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WEAKLY FACTORIAL PROPERTY OF A
GENERALIZED REES RING D[X, d/X]

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, X an inde-
terminate over D, d ∈ D, and R = D[X, d/X] a subring
of D[X, 1/X]. In this paper, we show that R is a weakly
factorial domain if and only if D is a weakly factorial GCD-
domain and d = 0, d is a unit of D or d is a prime element
of D. We also show that, if D is a weakly factorial GCD-
domain, p is a prime element of D, and n ≥ 2 is an integer,
then D[X, pn/X] is an almost weakly factorial domain with
Cl(D[X, pn/X]) = Zn.

1. Introduction. Let D be an integral domain, I a proper ideal of
D and t an indeterminate over D. Then, R = D[tI, t−1] is a subring
of D[t, t−1], called the generalized Rees ring of D with respect to I.
In [19], Whitman proved that, if I is finitely generated, then R is a
unique factorization domain (UFD) if and only if D is a UFD and t−1

is a prime element of R. Also, in [17, Proposition 3], Mott showed
that R is a GCD-domain if and only if D is a GCD-domain and t−1

is a prime element of R. In [15, Corollary 3.10], the authors proved
that R is a Prüfer v-multiplication domain (PvMD) if and only if D
is a PvMD, under the assumption that t−1 is a prime element of R
and

∩∞
n=1 I

n = (0). Let I = dD for some d ∈ D and t−1 = X; thus,
R = D[X, d/X]. In [1], the authors studied several types of divisibility
properties of R, including Krull domains, UFDs and GCD-domains.

An element a ∈ D is said to be primary if the principal ideal aD of
D is a primary ideal, and we say that D is a weakly factorial domain
(WFD) if each nonzero nonunit of D can be written as a finite product
of primary elements of D. Clearly, a prime element of D is primary,
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and D is a UFD if and only if every nonzero nonunit of D can be
written as a finite product of prime elements of D. Hence, a UFD
is a WFD, while a rank-one nondiscrete valuation domain is a WFD
but not a UFD. It is known that D[X] is a WFD if and only if D is
a weakly factorial GCD-domain. More generally, if Γ is a torsionless,
commutative, cancellative monoid whose quotient group satisfies the
ascending chain condition on its cyclic subgroups, then the semigroup
ring D[Γ] is a WFD if and only if D is a weakly factorial GCD domain
and Γ is a weakly factorial GCD-semigroup [10, Theorem 9]. In this
paper, we study when R = D[X, d/X] is a WFD.

1.1. Results. Let X be an indeterminate over D, d ∈ D, and R =
D[X, d/X]. In this paper, among other things, we show that R is a
WFD if and only if R is a weakly factorial GCD-domain. The latter
condition holds if and only if D is a weakly factorial GCD-domain and
d = 0, d is a unit of D or d is a prime element of D. We also prove that
R is a ring of Krull type if and only if D is a ring of Krull type. We
finally prove that, if D is a weakly factorial GCD-domain, p is a prime
element of D, and n ≥ 2 is an integer, then D[X, pn/X] is an almost
weakly factorial domain with Cl(D[X, pn/X]) = Zn.

1.2. Definitions. Let K be the quotient field of D and F (D) the set
of nonzero fractional ideals of D. For I ∈ F (D), let I−1 = {x ∈ K |
xI ⊆ D}, Iv = (I−1)−1, and It =

∪
{Jv | J ⊆ I and J ∈ F (D) is

finitely generated}. We say that I ∈ F (D) is a t-ideal if It = I, and a
t-ideal of D is a maximal t-ideal if it is maximal among proper integral
t-ideals of D. Let t-Max(D) be the set of maximal t-ideals of D. It is
known that t-Max(D) ̸= ∅ if D is not a field; each ideal in t-Max(D) is
a prime ideal; each prime ideal minimal over a t-ideal is a t-ideal; and
D =

∩
P∈t-Max(D) DP . We say that t-dim(D) = 1 if D is not a field and

each prime t-ideal of D is a maximal t-ideal. An I ∈ F (D) is said to be
t-invertible if (II−1)t = D. Let T (D) be the set of t-invertible fractional
t-ideals of D. Then, T (D) is an abelian group under I ∗ J = (IJ)t.
Clearly, Prin(D), the set of nonzero principal fractional ideals of D, is
a subgroup of T (D), and Cl(D) = T (D)/Prin(D) is called the (t-)class
group of D. Note that, if D is a Krull (respectively, Prüfer) domain,
then Cl(D) is the usual divisor (respectively, ideal) class group of D.

