χ(W ′)×{ϵ}.

Proof. Note that every maximal dihedral reflection subgroup of W ′

is contained in a maximal dihedral reflection subgroup of W , and any
maximal dihedral reflection subgroup of W which contains at least
two reflections of W ′ intersects W ′ in a maximal dihedral reflection
subgroup of W ′. Now, (a) follows from these remarks, together with
Propositions 2.11, 2.12, 2.13 and subsection 2.10 (or by other arguments
involving subsection 2.13). Then (b) follows from (a), and (c) follows
from (b) and Lemma 2.17. Using (c), (d) reduces to the case in which
W = W ′ is dihedral and χ(W ′) = S, when it follows using Example
2.27. �

Lemma 2.31. For i = 1, 2, let (Wi, Si) be a Coxeter system with
abstract root system Φ(Wi, Si). Let

θ : Φ(W1, S1) −→ Φ(W2, S2)

be a bijection. Consider the following conditions (i)–(iii):

(i) for α, β, γ ∈ Φ(W1, S1), γ is between α and β if and only if θ(γ)
is between θ(α) and θ(β) in Φ(W2, S2);

(ii) θ(±α) = ±θ(α) for all α ∈ Φ1(W,S);
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(iii) θ is an isomorphism of quasi-root systems, that is, θ(sα(β)) =
sθ(α)(θ(β)) for all α, β ∈ Φ(W1, S1).

Then:

(a) Conditions (i) and (ii) above hold if and only if (i) and (iii) hold.
In that case, θ is an isomorphism of abstract root systems.

(b) Condition (iii) implies that there is a group isomorphism W1 →
W2 mapping sα 7→ sθ(α).

We say that θ preserves betweenness if conditions (i)–(iii) above are
satisfied.

Proof. By taking β = α in (iii), we see that (iii) implies (ii). That
(i) and (ii) implies (iii) is a direct consequence of Lemma 2.25. The
remainder of (a) is trivial. Part (b) may be proven using the following
fact, which is well known and easily verified: if (W,S) is a Coxeter
system with set of reflections T , then W is isomorphic to the group
generated by generators t for t ∈ T subject to relations t t′ t = tt′t for
all t, t′ ∈ T . �

Proposition 2.32. Let (W,S) be a Coxeter system with standard

abstract root system (T̂ , F ). Let Ψ+ be any generative quasi-positive

system for (T̂ , F ), and define a map

θ : T̂ −→ T̂

by θ(α) = (sα, ϵ) for α ∈ ϵΨ+ and ϵ ∈ {±1}.
(a) Let S′ := SΨ+ be the set of abstract simple reflections for Ψ+.

Then, (W,S′) is a Coxeter system with reflections T ′ = T .

(b) Let (T̂ ′, F ′′) be the standard abstract root system of (W,S′).

Then, T̂ ′ = T̂ , and the map θ is an isomorphism (T̂ , F ) → (T̂ ′, F ′′) of
quasi-root systems.

(c) We have θ2 = IdT̂ and θ(T̂+) = Ψ+.

(d) If Ψ+ is a positive system of (T̂ , F ), then θ preserves between-
ness.

(e) In general, Ψ+ is a generative quasi-positive system of (T̂ , F ′′).

If Ψ+ is a positive system of (T̂ , F ), it is also a positive system of

(T̂ , F ′′).
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Proof. We write Ψ = T̂ and use the results (and notation) of
subsection 2.7 and Proposition 2.7. Since Ψ+ is generative, we have
W ′ := ⟨S′⟩ = W , and (a) follows. Hence, Φ′ := WΠ′ = Ψ (where Π′

is the set of abstract simple roots of Ψ+), Φ
′
+ := Φ′ ∩ Ψ+ = Ψ+ and

T̂ ′ = T ′ × {±1} = T × {±1} = T̂ . In Proposition 2.7, we, therefore,
have (Φ′, F ′) = (Ψ, F ) and Proposition 2.7 (e) proves (b). For (c), we

verify that, if β = (t, ϵ) ∈ T̂ , then

θ(t, ϵ) =

{
(t, ϵ) if (t, 1) ∈ Ψ+,

(t,−ϵ) if (t, 1) ∈ −Ψ+,

θ(β) =

{
β if β ∈ ±(Ψ+ ∩ T̂+),

−β if β ∈ ±(Ψ+ \ T̂+).

Now, we prove (d). Assume that Ψ is a positive system for (T̂ , F ). We

show that, for α, β ∈ T̂ ,

θ([α, β]) = [θ(α), θ(β)]′′

in (T̂ , F ′′), where [α, β] and [θ(α), θ(β)]′′ are the evident intervals of

roots in the standard abstract root systems (T̂ , F ) and (T̂ , F ′′) of (W,S)
and (W,S′), respectively. If α = ±β, this is trivial; thus, henceforward,
we assume that α ̸= ±β. Note that (W,S) and (W,S′) have the same
maximal dihedral reflection subgroups (since those subgroups depend
only on (W,T )). Let Wd be the maximal dihedral reflection subgroup
of (W,S) (and (W,S′)) containing sα and sβ , and let Td = Wd ∩ T be

its set of reflections. Regard the abstract root system T̂d = Td × {1}
as a subset of T̂ ; more precisely, denote the corresponding quasi-root

system as (T̂d, Fd). This abstract root system has a standard positive

system T̂d,+ = T̂d×{1}, giving rise to a Coxeter system (Wd, Sd), where

Sd is the set of simple reflections of T̂d,+. By Lemma 2.30 (c), there
is another positive system Ψd,+ = Ψ+ ∩ Td. Attached to this data,
as in (a)–(c), we have another Coxeter system (Wd, S

′
d), where Sd′ is

the set of simple reflections of Ψd,+, the standard abstract root system

(T̂d, F
′′
d ) of (Wd, Sd), and a bijection

θd : T̂d −→ T̂d,



2252 MATTHEW DYER

inducing an isomorphism of quasi-root systems

(T̂d, Fd) −→ (T̂d, F
′′
d ).

Now, the definitions readily imply that θd is merely the evident
restriction of θ. Moreover, by the definition of betweenness, [α, β] =

[α, β]d (where the right hand side is an interval in (T̂d, Fd)) and
[θ(α), θ(β)]′′ = [θ(α), θ(β)]′′d (where the right hand side is an interval

in (T̂d, F
′′
d )). Thus, to prove θ([α, β]) = [θ(α), θ(β)]′′, we need only

prove θd([α, β]d) = [θd(α), θd(β)]
′′
d . This reduces the proof of (d) to the

case in which (W,S) is dihedral. In that case, Lemma 2.30 (d) assures

us that Ψ+ is W -conjugate up to sign to T̂+, and the result is easily
verified. This completes the proof of (d). Part (e) readily follows from

(b)–(d) upon noting that T̂+ is a positive system of both (T̂ , F ) and

(T̂ , F ′′). �

Theorem 2.33. Let ∆ ⊆ T̂ , and set S′ := {sα | α ∈ ∆}. Consider the
conditions (i)–(iii) below :

(i) ⟨S′⟩ = W ;

(ii) for all α, β ∈ ∆ with α ̸= β, {α, β} is an abstract root basis for
the root system (Wα,β ∩ T )× {±1} of Wα,β = ⟨sα, sβ⟩;

(iii) ∆ is contained in some biclosed quasi-positive system Ψ+ of T̂ .

Then:

(a) If (i)–(ii) hold, ∆ is the set of simple reflections of some quasi-

positive system of T̂ ; in particular, (W,S′) is a Coxeter system.

(b) Conditions (i)–(iii) all hold if and only if ∆ is an abstract root
basis of Ψ. In that case, Ψ+ in (iii) is the unique positive system with
∆ as its set of simple roots.

Proof. Observe that (ii) holds if and only if, for all α, β ∈ ∆ with
α ̸= β, we have

{α, β} = w(χ(Wα,β)× {ϵ})

for some w ∈ Wα,β and ϵ ∈ {±1}. First, we prove (a). Assume that (i)–
(ii) hold. From (ii), ∆∩−∆ = ∅. To show (W,S′) is a Coxeter system,
we shall use a characterization of Coxeter systems in [14]. Define the
(left) W -set Ω := W with W -action by left translation. We regard
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W as a group of permutations of T̂ . For α ∈ T̂ , define an “abstract
halfspace” Hα ⊆ Ω by

Hα := {w ∈ W | α ∈ w(Ψ+)}.

We have Ω = Hα ∪H−α and Hα ∩H−α = ∅. Also, 1 ∈ ∩α∈Ψ+Hα, and
w(Hα) = Hw(α) for all w ∈ W . Furthermore, for α, β ∈ Ψ,

Hα ∩Hβ =
∩

γ∈[α,β]

Hγ ,

since w(Ψ+) is closed in T̂ .

We claim that X := {(sα, Hα) | α ∈ ∆} is a pairwise proper system
of reflections for W acting on Ω in the sense of [14] (but, note that we
use left group actions instead of right actions as in loc cit.). The main
result of [14] is that this implies that (W,S′) is a Coxeter system, with
S′ = {sα | α ∈ ∆}, and then (a) follows from (ii) and Lemma 2.20.
According to the definition of system of reflections in loc cit, X is a
system of reflections since, for α ∈ ∆, sα is an involution, Hα ⊆ Ω,
Hα ∩ sα(Hα) = ∅ and H∆ := ∩β∈∆Hβ ̸= ∅ (the latter since 1 ∈ H∆

by (ii) and the above). To show X is pairwise proper, fix α ̸= β in
∆. Set Wα,β = ⟨Sα,β⟩, where Sα,β = {sα, sβ}, and let lα,β denote
the length function of the (dihedral) Coxeter system (Wα,β , Sα,β). Set
Hα,β = Hα ∩ Hβ , and note that it is non empty. According to the
definition of the pairwise proper system of reflections, we must show,
for all w ∈ Wα,β , that either w(Hα,β) ⊆ Hα, or that w(Hα,β) ⊆ sα(Hα)
and lα,β(sαw) < lα,β(w). However, by (ii), {α, β} is an abstract

root basis for the abstract root system T̂α,β = (Wα,β ∩ T ) × {±1}
of Wα,β . The abstract positive system corresponding to {α, β} is

Ψα,β = [α, β] ∩ T̂α,β . Hence, by Proposition 2.5, for w ∈ W ,

(2.4) {γ ∈ Ψα,β | lα,β(sγw) < lα,β(w)} = Ψα,β ∩ w(−Ψα,β).

Note that, from (2.4),

Hα,β =
∩

γ∈Ψα,β

Hγ
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and

w(Hα,β) =
∩

γ∈wΨα,β

Hγ .

Now, let γ ∈ Ψα,β . If lα,β(sγw) < lα,β(w), (2.4) gives −γ ∈ w(Ψα,β),
so w(Hα,β) ⊆ H−γ = sγ(Hγ). Otherwise, lα,β(sγw) > lα,β(w), so (2.4)
gives γ ∈ w(Ψα,β) and w(Hα,β) ⊆ Hγ . For γ = α, this is what must
be shown to prove that X is pairwise proper.

Next, we prove (b) by an argument independent of (a). The condi-
tions (i)–(iii) are clearly necessary for ∆ to be an abstract root basis.
Now, assume that (i)–(iii) hold. Let l′ be the length function of (W,S).
We first claim that, if w ∈ W and α ∈ ∆ with l′(wsα) ≥ l′(w),
then w(α) ∈ Ψ+ (this is an abstract version of a well-known fact,
Lemma 3.1 (b), regarding real root systems, and the following proof is
essentially the same). The claim is easily verified if (W,S) is dihedral,
and we reduce to that case by induction on l′(w). The claim is
trivial if l′(w) = 0. Otherwise, write w = w′sβ , where β ∈ ∆ and
l′(w′) = l(w) − 1. Necessarily, β ̸= α. Write w = xy, where x ∈ W ,
y ∈ ⟨sα, sβ⟩ and l′(x) is minimal. Then, l′(xsα) ≥ l′(x), l′(xsβ) ≥ l′(x)
and l′(x) < l′(w). By induction, x(α) ∈ Ψ+ and x(β) ∈ Ψ+. Note that
l′′(ysα) ≥ l′′(y), where l′′ is the length function of ⟨sα, sβ⟩ with respect
to its Coxeter generators {sα, sβ}. From the claim for the dihedral case,
it follows that y(α) is between α and β, that is, y(α) ∈ [α, β]. Then,
w(α) = xy(α) ∈ [x(α), x(β)]. Since x(α), x(β) ∈ Ψ+ and Ψ+ is closed,
w(α) ∈ Ψ+, as required to prove the claim. From the claim, it follows
that if w ∈ W and α ∈ ∆ with l′(wsα) ≤ l′(w), then w(α) ∈ −Ψ+. It is
easy to deduce from this by standard arguments that (W,S′) satisfies
the exchange condition and is a Coxeter system (as, of course, also
follows from (a)). Using (ii), Lemma 2.20 and its proof imply that

Ψ′
+ := {w(α) | w ∈ W, α ∈ Π, l′(wsα) ≥ l′(w)}

is a generative, quasi-positive system with ∆ as its set of simple roots.
From the above, Ψ′

+ ⊆ Ψ+. Since Ψ′
+ and Ψ+ are both quasi-positive

systems, it follows that Ψ+ = Ψ′
+. By the definitions, Ψ+ is a positive

system of T̂ , and we have seen it has ∆ as its set of simple roots. This
completes the proof of (b). �
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Remark 2.34. For γ ∈ Ψ+, we have in the above proof of (a) that

Hϵγ = {w ∈ W | ϵl′(sγw) < ϵl′(w)}

for ϵ ∈ {±1}, where l′ is the length function of the Coxeter system

(W,S′). The sets Hγ for γ ∈ T̂ are the sets of chambers of the “roots”
of (W,S′), as defined in the study of the chamber system attached to
(W,S′), see, for example, [1].

If |S| is finite, condition (iii) can be replaced in Theorem 2.33 (b)
by the assumption that |∆| = |S|, see Corollary 4.7.

Example 2.35. Consider the standard abstract root system T̂ of the

Coxeter system (W,S) of type B̃2 with Coxeter graph

r s t .

Define the subset ∆ := {(s, 1), (srs, 1), (t, 1)} of T̂ and the correspond-
ing set S′ := {sα | α ∈ ∆} = {s, srs, t} of reflections. Note that S′

generates W and that, for each distinct α, β ∈ ∆, {α, β} is the ab-
stract set of simple roots of some generative quasi-positive system for
the standard abstract root system (⟨sα, sβ⟩ ∩ T )×{±1} of ⟨sα, sβ⟩. In
fact, for {sα, sβ} = {s, srs}, this follows from Proposition 2.2, and, for
the other pairs, {α, β} = χ(⟨sα, sβ⟩) × {1}. However, (W,S′) is not
a Coxeter system, showing that assumptions (ii) in Theorem 2.33 (a)
cannot be weakened in an obvious way.

3. Real root systems. This section describes the real reflection
representations and corresponding root systems which we consider
in this paper. The results are variants of standard facts and can
be proven in a similar way or deduced from the standard versions,
[3, 7, 11, 16, 17], with a few minor differences which we indicate. A
very similar notion is considered in [13].

3.1. Call a subset Π of a real vector space V positively independent if∑
α∈Π cαα = 0, with cα ∈ R almost all zero and all cα non-negative

implies that all cα = 0. Similarly, say that a subset Π of V strongly
positively independent if

∑
α∈Π cαα = 0, with cα ∈ R almost all zero

and at most one cα negative implies that all cα = 0. Thus, Π is posi-
tively independent if all of its elements are non-zero and, for any finite
subset of Π, the set of non-negative linear combination of elements of Π
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is a pointed polyhedral cone in V . In addition, Π is strongly positively
independent if any finite subset of Π is a set of representatives of the
extreme rays of some pointed polyhedral cone in V .

3.2. We consider two R-vector spaces V , V ′, with a given fixed R-
bilinear pairing

⟨ , ⟩ : V × V ′ −→ R.

For any α ∈ V , α′ ∈ V ′ with ⟨α, α′⟩ = 2, we let sα,α′ ∈ GL(V ) be the
linear map (a pseudoreflection) given by

v 7−→ v − ⟨v, α′⟩α,

and define sα′,α ∈ GL(V ′) similarly. Assume, given subsets Π ⊆ V ,
Π∨ ⊆ V ′ and a bijection ι : Π → Π∨ denoted α 7→ α∨ such that
⟨α, α∨⟩ = 2 for α ∈ Π. Let

S := {sα,α∨ | α ∈ Π},

W denote the subgroup of GL(V ) generated by S,

Φ :=
∪

w∈W

w(Π), and Φ+ := Φ ∩
∑
α∈Π

R≥0α.

Define S′, W ′, Φ∨ and Φ∨
+ similarly using Π∨ ⊆ V ′ instead of Π ⊆ V .

Lemma 3.1. Define P := {4 cos2(π/m) | m ∈ N≥2} ∪ [4,∞) ⊆ R≥0.
Consider the following conditions (i)–(iii):

(i) Φ = Φ+ ∪ (−Φ+);

(ii) Φ∨ = Φ∨
+ ∪ (−Φ∨

+);

(iii) for α ̸= β in Π, we have cα,β := ⟨α, β∨⟩⟨β, α∨⟩ ∈ P and
⟨α, β∨⟩ ≤ 0; moreover, ⟨α, β∨⟩ = 0 if and only if ⟨β, α∨⟩ = 0.

Then:

(a) If Π is positively independent and (iii) holds, then Π is strongly
positively independent.

(b) If Π and Π∨ are strongly positively independent, (i)–(iii) are
equivalent. In that case, for w ∈ W and α ∈ Π, we have w(α) ∈ Φ+ if
and only if l(wsα) ≥ l(w), where l is the length function of (W,S).
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Proof. For (a), if

x =
∑
β∈Π

cββ = 0

with cα < 0 and cβ ≥ 0 for β ̸= α, then 0 = ⟨x, α∨⟩ < 0, a
contradiction. Part (b) can be verified by direct calculation in the
dihedral case |Π| = 2 (the calculations, in general, easily reduce to those
in [11], see subsection 3.6). The proof of (b), in general, is by reduction
to the dihedral case by a standard argument [7, Proposition 2.1] (cf.,
the proof of Theorem 2.33 (b)). �

Remark 3.2. See [15] for other results in which the set P (or P \{0})
naturally appear.

Proposition 3.3. Assume that Π and Π∨ are positively independent
and that conditions of Lemma 3.1 (i)–(iii) hold. For α, β ∈ Π, define
mα,β = 1 if α = β, mα,β = ∞ if cα,β ≥ 4 and mα,β = m if
cα,β = 4 cos2(π/m) with m ∈ N≥2. Then:

(a) (W,S) and (W ′, S′) are isomorphic Coxeter systems with Coxeter
matrix (mα,β)α,β∈Π, an isomorphism being given by

θ : sα,α∨ 7−→ sα∨,α for α ∈ Π.

(b) Regarding θ as an identification, we have ⟨wα, β⟩ = ⟨α,w−1β⟩,
that is, the representations of W on V and V ′ are “contragredient.”

(c) The bijection ι : Π 7→ Π∨ extends to a W -equivariant bijection

ι̂ : Φ 7−→ Φ∨,

which we still denote as α 7→ α∨, and which restricts to a bijection
Φ+ → Φ∨

+. Furthermore, w(α) = cβ with w ∈ W , α, β ∈ Φ, c ∈ R
implies w(α∨) = c−1β∨.

Proof. In (c), in the most common situations, we necessarily have
c = 1, and the result is either trivial, as in [16], or the proof uses extra
structure not present here, as in [19]. In general, we can proceed as
follows. It suffices to show that w(α) = cβ with w ∈ W , α, β ∈ Π,
c ∈ R>0 implies w(α∨) = c−1β∨. This can be directly verified in the
dihedral case (c.f., subsection 3.6 again), and then, the general case
reduces to the result in the dihedral case by an argument similar to
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the proof of [7, Proposition 2.1]. In fact, if w ̸= 1, write w = wsγ ,
where γ ∈ Π and l(wsγ) < l(w). Then, write w = w′w′′, where
w′′ ∈ ⟨sα, sγ⟩ and l(w) = l(w′) + l(w′′), and l(w′) is minimal amongst
all such expressions. We have l(w′′sα) > l(w′′), so w′′(α) = pα + qγ
for some p, q ∈ R≥0. In addition, l(w′sα) ≥ l(w) and l(w′sγ) ≥ l(w′);
thus, w′(α), w′(γ) ∈ Φ+. Now,

Π ∋ β = c−1w′w′′(α) = c−1pw′(α) + c−1qw′(β),

which implies that at most one of p, q is non-zero. The argument is
easily completed using the result for the dihedral case and induction
on l(w). Once we have (c) available, we may abbreviate sα,α∨ as sα
and note that

sw(α) = wsαw
−1;

and the remainder of the proofs of (a) and (b) are then standard. �

3.3. Maintain the assumptions of subsection 3.2, Lemma 3.1, Re-
mark 3.2 and Proposition 3.3. The reflection sα,α∨ ∈ GL(V ) in a root
α ∈ Φ or the reflection sα∨,α ∈ GL(V ′) in the corresponding coroot α∨

will merely be denoted as sα and regarded as an element of W . Then,
sw(α) = wsαw

−1, so the set of reflections of (W,S) is

T := {sα | α ∈ Φ+} = {wsw−1 | w ∈ W, s ∈ S}.

Using Proposition 3.3 (c), we see that, for α, β ∈ Φ, we have sα = sβ
if and only if α = cβ for some c ∈ R ̸=0.