Let X1(D) be the set of height-one prime ideals of D. We say
that D is a weakly Krull domain if D =

∩
P∈X1(D) DP , and this
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intersection has finite character, i.e., each nonzero nonunit of D is a
unit in DP except finitely many prime ideals in X1(D). In this case,
t-Max(D) = X1(D), and thus, t-dim(D) = 1 when D is a weakly Krull
domain. Clearly, Krull domains are weakly Krull domains. An almost
weakly factorial domain (AWFD) is an integral domain D in which, for
each 0 ̸= d ∈ D, there is an integer n = n(d) ≥ 1 such that dn can be
written as a finite product of primary elements of D. It is known that
D is a WFD (respectively, an AWFD) if and only if D is a weakly Krull
domain with Cl(D) = {0} (respectively, Cl(D) torsion) [5, Theorem]
(respectively, [4, Theorem 3.4]); hence,

WFD =⇒ AWFD =⇒ weakly Krull domain.

It is easy to see that, if N is a multiplicative subset of a weakly
Krull domain (respectively, WFD, an AWFD) D, then DN satisfies the
corresponding property. We say that D is a Prüfer v-multiplication
domain (PvMD) if each nonzero finitely generated ideal of D is t-
invertible. It is known that D is a PvMD if and only if D[X] is a
PvMD [18, Corollary 4] or, equivalently, D[X, 1/X] is a PvMD [16,
Theorem 3.10]. In addition, D is a GCD-domain if and only if D is a
PvMD with Cl(D) = {0} [9, Proposition 2].

2. Main results. Let D be an integral domain, X an indeterminate
over D, d ∈ D, R = D[X, d/X], S = {Xk | k ≥ 0}, and T = {(d/X)k |
k ≥ 0}; thus, RS = D[X, 1/X]. Clearly, if d = 0 (respectively, d is
a unit of D), then R = D[X] (respectively, R = D[X, 1/X]). Also, if
d ̸= 0, then RT = D[X/d, d/X], R = RS ∩ RT , [1, Lemma 7(b)], and
RT

∼= D[y, y−1] for an indeterminate y over D.

Lemma 2.1. Let A be a commutative ring with identity and X an
indeterminate over A. Then, the zero ideal of A is primary if and only
if the zero ideal of A[X] is primary.

Proof. Let N(B) (respectively, Z(B)) be the set of nilpotent ele-
ments (respectively, zero divisors) of a ring B. Clearly, N(B) ⊆ Z(B),
and the zero ideal of B is primary if and only ifN(B) = Z(B). Hence, it
suffices to show that Z(A) ⊆ N(A) if and only if Z(A[X]) ⊆ N(A[X]).
Assume that Z(A) ⊆ N(A), and let f ∈ Z(A[X]). Then, fg = 0 for
some 0 ̸= g ∈ A[X]. Hence, if c(h) is the ideal of A generated by the
coefficients of a polynomial h ∈ A[X], then by the Dedekind-Mertens
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lemma [12, Theorem 28.1], there is an integer n ≥ 1 such that

c(f)n+1c(g) = c(f)nc(fg) = (0).

Note that c(f) ⊆ Z(A) since g ̸= 0, and c(f) is finitely generated.
Hence, by assumption, c(f)m = (0) for some integer m ≥ 1. Thus,

fm ∈ (c(f)[X])m = c(f)m[X] = (0),

and hence, f ∈ N(A[X]). The converse follows since Z(A) ⊆ Z(A[X]).
�

Proposition 2.2. The following statements are equivalent for R =
D[X, d/X] with 0 ̸= d ∈ D.

(i) X is irreducible (respectively, prime, primary) in R;
(ii) d/X is irreducible (respectively, prime, primary) in R;
(iii) d is a nonunit (respectively, prime, primary) in D.

Proof. The properties of irreducible and prime appear in [1, Propo-
sition 1]. For the primary property, note that

(D/dD)[X] ∼= D

[
X,

d

X

]
/(X) ∼= D

[
X,

d

X

]/(
d

X

)
.