We say that the ordered pair

E = (⟨−,−⟩ : V × V ′ −→ R, ι̂ : Φ −→ Φ∨)

is a root datum and that

B = (⟨−,−⟩ : V × V ′ −→ R, ι : Π −→ Π∨)

is a based root datum, with E as the underlying root datum. Note that
E is determined by B, while B is determined by E and the subset Π of
Φ, since ι is given by restriction of ι̂. We call Φ the (real) root system
associated with E, and we call a subset Π of Φ a root basis of E if it
arises from some based root datum B with underlying root datum E
in this way. As is standard, we call

Π ⊆ Φ+ ⊆ Φ
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the set of simple roots, positive roots and roots, respectively, and

Π∨ ⊆ Φ∨
+ ⊆ Φ∨

the sets of simple coroots, positive coroots and coroots, respectively.
The matrix

⟨α, β∨⟩α,β∈Π

will be called the possibly non-integral generalized Cartan matrix
(NGCM) of B. The NGCMs with entries in Z and finite index sets
are the generalized Cartan matrices (GCMs) of [19].

3.4. We say that a based root datum, as above, is a standard based root
datum if V = V ′, ⟨−,−⟩ is a symmetric bilinear form on V , Π = Π∨

and ι = IdΠ. Every Coxeter system is isomorphic to a Coxeter system
(W,S) associated to a standard root datum, with Π and Π∨ linearly
independent. The class of standard-based root data affords the same
class of root systems and reflection representation of Coxeter groups as
considered in [16].

3.5. We say that a root system (or a corresponding root datum or
based root datum) is reduced if, for any α ∈ Φ and c ∈ R with cα ∈ Φ,
we have c = ±1, that is, the root system, root datum or based root
datum is reduced if

α 7−→ sα : Φ
+ −→ T

is a bijection whenever Φ+ is the set of positive roots associated to
some root basis Π. The root datum is reduced if and only if, for any
root basis Π, we have ⟨α, β∨⟩ = ⟨β, α∨⟩ for all α, β ∈ Π with mα,β

finite and odd. By Lemma 2.19, the proof of this reduces to the case
of dihedral Coxeter systems, where it follows by simple computation
using the remarks at the end of subsection 3.6. In particular, a root
datum for which the NGCM is symmetric or is a GCM is reduced in
this sense.

3.6. Let B be a based root datum with simple roots Π, and let cα for
α ∈ Π be non-negative scalars. Then, there is a new based datum

B′ = (⟨−,−⟩ : V × V ′ −→ R, ι′ : Π′ −→ Π′∨),
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where Π′ = {cαα | α ∈ Π} and ι′(cαα) = c−1
α ι(α). We say B′ is

obtained by rescaling B (or by rescaling Π). If B′ can be chosen so as
to have a symmetric NGCM, we say B is symmetrizable.

It is easy to see that there are root data which cannot be rescaled to
any reduced root datum (thus, in particular, they are not symmetriz-
able). However, if the Coxeter graph of (W,S) is a tree, then any root
datum is symmetrizable. In particular, this applies if (W,S) is dihe-
dral. Since the root systems of dihedral groups with symmetric NGCM
are described in [11], we easily obtain a description of root systems of
arbitrary-based root data affording dihedral Coxeter systems.

The following fact will play an important role in the proof of the
main result of this paper.

Theorem 3.4.

(a) Let W ′ be any reflection subgroup of W . There is a based root
datum

B′ = (⟨−,−⟩ : V × V ′ −→ R, ι′ : Π′ −→ Π′∨),

with associated Coxeter system (W ′, S′) such that Π′ ⊆ Φ+ and ι′ is
the restriction of ι̂ : Φ → Φ∨.

(b) For any B′ satisfying (a), S′ = χ(W ′). Hence, B′ is unique up
to rescaling, and it is unique if B is a reduced root datum.

(c) A subset Π′ of Φ+ arises as in (a) from some reflection subgroup
W ′ if and only if the conditions of Lemma 3.1 (iii) hold for all α ̸= β ∈
Π′.

Furthermore, if these conditions hold, W ′ = ⟨sα | α ∈ Π′⟩.
Proof. In the case of standard based root data, this is proven in

[8, 11]. Either proof extends mutatis mutandis to the more general
situation here, using Lemma 3.1. �

In the above setting, we call B′ a based root subdatum of B corre-
sponding to W ′.

4. Comparison of real and abstract root systems.

Proposition 4.1. Let

B = (⟨−,−⟩ : V × V ′ −→ R, ι : Π −→ Π∨)
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be a root-based datum with associated Coxeter system (W,S) and real

root system Φ, and let (T̂ , F ) be the standard abstract root system of
(W,S). Let

F ′ : Φ −→ Sym(Φ)

be defined by F ′(α) = (sα)|Φ, the restriction of sα to Φ.

(a) (Φ, F ′) is an abstract root system with Φ+ as a generative
quasi-positive system and with an associated Coxeter system naturally
isomorphic to (W,S).

(b) There is a surjective W -equivariant map

θ : Φ −→ T̂ ,

determined by α 7→ (sα, ϵ) for α ∈ ϵΦ+ and ϵ ∈ {±1}. Furthermore, θ

determines an isomorphism (Φ, F ′) ∼= (T̂ , F ) if and only if Φ is reduced.

(c) Let α, β, γ ∈ Φ. Then, γ ∈ R≥0α + R≥0β if and only if θ(γ) is
between θ(α) and θ(β).

Proof. Parts (a)–(b) are clear from the definitions and the results in
Sections 2–3. For part (c), the definitions and Theorem 3.4 immediately
reduce the proof in general to that in the case of dihedral Coxeter
systems. In the dihedral case, there is an obvious bijection from the
set of rays spanned by the roots to the set of rays in the diagram in
Figure 3, mapping R≥0α to the ray labeled θ(α) for α ∈ Φ. From direct
calculations for dihedral root systems (simplified by using the remarks
at the end of subsection 3.6), we verify that this bijection preserves the
sets of rays in the convex closure of a union of two rays. �

Theorem 4.2. Let the notation be as in the preceding proposition. Let
(Wi, Si) for i ∈ I be the irreducible components of

(W,S),Πi = {α ∈ Π | sα ∈ Si},

and let Vi := RΠi denote the R-vector space spanned by Πi. Assume
that the sum

∑
i RVi of subspaces of V is direct (for example, (W,S)

is irreducible or Π is linearly independent) and that the dual condition,
with V replaced by V ′, also holds. Then, a subset Π′ of Φ is a root basis
of E, affording a root-based datum B′, say, if and only if the restriction

θ|Π′ is injective and θ(Π′) is an abstract root basis of (T̂ , F ). In that
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case, the set of positive roots of B′ is θ−1(Ψ+), where Ψ+ is the positive

system of (T̂ , F )corresponding to θ(Π′).

Proof. If Π′ is a root basis, then θ|Π′ is injective, θ(Π′) is an abstract

root basis of (T̂ , F ) and the positive roots of B′ are θ−1(Ψ+), using
Proposition 4.1.

Suppose now that θ|Π′ is injective and θ(Π′) is an abstract root basis

of (T̂ , F ). For any α, β ∈ Π′, let

Wα,β := ⟨sα, sβ⟩ and T̂α,β = (Wα,β ∩ T )× {±1} ⊆ T̂ .

Using Lemma 2.30 (c), θ({α, β}) is an abstract set of simple roots for
Wα,β in the abstract root system Tα,β of Wα,β . This implies, by direct
calculation for the dihedral groups, Example 2.27, that there exists an
element (w, ϵ) ofWα,β×{±1} such that ϵw{θ(α), θ(β)} = {sγ , sδ}×{1},
where γ, δ ∈ Φ+ are such that {sγ , sδ} = χ(Wα,β). Interchanging γ
and δ, if necessary, we may assume, without loss of generality, that
w(α) = cγ and w(β) = dδ for some c, d ∈ R with cd > 0 (since c,
d can be taken of the same sign as ϵ). Now, ⟨γ, δ∨⟩ and ⟨δ, γ∨⟩ are
non positive real numbers whose product is in the set P of Lemma 3.1,
and such that both are zero if either is zero. Since w(α∨) = c−1γ∨

and w(β∨) = d−1δ∨, it follows that ⟨α, β∨⟩ and ⟨β, α∨⟩ have the same
properties. Since W = ⟨sα | α ∈ Π′⟩, we conclude from the definitions
in subsection 3.3 that B′ is a root-based datum, provided that Π′ is
positively independent. Then, Π′∨ will be positively independent by
symmetry.

We prove positive independence of Π′ first only under the additional
hypothesis that Π is finite and linearly independent; this extra hy-
pothesis will be replaced by the more general one of the theorem in
subsection 4.2. Thus, assume that Π is finite and linearly independent.
Let S′ = {sα | α ∈ Π′}. Then, (W,S) and (W,S′) are Coxeter systems
with S′ ⊆ T ; hence, |S| = |S′| from subsection 2.9, and thus, |Π| = |Π′|.
Since ⟨S′⟩ = W with S′ ⊆ T , every reflection of W , in particular, any
element of S, is equal to a reflection in some element of ⟨S′⟩Π′. It
follows that Π ⊆ RΠ′, and hence, Π′ is an R-basis of RΠ. Since Π′ is
linearly independent, it is positively independent, as required. �

It will be helpful to keep in mind the following. Let (W,S) and
(W,S′) be two Coxeter systems with S′ ⊆ T . If (W,S) is of finite
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rank, then (W,S′) is of finite rank (and the ranks are the same; see
subsection 2.9). In addition, (W,S) is irreducible if and only if (W,S′)
is irreducible.

Theorem 4.3. Suppose that

B = (⟨−,−⟩ : V × V ′ −→ R, ι : Π −→ Π∨)

and

B′ = (⟨−,−⟩ : V × V ′ −→ R, ι′ : ∆ −→ ∆∨)

are two root-based data with the same underlying root datum (⟨−,−⟩ : V×
V ′ → R, ι̂ : Φ → Φ∨). Assume that the associated Coxeter systems
(W,S) and (W,S′), respectively, are both of finite rank and irreducible.
Then, there exist a w ∈ W , ϵ ∈ {±1} and scalars cα ∈ R>0 for α ∈ Π
such that ∆ = {ϵcαw(α) | α ∈ Π}. In particular, S′ = wSw−1, and
hence, (W,S) is isomorphic to (W,S′).

Proof. Suppose that B is a standard-based root datum. It is clear
that B′ must be a standard-based root datum also. In this case, the
conclusion is one of the main results of [16] (with all cα = 1, necessarily,
in this case). If B is not a standard-based root datum, the result will
be proven in subsection 4.1. �

Remark 4.4. Slightly more generally, we could assume in Theorem 4.3
that the underlying root data of B and B′ are not necessarily equal but
differ by rescaling. This version immediately reduces to that above by
rescaling B′, say, appropriately.

Theorem 4.5. Suppose that (W,S) is an irreducible Coxeter system

of finite rank. If Ψ+ is an abstract system of positive roots for T̂ , then

there exist a w ∈ W and ϵ ∈ {±1} with Ψ+ = ϵw(T̂+). In particular,
∆Ψ+ = ϵw(S+), SΨ+ = wSw−1 and (W,SΨ+) is isomorphic to (W,S)
as a Coxeter system.

Proof. We may suppose, without loss of generality, that (W,S) is the
Coxeter system associated to a standard based root datum B such that
Π is linearly independent. Note that both Theorems 4.2 and 4.3 have
already been proved for B of this special type. Set Π′ = θ−1(∆Ψ+).
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Now, θ is a bijection. By Theorem 4.2, Π′ is a root basis of the root
datum E underlying B. From Theorem 4.3, Π′ = ϵw(Π) for some
w ∈ W and ϵ ∈ {±1}. Then,

∆Ψ+ = θ(Π′) = ϵwθ(Π) = ϵw(S × {1}),

as required. �

For subsequent use, we record the following facts regarding abstract
positive and abstract simple systems in the case of irreducible W ; with
a more technical statement, (a)–(b) could be combined and extended
to any, possibly reducible, W of finite rank, using subsection 2.14 and
Lemma 2.29.

Corollary 4.6. Let (W,S) be an irreducible, finite rank, Coxeter sys-

tem with abstract root system T̂ . Let P and Q denote, respectively,

the set of all abstract positive systems of T̂ and the set of all abstract

simple systems of T̂ , each endowed with its natural W × {±1}-action.

(a) If W is finite, then W acts simply transitively both on P and
on Q.

(b) Suppose that W is infinite and irreducible. Then, W×{±1} acts
simply transitively both on P and on Q.

(c) If W is infinite irreducible, then, for all Ψ+,Φ+ ∈ P , the
following conditions are equivalent :
(i) Ψ+ ∩ Φ+ is infinite;
(ii) Ψ+ ∩ −Φ+ is finite;
(iii) Ψ+ and Φ+ are in the same W -orbit on P ;
(iv) Ψ+ and −Φ+ are in different W -orbits on P .

Proof. Since P and Q are canonically isomorphic as W ×{±1}-sets,
it suffices to prove the claims concerning P . From Theorem 4.5, the

W × {±1}-action on P is transitive. Therefore, P = WT̂+ ∪W (−T̂+)
contains either one or two W -orbits. Now, if w ∈ W , then, for w ∈ W ,
we have

|T̂+ ∩ w(−T̂+)| = |N(w)| = l(w) < ∞,

by Proposition 2.5 (a)–(b). If W is infinite, then so is |T+|, and
therefore, there is no w ∈ W with w(−T+) = T+; in this case, there are
two W -orbits on P . On the other hand, if W is finite, then its longest
element maps T+ to −T+, and so, there is a single W -orbit on P . The
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last displayed equation also shows that, for either finite or infinite W ,

if w ∈ W satisfies w(T̂+) = T̂+, then l(w) = 0, and so, w = 1. This

implies that W acts simply transitively on any W -orbit W (±T̂+) on P .
This completes the proof of (a)–(b).

It remains to prove (c). It may easily be verified that asser-
tions (i)–(iv) for (Ψ+,Φ+) are equivalent to assertions (i)–(iv) for
(ϵuΨ+,±ϵuΦ+), where (u, ϵ) ∈ W × {±1}, and the sign is arbitrary.
By Theorem 4.5 and (b), we are, therefore, reduced to showing that

(i)–(iv) are equivalent if (Ψ+,Φ+) = (T̂+, w(T̂+)) for some w ∈ W .
However, in that case, (iii)–(iv) hold from the above, (ii) holds by the
last displayed equation and (i) also holds, following from (ii) since |Ψ+|
is infinite. Hence, (i)–(iv) are equivalent in this case since they are all
true, and their equivalence follows in general. �

4.1. Completion of the proof of Theorem 4.3 in general. Let θ
be as in Proposition 4.1. From (an already proven) part of Theorem 4.2,

θ(Π′) and θ(Π) are two abstract root bases of T̂ . By Theorem 4.5, there
are w ∈ W and ϵ ∈ {±1} such that θ(Π′) = ϵθ(Π). This implies that
Π′ and ϵw(Π) are the same up to rescaling, which is what is required.

4.2. Completion of the proof of Theorem 4.2 in general. As-
sume that

∑
i RΠi is a direct sum and that the dual condition also

holds. Let Π′ be a subset of Φ such that θ|Π′ is injective and θ(Π′)

is an abstract root basis of T̂ . To complete the proof, it remains to
show that Π′ is positively independent. Using subsection 2.14 and the
hypothesis that

∑
i RΠi is direct, this readily reduces to the case that

(W,S) is irreducible, as we assume henceforward.

Let R be any finite subset of S′ such that the Coxeter system
(⟨R⟩, R) is irreducible. It will suffice to show that ∆ = {α ∈ Π′ |
sα ∈ R} is positively independent for any such R (since Π′ is positively
independent if all of its finite subsets are positively independent). Now,
let D be a root-based subdatum of B corresponding to W ′ := ⟨R⟩, as in
Theorem 3.4. By rescaling D, if necessary, we may further assume that
some root basis ∆′ of D is contained in W ′∆. By a further rescaling of
∆, if necessary, we may assume that Ψ := W ′∆′ = W ′∆′′ is the root

system of D. Let Ψ+ = Ψ∩Φ+ denote the positive roots of D. Let T̂ ′

be the abstract root system ofW ′ and θ′ : Ψ → T̂ ′ the analogue for D of

the map θ : Φ → T̂ for B (clearly, θ′ is given by restriction of θ). Since
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θ(Π′) is an abstract root basis of T̂ , it easily follows that θ′(∆) is an

abstract root basis of T̂ ′. However, by Theorem 3.4 and Proposition 4.1,

θ′(∆′) is also an abstract root basis of T̂ ′. Since (W ′, R) is irreducible
and of finite rank, by assumption, and R ⊆ T , (W ′, χ(W ′)) is also
irreducible of finite rank. Hence, θ′(∆) = ϵwθ′(∆′) for some ϵ ∈ {±1}
and w ∈ W ′, by Theorem 4.5. Rescaling ∆′ again, if necessary, we may
assume that ∆ = ϵw(∆′). Since ∆′ is positively independent, so is ∆.

Corollary 4.7. Suppose that (W,S) is of finite rank. Let ∆ ⊆ T̂ .

Then, ∆ is an abstract root basis of T̂ if and only if the conditions
Theorem 2.33 (i)–(ii) hold and |∆| = |S|.

Proof. If ∆ is an abstract root basis, then Theorem 2.33 (i)–(ii)
hold and |∆| = |S|. For the converse, assume that Theorem 2.33 (i)–
(ii) hold and |∆| ≤ |S|. We may assume that (W,S) is realized as
the Coxeter system associated to a standard root-based datum B with
linearly independent root basis Π and root system Φ. Let θ be as in
Proposition 4.1 (b), and Π′ = θ−1(∆) ⊆ Φ. In order to show that ∆

is an abstract root basis of T̂ , it is sufficient by Theorem 4.2 to show
that Π′ is a root basis of B. Using Theorem 3.4, we see from Theorem
4.2, assumptions (i)–(ii), that it would be sufficient to show that Π′ is
positively independent. Since ⟨S′⟩ = W , where S′ = {sα | α ∈ Π′}, we
have ⟨S′⟩Π′ = Φ, and a similar argument to that in the last paragraph
of the proof of Theorem 4.2 shows that Π′ is a basis of RΠ, and hence,
Π′ is positively independent. �
Example 4.8. We show that Theorem 4.2 may fail without the
hypothesis that

∑
i Vi is direct. Consider a real vector space V with

basis {ei}i∈I ∪ {δ}, equipped with a symmetric bilinear form

⟨−,−⟩ : V × V −→ R,

determined by ⟨δ, V ⟩ = 0 and ⟨ei, ej⟩ = 2δi,j . Set Π = {ei, δ − ei |
i ∈ I}, Π′ = Π, ι = IdΠ : Π → Π′. These data determine a
standard root-based datum B as in subsection 3.4. Let (W,S) be
the corresponding Coxeter system; thus, S =

∪
i∈I Si (disjoint union)

where Si := {sα | α ∈ Πi} and Πi := {ei, δ − ei}. In fact, the

irreducible components of (W,S) are (Wi, Si) (of type Ã1) for i ∈ I,
where Wi := ⟨Si⟩. Now, for any signs ϵi ∈ {±1},

Γ :=
∪
i∈I

Si × {ϵi}
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is clearly an abstract root basis of T̂ by Example 2.18. However,

θ : Φ → T̂ is bijective, and

Π′ = θ−1(Γ) =
∪
i∈I

ϵΠi

is not a root basis for B if i 7→ ϵi is not a constant function. For, if
i, j ∈ I with ϵi = −ϵj , then

ϵiei + ϵi(δ − ei) + ϵjej + ϵj(δ − ej) = 0,

and Π′ is not positively independent.

We remark that, if |I| = 4, the above root-based datum B is
isomorphic to a root-based subdatum of the standard, as in [3, 17],

root-based datum of the affine Weyl group of type D̃4 [11].

Example 4.9. Prior to studying the conjugacy of root bases of infinite
rank Coxeter systems, we discuss in more detail the two Coxeter
systems which play an exceptional role in Theorem 1.1. Note that these
two Coxeter systems, of types A∞,∞ and A∞, have Coxeter graphs

. . . • • • . . . • • • . . . ,

respectively, so are obviously non-isomorphic.

Fix a Coxeter system (W,S) of type A∞,∞. We may identify W
with the group of all permutations of Z which fix all but finitely many
integers so that

S = {sn = (n, n+ 1) | n ∈ Z}

(the set of adjacent transpositions). Let K = {sn | n ∈ N} ⊆ S.
Then, the standard parabolic subsystem (WK ,K) is a Coxeter system
of type A∞. Clearly, by restriction of its action to N ⊆ Z, WK identifies
with the group of all permutations of N which fix all but finitely many
integers, with Coxeter generators

{sn = (n, n+ 1) | n ∈ N}.

Then, the set of reflections of (W,S) is equal to the set T = {(i, j) | i <
j in Z} of transpositions. Similarly, the set of reflections of (WK ,K) is
equal to the set of transpositions T ′ = {(i, j) | i < j in N}.

Clearly, any bijection σ : N
∼=−→ Z induces a group isomorphism

σ′ : WK → W , defined by w 7→ σwσ−1. Note that σ′ restricts to a
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bijection T → T ′. Also, any permutation τ of Z induces an (in general
outer) automorphism τ ′ of W , defined by w 7→ τwτ−1 such that τ ′

restricts to a permutation of T . Similarly, a permutation τ of N induces
an (outer) automorphism τ ′ of WK , defined by w 7→ τwτ−1 such that
τ ′ restricts to a permutation of T ′.