Also, note that an ideal I of a ring A is primary if and only if Z(A/I) =
N(A/I). Thus, the result follows directly from Lemma 2.1. �

Corollary 2.3. Let d ∈ D be a nonzero nonunit and R = D[X, d/X].

If dD is primary in D, then
√
XR is a maximal t-ideal of R and

(X, d/X)v = R.

Proof. By Proposition 2.2, XR is a primary ideal of R, and thus,√
XR is a maximal t-ideal [8, Lemma 2.1]. Next, note that

R

[
1

X

]
= D

[
X,

1

X

]
and dD[X, 1/X] is primary. Hence, if Q = dD[X, 1/X] ∩ R, then Q
is primary. In addition, d = X · d/X and X /∈

√
Q since QR[1/X] (

R[1/X]. Thus, d/X ∈ Q, and, since d/X is primary by Proposition 2.2,
(X, d/X)v = R. �
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A nonzero prime ideal Q of D[X] is called an upper to zero in D[X]
if Q ∩ D = (0), and we say that D is a UMT-domain if each upper
to zero in D[X] is a maximal t-ideal of D[X]. It is known that D
is a PvMD if and only if D is an integrally closed UMT-domain [14,
Proposition 3.2]. In addition, D[X] is a weakly Krull domain if and
only if D[X, 1/X] is a weakly Krull domain, which is exactly when D
is a weakly Krull UMT-domain [3, Propositions 4.7, 4.11].

Proposition 2.4. Let d ∈ D be a nonzero nonunit and R =
D[X, d/X]. Then, R is a weakly Krull domain if and only if D is
a weakly Krull UMT-domain.

Proof. Let S = {Xk | k ≥ 0} and T = {(d/X)k | k ≥ 0}. If R is a
weakly Krull domain, then RS = D[X, 1/X] is a weakly Krull domain,
and thus, D is a weakly Krull UMT-domain. Conversely, assume that
D is a weakly Krull UMT-domain. Then, both

RS = D

[
X,

1

X

]
and RT = D

[
d

X
,
X

d

]
are weakly Krull domains. Note that R = RS ∩ RT . Thus, R is a
weakly Krull domain. �

Let S be a saturated, multiplicative set of D and

N(S) = {d ∈ D | (s, d)v = D for all s ∈ S}.

Clearly, D = DS ∩DN(S). We say that S is a splitting set if, for each
0 ̸= d ∈ D, we have d = st for some s ∈ S and t ∈ N(S). It is known
that, if S is a splitting set of D generated by a set of prime elements,
then DN(S) is a UFD and Cl(D) = Cl(DS) [2, Theorem 4.2].

Lemma 2.5. Let S be a splitting set of an integral domain D generated
by a set of prime elements in D. Then, D is a WFD if (and only if)
DS is a WFD.

Proof. Since Cl(D) = Cl(DS) = {0}, it suffices to show that D is
a weakly Krull domain. Note that DN(S) is a UFD; thus, DN(S) is a
weakly Krull domain. Hence, D is a weakly Krull domain since DS is
a weakly Krull domain, by assumption, and D = DS ∩DN(S). �
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We next give the main result of this paper for which we recall from
[10, Theorem 9] that the following three conditions are equivalent:

(i) D[X] is a WFD;
(ii) D[X, 1/X] is a WFD; and
(iii) D is a weakly factorial GCD-domain.

Note also that D is a PvMD if and only if DP is a valuation domain
for all P ∈ t-Max(D) [13, Theorem 5].

Theorem 2.6. Let R = D[X, d/X] with d ∈ D. Then, the following
statements are equivalent.

(i) R is a WFD;
(ii) R is a weakly factorial GCD-domain;
(iii) D is a weakly factorial GCD-domain, and d = 0, d is a unit

of D or d is a prime element of D.

Proof.

(i) ⇒ (ii). If d = 0 or d is a unit of D, then R = D[X] or R = D[X,
1/X], and hence, R is a weakly factorial GCD-domain.