Let V be a real vector space on basis en for n ∈ Z, with (positive
definite) symmetric bilinear form, defined by⟨∑

n

anen,
∑
n

bnen

⟩
=

∑
n

anbn.

Let Π = {en − en+1 | n ∈ Z} ⊆ V . Then,

(⟨−,−⟩ : V × V −→ R, IdΠ : Π −→ Π)

is a standard-based root datum affording a Coxeter system (W,S) of
type A∞,∞. (The set X = {en | n ∈ Z} ⊆ V is stable under the
W -action. Restriction of the W -action to X and identifying X with
Z via the bijection n 7→ en : Z → X provides the description of W as
a subgroup of Sym(Z) from above. Similarly, Y = {en | n ∈ N} ⊆ V
is stable under the action of WK and affords, in a similar way, the
embedding WK ⊆ Sym(N).)

For any J ⊆ S, let ΠJ := {α ∈ Π | sα ∈ J}, VJ := RΠJ denote the
R-span of ΠJ , WJ := ⟨J⟩, ΦJ := WJΠJ ⊆ VJ and ⟨−,−⟩J denote the
restriction of ⟨−,−⟩ to a bilinear form on VJ . Then,

BJ := (⟨−,−⟩J , IdΠJ : ΠJ −→ ΠJ)

is a standard-based root datum for the standard parabolic subsystem
(WJ , J) of (W,S). Let EJ denote the root datum underlying the based
root datum BJ , with root system ΦJ . Now, fix a bijection σ : N → Z.
This induces an isomorphism σ̃ : RY → RX of vector spaces mapping
basis elements by en 7→ eσ(n). It is straightforward to check that σ̃(ΠK)
is a root basis of ES , with respect to which the associated Coxeter
system is of type A∞. In addition, σ̃−1(ΠS) is a root basis of EK , with
respect to which the associated Coxeter system is of type A∞,∞.

Similarly, a permutation τ of Z induces an R-linear automorphism
τ̃ of RX, determined by en 7→ eτ(n), and τ̃(ΠS) is a root basis of
ES which is not, in general, W -conjugate to ΠS up to sign, although
the Coxeter system associated to this root basis is still of type A∞,∞.
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Equally well, a permutation τ of N induces an R-linear automorphism
τ̃ of RY , determined by en 7→ eτ(n), and τ̃(ΠK) is a root basis of EK

which is not, in general, W -conjugate to ΠK up to sign, although the
Coxeter system associated to this root basis is still of type A∞.

Remark 4.10. The above example comes from a similar isomorphism
of infinite-rank Kac-Moody Lie algebras with Dynkin diagrams, as
above, namely, such a Lie algebra of type A∞,∞ may be realized as
the complex Lie algebra of all Z × Z-indexed complex matrices with
only finitely many non-zero entries, and trace zero. Similarly, such a
Lie algebra of type A∞ may be realized as the complex Lie algebra
of all N × N-indexed complex matrices with only finitely many non-
zero entries, and trace zero. A bijection Z → N induces an iso-
morphism between these Lie algebras in the obvious way, inducing
the above isomorphism of root systems in the (restricted dual) of the
corresponding Cartan subalgebras.

Definition 4.11. We say that a map λ : T̂ → T̂ is given locally by
the action of W if, for each finitely generated reflection subgroup W ′

of W , there is an element w = w(W ′) of W such that λ(α) = w(α)
for all α ∈ (W ′ ∩ T ) × {±1}. Such a map λ is injective and preserves
betweenness; if λ is invertible, its inverse is also given locally by the

action of W . We let Ŵ denote the group of all permutations of T̂ ,
which are given locally by the action of W , under composition. Then,

W ⊆ Ŵ , and equality holds if (W,S) is of finite rank.

Theorem 4.12. Let (W,S) be an irreducible Coxeter system with

standard abstract root system T̂ , and let Ψ+ be a positive system of T̂ .

(a) (W,SΨ+) is isomorphic to (W,S) unless one of them is of type
A∞ and the other is of type A∞,∞;

(b) if (W,SΨ+)
∼= (W,S), there are ŵ ∈ Ŵ and ϵ ∈ {±1} with

Ψ+ = ϵŵ(T̂+);

(c) any betweenness-preserving automorphism σ of the abstract root
system of (W,S) is expressible (not necessarily uniquely) as σ = ϵ′ŵd′

where ŵ ∈ Ŵ , d′ is an automorphism induced by a diagram automor-
phism of (W,S) and ϵ′ is the automorphism induced by the action of
ϵ ∈ {±1}.
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4.3. The proof of Theorem 4.12 requires some generalities on an
(possibly infinite rank) irreducible Coxeter system (W,S). Fix such a

Coxeter system with reflections T and standard abstract root system T̂ .
Following, we distinguish two cases. We say that (W,S) is locally finite,
or of type (LocFin), if every finite rank standard parabolic subgroup
of (W,S) is finite. We say that (W,S) is locally infinite, or of type
(LocInf), if it is not of type (LocFin).

Lemma 4.13. Let (W,S) be an irreducible Coxeter system.

(a) The following conditions (i)–(v) are equivalent :
(i) (W,S) is of type (LocInf);
(ii) (W,S) has an infinite, finite rank, standard parabolic sub-

group W ′;
(iii) (W,S) has an infinite, finite rank, parabolic subgroup W ′;
(iv) (W,S) has an infinite, finite rank, reflection subgroup W ′;
(v) W has a finitely generated infinite subgroup;

(b) each of (a) (ii)–(iv) is equivalent to its variant (a) (ii)′–(iv)′, in
which W ′ is required, in addition, to be irreducible;

(c) the type, (LocFin), or (LocInf), of (W,S) depends only on the
group W .

Proof. We prove (a). By the definitions, (i) is equivalent to (ii). It
is trivial that (ii) ⇒ (iii) ⇒ (iv) ⇒ (v). Finally, (v) implies (ii) since
an infinite, finitely generated subgroup of W is contained in some finite
rank, (necessarily infinite) standard parabolic subgroup W ′ of W . For
(b), note that, if W ′ satisfies (ii), then W ′ has an infinite irreducible
component, which satisfies (ii)

′
, and, similarly, for (iii) or (iv) in place

of (ii). Part (c) directly follows from the equivalence of (i) and (v)
in (a). �

4.4. Continue to assume that (W,S) is irreducible. If (W,S) is of type
(LocFin), we let S ′ denote the set of all irreducible, finite rank reflection
subgroups of (W,S), ordered by inclusion. If (W,S) is of type (LocInf),
we let S ′ denote the set of all infinite, finite rank irreducible reflection
subgroups of (W,S), again ordered by inclusion. The following facts
may be checked separately for (W,S) of either type.

Note that S ′ depends only upon the pair (W,T ). To allow greater
convenience of application of some of the following results, we work
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below, not only with S ′, but, more generally, with any cofinal subset
S of S ′. (Recall that a subset X of a poset Y is said to be cofinal
in Y if, for any y ∈ Y , there is an x ∈ X with y ≤ x.) Since
(W,S) is irreducible, S is cofinal in the (inclusion-ordered) family of
all finite rank reflection subgroups of (W,S). Also, S is directed; given
W1,W2 ∈ S, there is a W3 ∈ S with

W3 ⊇ W1 ∪W2.

For any reflection subgroup W ′ of W , let T̂ ′ = (W ′∩T )×{±1}. For
any subset Ψ+ of T̂ , set Ψ+(W

′) := T̂ ′ ∩Ψ+ so that

Ψ+ =
∪

W ′∈S

Ψ+(W
′).

For example, in this notation, Lemma 2.30 (c) asserts that, if Ψ+ is

an abstract positive system for T̂ , then Ψ+(W
′) is an abstract positive

system for T̂ ′. Note that, if Ψ0
+ = T̂+ is the standard abstract positive

system for T̂ , then Ψ0
+(W

′) is the standard abstract positive system

for T̂ ′. If F is a function from S to the power set of some set, we define

lim
W ′∈S

F (W ′) :=
∪

W ′∈S

core(F,W ′),

where
core(F,W ′) :=

∩
{W ′′∈S|W ′′⊇W ′}

F (W ′′).

Lemma 4.14. With (W,S) and S ′ as above, let S be an arbitrary

cofinal subset of S ′. Let Ψ0
+ = T̂+. Then, a subset Ψ+ ⊆ T̂

is an abstract system of positive roots for T̂ if and only if, for all
W ′ ∈ S, Ψ+(W

′) = ϵaW ′Ψ0
+(W

′) for some sign ϵ ∈ {±1} and function
W ′ 7→ aW ′ : S → W satisfying the following conditions:

(i) aW ′ ∈ W ′;
(ii) for W ′,W ′′ ∈ S with W ′ ⊆ W ′′, a−1

W ′aW ′′ is the unique element
of minimal length of the coset W ′aW ′′ , with respect to the
standard length function of (W,S);

(iii) S′ := limW ′∈S aW ′χ(W ′)a−1
W ′ generates W .
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Here, the aW ′ and ϵ are uniquely determined, provided ϵ = 1 in case
(LocFin). If the conditions hold, the abstract root basis corresponding
to Ψ+ is ∆Ψ+ = limW ′∈S ϵaW ′(χ(W ′)× {1}), and S′ = SΨ+ .

Proof. Let Ψ1
+ be an abstract positive system for T̂ , and recall that

Ψ0
+ = T̂+ is also an abstract positive system for T̂ . We show that there

exists an ϵ ∈ {±1} and that, for all W ′ ∈ S, there exists an aW ′ ∈ W ′

such that Ψ1
+(W

′) = ϵaW ′(Ψ0
+(W

′)) for all W ′ ∈ S and such that
ϵ = 1 in case (LocFin). Furthermore, the function S → W , given by
W ′ 7→ aW ′ , and the sign ϵ are uniquely determined by these conditions.

In the case (LocFin), this immediately follows from Theorem 4.5
and Corollary 4.6. In the case (LocInf), we also have from Theorem
4.5 and Corollary 4.6 that, for W ′ ∈ S, Ψ1

+(W
′) = ϵW ′aW ′(Ψ0

+)
for a unique sign ϵW ′ , and aW ′ ∈ W ′, and we must show that ϵW ′

is independent of W ′. Since S is directed, it suffices to show that
ϵW ′

1
= ϵW ′

2
if W ′

1 ⊆ W ′
2 ∈ S. Since Ψi

+(W
′
1) ⊆ Ψi

+(W
′
2) if W ′

1 ⊆ W ′
2,

this follows from the facts, from Corollary 4.6 (b), that ϵW ′ = 1 if
and only if Ψ1

+(W
′) ∩ −Ψ0

+(W
′) is finite, and ϵW ′ = −1 if and only if

Ψ1
+(W

′) ∩Ψ0
+(W

′) is finite.

Now, suppose that W ′ ⊆ W ′′ in S. Since Ψ1
+(W

′′) ⊇ Ψ1
+(W

′), we
have

(4.1) a−1
W ′′aW ′Ψ0

+(W
′) ⊆ Ψ0

+(W
′′) ⊆ T̂+,

which gives (ii).

Next, we show ∆Ψ1
+
= ∆′, where

∆′ := lim
W ′∈S

ϵaW ′(χ(W ′)× {1}).

Note that ∆′ ∩ −∆′ = ∅ and that S′, defined as in (iii), also satisfies
S′ = {sα | α ∈ ∆′}. Now, if α ∈ ∆Ψ1

+
, then, for any W ′′ ∈ S with

{1, sα} ⊆ W ′′, α is an abstract simple root for Ψ1
+(W

′′) (since it is
one for Ψ1

+), so α ∈ ϵaW ′′(χ(W ′′)× {1}). This shows that ∆Ψ1
+
⊆ ∆′.

Hence, SΨ+ ⊆ S′ both generate W . Since any relation on S′ in W
involves elements of only a finite subset of S′, it is easy to see that S′

is a set of Coxeter generators for W ; thus, S′ = SΨ1
+

by Lemma 2.6.

Since ∆′ ∩ −∆′ = ∅, this gives ∆Ψ1
+
= ∆′.
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Conversely, suppose, given ϵ ∈ {±1} and aW ′ ∈ W , for W ′ ∈ S
satisfies (i)–(iii). Define the sets

XW ′ := ϵaW ′Ψ0
+(W

′) and Ψ+ :=
∪

W ′∈S
XW ′ .

From (i) and (ii), we deduce that XW ′ ⊆ (W ′∩T )×{±1}, XW ′ ⊆ XW ′′

for W ′ ⊆ W ′′ in S, see (4.1), and XW ′ = Ψ+(W
′). Clearly, Ψ+ is a

quasi-positive system. Since any dihedral refection subgroup of (W,S)
is contained inW ′ for someW ′ ∈ S, it easily follows that Ψ+ is biclosed.
Now, let ∆′ be as in the paragraph immediately above. As before,
∆′ ∩ −∆′ = ∅ and S′ = {sα | α ∈ ∆′}. If α ∈ ∆′, then there is some
W ′ ∈ S such that α is a simple root for Ψ+(W

′′) for all W ′′ ⊇ W ′ in
S. Since

Ψ+ =
∪

{W ′′∈S|W ′′⊇W ′}

Ψ+(W
′′),

the definitions give ∆′ ⊆ ∆Ψ+ . On the other hand, if α ∈ ∆Ψ+ , then α
is a simple reflection of Ψ+(W

′′) for all w′′ with sα ∈ W ′′, so α ∈ ∆Ψ+ .
Hence, ∆′ = ∆Ψ+ , S

′ = SΨ+ and, by (iii), Ψ+ is generative. �

Corollary 4.15. Let Ψi
+ be abstract systems of positive roots for the

arbitrary Coxeter system (W,S) for i = 0, 1. Then, (W,SΨ1
+
) and

(W,SΨ0
+
) have the same finitely generated parabolic subgroups.

Proof. Using subsection 2.14, we may reduce to the case where
(W,S) is irreducible. In that case, it will suffice to show that any
finite subset ∆1 of ∆1

Ψ+
is W -conjugate up to sign to some finite subset

∆0 of ∆Ψ0
+
. By symmetry, see Proposition 2.32, we may assume that

Ψ0
+ = T̂+. Choose a finitely generated standard parabolic subgroup

W ′ = WK ∈ S ′ of (W,S) such that ∆1 ⊆ Ψ1
+(W

′). Then, as in the
proof of Lemma 4.14, ∆1 ⊆ ϵaW ′(K × {1}). We may take

∆0 = ϵa−1
W ′∆1 ⊆ (K × {1}) ⊆ (S × {1}) = ∆Ψ0

+
.

This proves the corollary. �

Example 4.16. Suppose that (W,S) is of type (LocFin) but is not of
finite rank. Then, cf., [19], by the classification of irreducible Coxeter
systems, (W,S) is either of type A∞ or A∞,∞ as in Example 4.9, or of



2274 MATTHEW DYER

type B∞ or D∞ with Coxeter graphs as shown below, respectively:

•

• • • • . . . • • • . . .

Corollary 4.15 and the classification of finite Coxeter systems implies
that, for a root-based datum X with associated Coxeter system (W,S)
of type A∞ or A∞.∞, any abstract root basis of (W,S) is also of type
A∞ or A∞,∞ (although not necessarily of the same type as X). For
similar reasons, for a root-based datum X with associated Coxeter
system (W,S) of type B∞ or D∞, any abstract root basis of X must
be of exactly the same type, B∞ or D∞, respectively, as X.

For use in the proof of Theorem 4.12, we describe the various possible
root bases in these cases. We realize root systems of type A∞,∞ as ES

as in Example 4.9, and those of type A∞ as EK as in Example 4.9. We
realize the root system of type B∞ as the subset

ΦB := {±(ei + ej),±(ei − ej),±ei | i, j ∈ N, i ̸= j}

of VK , and that of type D∞ as the subset

ΦD := {±(ei + ej),±(ei − ej) | i, j ∈ N, i ̸= j}

of VK as in Example 4.9. As corresponding sets of simple roots, we
take

ΠB = {e0} ∪ {en+1 − en | n ∈ N}

and

ΠD = {e0 + e1} ∪ {en+1 − en | n ∈ N}.

These determine standard-based root data E′
B and E′

D of types B∞
and D∞, respectively, on VK with the restriction of the form ⟨−,−⟩ on
VS from Example 4.9.

Let G(A∞) be the group consisting of all R-linear operators on
VK which restrict to bijections of the set {en | n ∈ N}, and let
G(A∞,∞) be the group consisting of all R-linear operators on VS

which restrict to bijections of the set {en | n ∈ Z}. In addition, let
G(B∞) = G(D∞) be the “infinite signed permutation group” consisting



ON CONJUGACY OF ABSTRACT ROOT BASES 2275

of all invertible linear operators on VK which induce bijections on the
set {±en | n ∈ N}.

It is easy to directly verify by ad hoc arguments from the preceding
paragraph that, up to sign, every root basis of ES or EK is one of
those described in the last paragraph of Example 4.9. Furthermore,
the group G(A∞) acts transitively on the set of root bases of the root
systems for EK which are of type A∞, and the group G(A∞,∞) acts
transitively on the set of root bases of the root systems for ES which
are of type A∞,∞. Similarly, G(B∞) acts transitively on the set of
root bases of ΦB , and G(D∞) acts transitively on the set of root bases
of ΦD.

If (W,S) is an infinite irreducible Coxeter system of type (LocFin),
its type X is one of A∞, A∞,∞, B∞ or D∞. Let G be the group G(X)
of corresponding type X acting on the real root system Φ of type X, as

above. Identify Φ = T̂ as in Proposition 4.1 (b). From above, G acts

transitively on the set of abstract root bases of T̂ of the same type X

as (W,S). It is easy to see that the action of G on T̂ is by elements of

Ŵ ; actually, there is a natural identification G ∼= Ŵ in each case.

Proof of Theorem 4.12. First, we prove (a)–(b). We assume that
(W,S) is not of finite rank; otherwise, (a)–(b) follow from Theorem
4.5. If (W,S) is of type (LocFin), then (a)–(b) follow from Corollary
4.15. Now, suppose that (W,S) is of type (LocInf). Let ϵ and aW ′ be
as in the statement of Lemma 4.14. We define a map

λ : Ψ −→ Ψ,

given locally by the action of W , as follows. Let R be a finite subset of
SΨ+ such that the Coxeter system (⟨R⟩, R) is infinite and irreducible
(note that the family of all such R is cofinal in the family of all finite
subsets of SΨ+). Let

∆ := {α ∈ ∆Ψ+ | sα ∈ R}.

Choose J ⊆ S with WJ ∈ S ′ such that ⟨R⟩ ⊆ WJ . Set λ(α) =(
aWJ

)−1
(α) for all α ∈ (⟨R⟩ ∩ T )×{±1}. To show λ is well defined, it

will suffice to show that, if J ⊆ K ⊆ S with WK ∈ S ′, then aWK
a−1
WJ

fixes all α ∈ (⟨R⟩ ∩ T ) × {±1}, or equivalently, that p := a−1
WK

aWJ

fixes a−1
WJ

(∆) elementwise. However, from the proof of Lemma 4.14,
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ϵa−1
WJ

∆ = J ′ × {1} ⊆ J × {1} and ϵa−1
WK

∆ = K ′ × {1} ⊆ K × {1},
where J ′ ⊆ J and K ′ ⊆ K, so p(J ′ × {1}) = K ′ × {1}. Since (⟨R⟩, R)
is infinite and irreducible, so are (WJ ′ , J ′) and (WK′ ,K ′) (since they
are isomorphic to (⟨R⟩, R)). From Lemma 2.14 applied to (W,S),
J ′ = K ′, and p is in the subgroup of WK generated by reflections
in S \ J ′ which commute with each element of J ′, giving the desired

conclusion. Note that, from the construction, ϵλ(Ψ+) ⊆ T̂+ and, in
fact, ϵλ(∆Ψ+) ⊆ S × {1}. By symmetry, interchanging the roles of Ψ+

and T̂+, we also get a map λ′ : Ψ → Ψ given locally by conjugation

and with ϵλ′(T̂ ′) ⊆ Ψ+ and ϵλ′(S × {1}) ⊆ ∆Ψ+ . We claim that the
composite λ′λ is the identity map on Ψ. In order to see this, let R
and ∆ be as above in the definition of λ. For some w ∈ W , we have
λ′λ(α) = w(α) for all α ∈ (⟨R⟩ ∩ T )× {±1}. Since w(∆) ⊆ ∆Ψ+ , and
(⟨R⟩, R) is infinite irreducible, Lemma 2.14 applied to (W,SΨ+) shows
that w is a product of elements of SΨ+ \ R which commute with each
element of R; thus, w(α) = α for all α ∈ (⟨R⟩ ∩ T )× {±1}. Similarly,

λλ′ = IdΨ so λ′ = λ−1. Hence, ŵ := λ ∈ Ŵ . Clearly, ϵŵ maps

∆Ψ+ bijectively to S × {1}, maps Ψ+ bijectively to T̂+ and induces
an isomorphism (W,SΨ+)

∼= (W,S). This proves (a) and (b) in case
(LocInf), and hence, in all cases.

Now, we prove (c), in general. Let Ψ+ := σ(T̂ ). Then, Ψ+

is an abstract positive system, and, by Lemma 2.31, σ induces an
isomorphism

sα 7−→ sσ(α) : (W,S) ∼= (W,SΨ+).