Now, assume that d is a nonzero nonunit. It suffices to show that
R is a PvMD since a GCD-domain is a PvMD with trivial class group.
Let Q ∈ t-Max(R). Then, htQ = 1. If X /∈ Q, then QS ( RS ,
where S = {Xn | n ≥ 0}. Note that RS is a WFD by (i) and
RS = D[X, 1/X]; thus, D is a weakly factorial GCD-domain, and
hence, RS is a PvMD. Thus, RQ = (RS)QS is a rank-one valuation
domain. Next, assume that X ∈ Q. Then, d/X /∈ Q by Corollary 2.3,
and hence, if T = {(d/X)n | n ≥ 0}, then RT = D[d/X,X/d] and
QT ( RT . Note that D is a PvMD; thus, D[d/X,X/d] is a PvMD.
Note also that QT is a prime t-ideal of RT since ht(QT ) = 1. Hence,
RQ = (RT )QT

is a rank-one valuation domain. Thus, R is a PvMD.

(ii) ⇒ (iii). Note that R[1/X] = D[X, 1/X] is a WFD. Hence, D is
a weakly factorial GCD-domain. Assume that d is a nonzero nonunit.
Then, X is irreducible in R by Proposition 2.2, and, since R is a GCD-
domain, X is a prime in R. Thus, again by Proposition 2.2, d is a
prime element of D.

(iii) ⇒ (i). If d = 0, then R = D[X], and hence, R is a WFD. Next,
if d is a unit, then R = D[X, 1/X]. Thus, R is a WFD. Finally, assume
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that d is a prime element of D. Then, X is a prime element of R by
Proposition 2.2. In addition,

∩∞
n=0 X

nR = {0} since dD is a height-one
prime ideal of D; thus, S = {Xn | n ≥ 0} is a splitting set of R [2,
Proposition 2.6]. Note that RS = D[X, 1/X]. Hence, RS is a WFD.
Thus, R is a WFD by Lemma 2.5. �

An integral domain D is a ring of Krull type if there is a set {Vα}
of valuation overrings of D such that

(i) each Vα = DP for some prime ideal P of D;

(ii) D =
∩
α

Vα; and

(iii) this intersection has finite character.

Then D is a ring of Krull type if and only if D is a PvMD of finite
t-character (i.e., each nonzero nonunit of D is contained in only finitely
many maximal t-ideals) [13, Theorem 7]. It is known that D is a ring
of Krull type if and only if D[X] is a ring of Krull type or, equivalently,
D[X, 1/X] is a ring of Krull type (cf., [13, Propositions 9, 12]).

Theorem 2.7. Let R = D[X, d/X] with d ∈ D. Then, R is a ring of
Krull type if and only if D is a ring of Krull type.

Proof. If d = 0 (respectively, d is a unit of D), then R = D[X]
(respectively, R = D[X, 1/X]). Hence, we may assume that d is a
nonzero nonunit of D. Let

S = {Xn | n ≥ 0} and T =

{(
d

X

)n

| n ≥ 0

}
.

Then

RS = D

[
X,

1

X

]
, RT = D

[
X

d
,
d

X

]
,

and R = RS ∩ RT . Also, D[X/d, d/X] is isomorphic to D[y, 1/y] for
an indeterminate y over D.

If R is a ring of Krull type, then RS is a ring of Krull type [13,
Proposition 12], and thus, D is a ring of Krull type. Conversely,
assume that D is a ring of Krull type. Then, both RS and RT are
rings of Krull type. Let A = {P ∈ t-Spec(R) | PS ∈ t-Max(RS)} and
B = {P ∈ t-Spec(R) | PT ∈ t-Max(RT )}. Then, RP is a valuation
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domain for each P ∈ A ∪B,

R = RS ∩RT =

( ∩
P∈A

RP

)
∩
( ∩

P∈B

RP

)
,

and this intersection has finite character. Thus, R is a ring of Krull
type. �

A generalized Krull domain is an integral domain D such that

(i) DP is a valuation domain for all P ∈ X1(D);
(ii) D =

∩
P∈X1(D) DP ; and

(iii) this intersection has finite character.

Then, we have the following implications:

• Generalized Krull domain ⇔ ring of Krull type + t-dimension one
⇔ weakly Krull domain + PvMD ⇒ weakly Krull domain,

• Generalized Krull domain +3 ring of Krull type

��
Krull domain

KS

+3 PvMD +3 UMT-domain.