Let ϵ, ŵ be as in (b). Then, d′ = ŵ−1ϵ′σ is an automorphism of T̂

fixing T̂+ setwise, and therefore, fixing the standard root basis S×{1}
setwise as well. It is clear that d′ induces an automorphism sα 7→ sd′(α)

of (W,S), that is, a diagram automorphism d of (W,S), and that d′ is

the automorphism of T̂ induced by d. This completes the proof of the
theorem. �

Corollary 4.17. Let E be a root datum with root system Φ and Π, Π′

two root bases for E affording root-based data B, B′ with corresponding
Coxeter systems (W,S) and (W,S′), respectively. Assume that (W,S)
and (W,S′) are isomorphic and irreducible. Then, after possibly rescal-
ing B′ (still keeping Π′ ⊆ Φ), there are linear maps σ : V → V and
σ′ : V ′ → V ′ and a sign ϵ ∈ {±1} with the following properties:
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(i) ϵσ restricts to a bijection Π′ → Π, and ϵσ′ restricts to a bijection
Π∨ → Π′∨;

(ii) for any subspaces V1 ⊆ V spanned by a finite set of roots and
V ′
1 ⊆ V ′ of V ′ spanned by a finite set of coroots, there is a w = wV1,V ′

1
∈

W such that σ(v) = w(v) for any v ∈ V1 and σ(v′) = w(v′) for any
v′ ∈ V ′

1 ;

(iii) σ restricts to a permutation of Φ, σ′ restricts to a permutation
of Φ∨ and σ(α)

∨
= σ′(α∨) for all α ∈ Φ;

(iv) ⟨σ(v), σ′(v′)⟩ = ⟨v, v′⟩ for all v ∈ RΠ, v′ ∈ RΠ′.

In particular, ⟨α, β∨⟩ = ⟨σ(α), σ(β)∨⟩ for all α, β ∈ Π′, in other words,
Π and Π∨ afford the same NGCM (up to rescaling and reindexing).

Remark 4.18. There is an obvious notion of an isomorphism of root-
based data. If V = RΠ and V ′ = RΠ′, ϵσ and ϵσ′ together define

such an isomorphism of root-based data B
∼=−→ B′ (after the possible

rescaling of B′).

Proof of Corollary 4.17. We assume, without loss of generality, that
Π, and therefore, also Π′, spans V , and similarly for V ′. If (W,S) is of
finite rank, the corollary follows from Theorem 4.3 with σ = σ′ ∈ W .
Assume now that (W,S) is of infinite rank. If (W,S) is of type (LocInf),
then, since any set of simple roots for a finite standard parabolic
subgroup of (W,S) must be linearly independent, Π must be linearly
independent. Also, the Coxeter graph of (W,S) is a tree. Therefore,
up to rescaling Π, B is of the type considered in Examples 4.9 and
4.16, and the desired conclusion readily follows. Finally, assume that
(W,S) is of infinite rank of type (LocInf). We may define σ following
the definition of λ in the proof of Theorem 4.12, namely, let R ⊆ S′

be such that the parabolic subsystem (⟨R⟩, R) is finitely generated and

irreducible. Consider the abstract positive Ψ+ in T̂ corresponding to
the positive roots of the root datum B′, and define aW ′ , ϵ as in Lemma
4.14. Following the proof of Theorem 4.12, set σ(α) = a−1

WJ
(α) for all

α in the R-span of {β ∈ Φ | sβ ∈ R}. This is well defined since, for p,
J ′, K ′ as in the proof of Theorem 4.12, p fixes

{α ∈ Φ+ | sα ∈ J ′}
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elementwise. In a similar manner to that in the proof of Theorem 4.12,
it is seen that σ is invertible (here, as a linear map). We may define
σ′ in a similar way on RΠ∨, and then, clearly, (ii)–(iv) hold. It is
obvious that ϵσ(Π′) differs from Π simply by rescaling. Rescaling Π
appropriately, we, therefore, assume that we have ϵσ(Π′) = Π. It may
be verified from (iii)–(iv) that this implies that ϵσ′(Π′∨) = Π∨, and
this gives (i). �

The analog of the following for a class of crystallographic reflection
representations (arising from Kac-Moody Lie algebras) was proven in
[20].

Corollary 4.19. Suppose that B is a root-based datum affording an
irreducible Coxeter system (W,S) and that V is finite-dimensional.
Then, any two root bases of B are W -conjugate up to sign and rescaling.

Proof. Note that (W,S) cannot be of type (LocInf) but infinite, for
then it would have an infinite, linearly independent set of simple roots
contrary to the finite dimensionality of V . Hence, it is not of type
A∞ or A∞,∞, and the desired conclusion follows from the preceding
theorem. �
Acknowledgments. The author thanks an anonymous referee for

many suggestions which improved the exposition.

APPENDICES

A. Cocycles and extensions of group actions.

A.1. Let G be a (multiplicatively written) group and A a (multiplica-
tively written) group on which G acts on the left so that g(a · a′) =
g(a) · g(a′). We recall [22, Chapter 7 Appendix] that a (1-)cocycle of
G in A is a map

s 7−→ as : G 7−→ A

satisfying ast = as · s(at) for all s, t ∈ G. Two cocycles a, b are said to
be cohomologous if there exists a c ∈ A such that bs = c−1 · as · s(c) for
all s ∈ G. This defines an equivalence relation on the set Z1(G,A) of
cocycles of G in A, and the set H1(G,A) of equivalence classes is called
the first cohomology set of G with values in A. In general, H1(G,A)
is only a pointed set (with base point given by the equivalence class of
the trivial cocycle a defined by as = 1 for all s).
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If A is abelian, Z1(G,A) has a natural structure of abelian group,
with pointwise product of functions as multiplication. A map

s −→ as : G −→ A

is called a coboundary (more precisely, a 1-coboundary) if there is some
b ∈ A such that as = b(sb)−1 for all s ∈ G. The set B1(G,A) of
coboundaries is a subgroup of Z1(G,A), and two cocycles in Z1(G,A)
are cohomologous if and only if they lie in the same coset of B1(G,A).
The first cohomology set, therefore, acquires a natural structure of
abelian group, called the first cohomology group:

H1(G,A) = Z1(G,A)/B1(G,A).

A.2. Let S be a set with a left action of the group A, denoted
(x, y) 7→ x · y for x ∈ G, s ∈ S) of A and a left action of the group
G, denoted (g, y) 7→ g(y), compatible with the left action of G on A
from A.1 in the sense that g(x ·y) = g(x) ·g(y) for g ∈ G, x ∈ A, y ∈ S.
This applies, in particular, with S = A with its given left G-action and
natural left A-action by left translation. For a cocycle a, as in A.1, we
let Sa denote the G-set S with the left action ×a of G on Aa defined
by s ×a y = as · s(y) for s ∈ G and y ∈ A. If b is another cocycle,
cohomologous to a by the element c ∈ A as in A.1, then the map

y 7−→ c · y : Sb −→ Sa

defines an isomorphism of G-sets Sb → Sa.

A.3. Let G be a group acting on a set X. For x ∈ X, let [x] := Gx
denote the orbit of x. Assume, given for each orbit [x], a multiplicative
group A[x]. We consider a category C in which an object is a G-set

X̃ with a given (surjective) G-equivariant map π : X̃ → X and, for
each orbit [x], a right action of the group A[x] on π−1([x]) commuting
with the G-action on this set and such that, for each y ∈ [x], A[x] acts

simply transitively on π−1(y). Morphisms are given by G-equivariant
maps between the corresponding G-sets commuting with the projec-
tions π and the A[x]-actions on the inverse images π−1([x]), and the
composition of morphisms is by composition of the underlying maps of
G-sets. (If there is a group H with A[x] = H for all x, this notion is
an analog in the category of G-sets of a principal H-bundle [18].) Any
morphism in C is clearly an isomorphism. Next, we indicate how the
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objects of C are classified up to isomorphism by an appropriate first
cohomology group H1(G,A).

For each x ∈ X, define a multiplicative abelian group Ax = A[x].
Form the product group

A :=
∏
x∈X

Ax,

with projections πx : A → Ax for x ∈ X. For a ∈ A, we write a as
a = (ax)x∈X or, for short, a = (ax), where ax = πx(a). The group G
acts naturally on the left of A by g(a) = b where bx = ag−1(x), or, for
short, g(ax) = (ag−1(x)).

Proposition A.1. There is a natural bijection between the isomor-
phism classes of objects of the category C defined in A.3 and H1(G,A).

Proof. Arbitrary functions a 7→ ag : G → A correspond bijectively
to functions

η : G×X −→
∪
x∈X

A[x]

with η(g, x) ∈ Ax for all x ∈ X, g ∈ G, by the correspondence
ag = (η(g, x))x∈X . We check that the formula

g(x, yx) := (gx, η(g−1, x)−1yx)

for x ∈ X, g ∈ G, yx ∈ Ax, defines a left G-action on the set

X̃a =
∪
x∈X

{x} ×Ax

if and only if the function g 7→ ag is a cocycle a of G with values

in A. In this case, X̃a has an obvious structure as an object of C.
Clearly, every object of C is isomorphic to that obtained from this
construction from some function η. It is straightforward to verify that,

for two cocycles a and b, X̃a is isomorphic in C to X̃b if and only if a
and b are cohomologous. Hence, the map sending the cocycle a to the

isomorphism class of X̃a gives the required bijection. �

A.4. Although we shall not need it, we also describe an analog in the
above setting of the construction of an associated bundle of a principal
bundle. For x ∈ X, let Sx be a left A[x]-set with Sx = Sy whenever



ON CONJUGACY OF ABSTRACT ROOT BASES 2281

[x] = [y]. Give the product set S :=
∏

x∈X Sx the left A-action with
(ax) · (yx) = (ax · yx). There is an action of G on S defined by
g(yx) = (yg−1(x)), compatible with the G-action on A in the sense
of A.2. If a : G → A is a cocycle and η the corresponding function as
in the proof of Proposition A.1, the formula

g(x, yx) := (gx, η(g−1, x)−1yx)

for x ∈ X, g ∈ G, yx ∈ Sx, defines a left G-action on the set
X ′ :=

∪
x∈X{x} × Sx.

Any G-set X ′ with given equivariant map π′ : X ′ → X such that, for
each G-orbit [x], there is some set S[x] such that the fibers (π′)−1(y) for
y ∈ [x] are all in bijection with S[x], arises from the above construction
with A[x] = Sym(S[x]), the symmetric group acting on S[x] in the usual
way, and Sx := S[x].

Remark A.2. We remark that most results in this appendix extend to
groupoid actions in place of group actions. Such results find application
in the study of various groupoids with abstract root systems, such
as the groupoids studied in [5] (although their root systems are not
constructed there).

B. Quasi-root systems. In this appendix, we show how the defi-
nition and some elementary properties of Bruhat order and weak order
on Coxeter groups extend to groups with a suitable quasi-root system,
linearly realized in a real vector space. The principal example, other
than Coxeter groups, is provided by real orthogonal groups.

B.1. Let (Ψ, F ) be a quasi-root system. We use notation as in
subsection 2.3. Suppose that Ψ+ is a quasi-positive system for Ψ, and
let

N := NΨ+ : W −→ P(T )

be the corresponding reflection cocycle.

Note that G acts on the left on T by conjugation:

(g, t) 7−→ ι(g)tι(g)−1.

By abuse of notation, we write this as (g, t) 7→ gtg−1. Then,

(B.1) sσ(α) = σsασ
−1, σ ∈ G, α ∈ Ψ.
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We define certain pre-orders (reflexive, transitive relations) on W as
follows. The weak pre-order ≤w is defined by x ≤w y if and only if
N(x) ⊆ N(y); this is a partial order if and only if N(x) = N(y) for
x, y ∈ W implies x = y, or equivalently, by the cocycle condition if and
only if N(x) = ∅ with x ∈ W implies x = ∅. Let A ⊆ T . The twisted
Bruhat pre-order ≤A on W is defined by x ≤A y if and only if there
exist x = x0, x1, . . . , xn ∈ W and ti ∈ xi · A with xi−1 = tixi, where
w ·A = N(w) + wAw−1. It is easy to see that, for x, y ∈ W ,

(B.2) x ≤A y ⇐⇒ xw−1 ≤w·A yw−1 ⇐⇒ y ≤T+A x.

For A = ∅, the order ≤A is denoted merely as ≤ and is called the
Bruhat pre-order on W .

In the case where (Ψ, F ) is the standard abstract root system of a
Coxeter system (W,S), ≤w and ≤ are partial orders, called weak right
order and Bruhat order, respectively, and ≤A is a twisted Bruhat order
in the sense of [9] if A is an initial section of a reflection order in the
sense of loc cit.

B.2. We define a tuple (⟨−,−⟩, R,M,M∨, ι, ι∨) to be a linear realiza-
tion of (Ψ, F ) if the following conditions hold:

(i) R is a ring, M is a left R-module, M∨ is a right R-module, and
⟨−,−⟩ : M ×M∨ → R is a R-bilinear form;

(ii) ι : Ψ → M and ι∨ : Ψ → M∨ are injective functions. We identify
Ψ with ι(Ψ); thus, ι becomes an inclusion, set Ψ∨ := ι∨(Ψ∨) and set
α∨ = ι∨(α) for α ∈ Ψ ⊆ M so ν := (α 7→ α∨) : Ψ 7→ Ψ∨ is a bijection;

(iii) ⟨α, α∨⟩α = 2α, α∨⟨α, α∨⟩ = 2α∨ for α ∈ Ψ. For α ∈ Ψ,
define sα ∈ GLR(M) by m 7→ m − ⟨m,α∨⟩α and sα∨ ∈ GLR(M

∨) by
m 7→ m− α∨⟨α,m⟩;

(iv) for α ∈ Ψ, sα(Ψ) = Ψ and F (α) = (sα)|Ψ, while sα∨(Ψ∨) = Ψ∨

and (sα∨)|Ψ∨ = F (α);

(v) ⟨sα | α ∈ Ψ⟩ identifies with W ⊆ Sym(Ψ) by restriction and
⟨sα∨ | α ∈ Ψ⟩ identifies with W ⊆ Sym(Ψ∨), by restriction.

Here, we use ν to identify any action of a group, such as W := ⟨F (α) |
α ∈ Ψ⟩, on Ψ ⊆ M with an action of that group on Ψ∨. Note that (v)
automatically follows from (i)–(iv) if RΨ = M and Ψ∨R = M∨.
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B.3. The main examples of quasi-root systems and their linear real-
izations are provided by Coxeter groups. Any root datum E as in sub-
section 3.3 may be naturally regarded as providing a linear realization
of some quasi-root system (in fact, an abstract root system in the sense
of Definition 2.10). Other interesting examples of linear realizations of
abstract root systems arise from natural reflection representations of
Coxeter groups over certain commutative or non-commutative coeffi-
cient rings.

B.4. Certain orthogonal groups provide examples of (linearly realized)
quasi-root systems as follows. Let K be a field of characteristic unequal
to two, and let V be a finite-dimensional vector space over K equipped
with a symmetric, non-degenerate bilinear form (− | −) : V × V → K.
Let O(V ) be the orthogonal group of the quadratic space (V, (− | −)).
By definition, O(V ) consists of invertible K-linear transformations of
V preserving the form. For non-isotropic α ∈ V , let sα ∈ O(V ) denote
the orthogonal reflection, defined by

v 7−→ v − 2(v | α)/(α | α)α.

We choose a subset Ψ of V such that Ψ is stable under O(V ), consists of
non-isotropic vectors and each non-isotropic line l in O(V ) contains at
least one element of Ψ. Such a set Ψ always exists; for example, Ψ could
be taken to consist of all non-isotropic vectors in V . Alternatively, Ψ
could be chosen so that each non-isotropic line contains exactly two
elements of Ψ; for instance, if K = R, Ψ could be taken to consist
of all α ∈ V with (α | α) = ±1. For α ∈ Ψ, let F (α) ∈ Sym(Ψ)
denote the restriction of sα to Ψ. Let Ψ∨ := {α∨ | α ∈ Ψ}, where
α∨ := 2α/(α | α). Then, clearly, (Ψ, F ) is a quasi-root system.
Moreover, ((−,−),K, V, V, ι, ι∨) is a linear realization of (Ψ, F ), where
ι : Ψ → V is the inclusion and ι∨ : Ψ → V is the map α 7→ α∨.

B.5. Assume that (Ψ, F ) is a quasi-root system with a linear realiza-
tion over R of the form (⟨−,−⟩,R, V, V ∨, ι, ι∨) so that V and V ∨ are
real vector spaces. We fix a vector space total ordering ≼ of V ∨, that
is, ≼ is a total ordering of V ∨ such that the set of positive elements
is closed under addition and multiplication by positive real numbers.
We also assume, given a family {ωi}i∈I of elements of V ∨, indexed by
a well-ordered set I, such that, if v ̸= 0 in V , there is an i ∈ I with
⟨v, ωi⟩ ̸= 0.
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For a totally ordered set X with total order ≤, let XI be the family
of I-tuples (xi)i∈I of elements ofX, totally ordered by the lexicographic
order ≤lex induced by ≤ on X and the well ordering of I. In particular,
we have totally ordered sets (V ∨)I with order ≼lex and RI with order
≤lex defined using the standard ordering ≤ of R. The vector space
embedding

v 7−→ (⟨v, ωi⟩)i∈I : V −→ RI

gives rise, by restriction of the order ≤lex, to a vector space total
ordering of V , which we also denote as ≤lex. (It is well known that,
if V is finite-dimensional and ⟨−,−⟩ is a perfect pairing, then every
vector space total order of V is equal to an order ≤lex arising from
some family {ωi}.)

It is easy to see that, for α, β ∈ Ψ, sα = sβ if and only if there is a
c ∈ R̸=0 such that β = cα and β∨ = c−1α∨; it readily follows that

Ψ+ := {α ∈ Ψ | 0 ≼ α∨} and Φ+ := {α ∈ Ψ | α ≤lex 0}

are compatible quasi-positive systems for (Ψ, F ). Define the reflection
cocycle N = NΨ+ : G → P(T ), and set

A = {F (α) | α ∈ Φ+ ∩ −Ψ+} ⊆ T.

Proposition B.1. Let assumptions and notation be as immediately
above. Then:

(a) for all α ∈ Ψ+ and w ∈ W ,

(sαw(ωi))i∈I ≼lex (w(ωi))i∈I

in (V ∨)I if and only if sα ∈ w ·A = N(w) + wAw−1;
(b) the twisted Bruhat pre-order ≤A is a partial order on W .

Proof. For (a), we have (sαw(ωi))i ≼lex (w(ωi))i if and only if we
have

(w(ωi)− ⟨α,wωi⟩α∨)i ≼lex (w(ωi))i

in (V ∨)I . This holds if and only if (⟨α,w(ωi)⟩)i ≥lex (0)i in RI (since
0 ≺ α∨), and also if and only if w−1(α) ∈ −Φ+. Finally, this holds
if and only if sα ∈ w · A, by Proposition 2.3 (a). Now, we show that
(a) implies that ≤A is transitive, which will prove (b). If x ≤A y and
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y ≤A x, then, by (a), we have

(x(ωi))i ≼lex (y(ωi))i ≼lex x(ωi))i,

and hence, (x(ωi))i = (y(ωi))i. However, if x ̸= y, we have x−1(v) ̸=
y−1(v) for some v ∈ V ; thus, ⟨x−1(v), ωj⟩ ̸= ⟨y−1(v), ωj⟩ for some j ∈ I
by the assumption on the family (ωi)i. However, then ⟨v, x(ωj)⟩ ̸=
⟨v, y(ωj)⟩ and x(ωj) ̸= y(ωj), contrary to the above. �

B.6. We conclude with some remarks about the above-defined orders
in the special case of the quasi-root systems of real orthogonal groups
defined in B.4. In this situation, every vector space total order on V =
V ∨ arises as the order ≤lex from some family (ωi)i∈I = (ω1, . . . , ωn)
which may, without loss of generality, be taken to be a basis of V . It
is easy to see that w(Ψ+) = Ψ+ implies that w = 1, and it follows
that the weak pre-order is actually a partial order. Since −1 ∈ W with
N(−1) = Ψ+, it can readily be seen that w 7→ −w is an isomorphism

(W,≤A) ∼= (W,≤op
A )

in any of the twisted Bruhat orders ≤A and in the weak order ≤w

(this is an analogue of the fact that multiplication by the longest
element induces an order-reversing bijection of a finite Coxeter group
in (any twisted) Bruhat order or weak order). However, there may
be several non-isomorphic Bruhat orders (and several non-isomorphic
weak orders) depending upon the choices of ≼, (ωi)i, etc.

Assume now that the form (− | −) on V is positive definite. Then,
without loss of generality, we may take (ωi)i as an orthonormal basis
of V , and we see that the vector space total orders of V correspond
bijectively to ordered orthonormal bases (ω1, . . . ωn) of V . In particular,
W = O(V ) acts simply transitively on the set of vector space total
orderings of V , and the choice of the particular ordering ≼ affects
neither the family of order types of posets arising as (W,≤A) for varying
A nor the order type of ≤w. Furthermore, from this, we see that
Φ+ = w(Ψ+) for some w ∈ W . Hence, using Corollary 2.4 and (B.2),
the posets (W,≤A) are all isomorphic to (W,≤∅). Thus, for a positive
definite form, there is, up to poset isomorphism, only one twisted
Bruhat order ≤A on W (this is analogous to the fact that there is,
up to isomorphism, only one twisted Bruhat order on a finite Coxeter
group).



2286 MATTHEW DYER

One might ask whether other properties of Bruhat order and weak
order on finite Coxeter groups are shared by the corresponding orders
on orthogonal groups. For example, does W under the weak order form
a (complete) lattice?
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Sci. Indust. 1337 (1968).
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