However, in general, the reverse implications do not hold.

Corollary 2.8. Let R = D[X, d/X] with d ∈ D. Then, R is a
generalized Krull domain if and only if D is a generalized Krull domain.

Proof. Let the notation be as in the proof of Theorem 2.7, and note
that a generalized Krull domain is merely a ring of Krull type with
t-dimension one. Note also that R and D are PvMDs by Theorem 2.7;
hence, t-dim(R) = 1 ⇔ t-dim(RS) = t-dim(RT ) = 1 ⇔ t-dim(D) = 1.
Thus, again by Theorem 2.7, R is a generalized Krull domain if and
only if D is a generalized Krull domain. �

A Krull domain D is called an almost factorial domain if Cl(D)
is torsion. It is known that a Krull domain D is an almost factorial
domain if and only if D is an AWFD [11, Proposition 6.8]. In addition,
if D is a UFD, p is a prime element of D, and n ≥ 1 is an integer, then
D[X, pn/X] is a Krull domain with Cl(D[X, pn/X]) = Zn [1, Theorems
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8 and 16]. The next result is an AWFD analog for which we first note
that, if R = D[X, d/X] with d ∈ D, then R is a Z-graded integral
domain with deg(aXn) = n and deg(a(d/X)n) = −n for 0 ̸= a ∈ D
and the integer n ≥ 0. Let

H = {aXk | 0 ̸= a ∈ D and k ≥ 0}∪
{
a

(
d

X

)k

| 0 ̸= a ∈ D and k ≥ 0

}
.

Then, H is the set of nonzero homogeneous elements of R, and, if Q is
a maximal t-ideal of R with Q∩H ̸= ∅, then Q is generated by Q∩H
[7, Lemma 1.2].

Corollary 2.9. Let D be a weakly factorial GCD-domain, p a prime
element of D and n ≥ 2 an integer. Then, R = D[X, pn/X] is an
AWFD with Cl(R) = Zn.

Proof. A generalized Krull domain is a weakly Krull PvMD, and
thus, R is a weakly Krull PvMD by Corollary 2.8. Hence, it suffices to
show that Cl(R) = Zn.

Let Q =
√
XR, S = {Xk | k ≥ 0}, and note that Q is a

unique maximal t-ideal of R with Q ∩ S ̸= ∅ since X is primary by
Proposition 2.2. Let Λ = {P ∈ t-Max(R) | P ∩ S = ∅}. Then, t-
Max(R) \Λ = {Q}, and RS = D[X, 1/X] is a WFD, so Cl(RS) = {0}.
Thus, Cl(R) is generated by the classes of t-invertible Q-primary t-
ideals of R [3, Theorem 4.8].

Note that X is homogeneous, (X, pn/X)v = R, and (a, p)v = R for
all a ∈ D \ pD. Hence, Q = (X, p)v, and, since R is a PvMD, Q is a
t-invertible prime t-ideal. Note that

(Qn)t = ((X, p)n)t = (Xn, pn)t =

(
Xn, X

pn

X

)
v

= XR

(see [6, Lemma 3.3] for the second equality), while (Qk)t is not
principal for k = 1, . . . , n − 1. Note also that, if A is a Q-primary
t-ideal of R, then A = (Qm)t for some m ≥ 1, and thus, (An)t = XmR.
Hence, Cl(R) = Zn. �

We conclude this paper with some examples of weakly factorial GCD
domains with prime elements.
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Example 2.10.

(1) Let V be a rank-one nondiscrete valuation domain, y an inde-
terminate over V and D = V [y]. Then, D is a weakly factorial GCD-
domain, and y is a prime of D. Thus, R = D[X, y/X] is a WFD, and
D[X, yn/X] is an AWFD with

Cl

(
D

[
X,

yn

X

])
= Zn

for all integers n ≥ 2.

(2) Let D be a weakly factorial GCD-domain, X an indeterminate
over D, and S = {f ∈ D[X] | f ̸= X, f a prime in D[X]}. Then,
D[X]S is a one-dimensional weakly factorial GCD-domain with a prime
element X. (For, if Q is a prime ideal of D[X] with htQ ≥ 2, then Q
contains a nonconstant prime polynomial since D is a GCD-domain.)
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