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WEAKLY FACTORIAL PROPERTY OF A
GENERALIZED REES RING D[X,d/X]

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, X an inde-
terminate over D, d € D, and R = D[X,d/X] a subring
of D[X,1/X]. In this paper, we show that R is a weakly
factorial domain if and only if D is a weakly factorial GCD-
domain and d = 0, d is a unit of D or d is a prime element
of D. We also show that, if D is a weakly factorial GCD-
domain, p is a prime element of D, and n > 2 is an integer,
then D[X,p™/X] is an almost weakly factorial domain with
Cl(D[X,p"/X]) = Zn.

1. Introduction. Let D be an integral domain, I a proper ideal of
D and t an indeterminate over D. Then, R = D[tI,t7'] is a subring
of D[t,t71], called the generalized Rees ring of D with respect to I.
In [19], Whitman proved that, if I is finitely generated, then R is a
unique factorization domain (UFD) if and only if D is a UFD and ¢t~*
is a prime element of R. Also, in [17, Proposition 3], Mott showed
that R is a GCD-domain if and only if D is a GCD-domain and ¢!
is a prime element of R. In [15, Corollary 3.10], the authors proved
that R is a Priifer v-multiplication domain (PvMD) if and only if D
is a PuMD, under the assumption that ¢! is a prime element of R
and (—, I" = (0). Let I = dD for some d € D and ¢t~ = X; thus,
R = D[X,d/X]. In [1], the authors studied several types of divisibility
properties of R, including Krull domains, UFDs and GCD-domains.

An element a € D is said to be primary if the principal ideal aD of
D is a primary ideal, and we say that D is a weakly factorial domain
(WFD) if each nonzero nonunit of D can be written as a finite product
of primary elements of D. Clearly, a prime element of D is primary,
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and D is a UFD if and only if every nonzero nonunit of D can be
written as a finite product of prime elements of D. Hence, a UFD
is a WFD, while a rank-one nondiscrete valuation domain is a WFD
but not a UFD. It is known that D[X] is a WFD if and only if D is
a weakly factorial GCD-domain. More generally, if " is a torsionless,
commutative, cancellative monoid whose quotient group satisfies the
ascending chain condition on its cyclic subgroups, then the semigroup
ring D[I'] is a WFED if and only if D is a weakly factorial GCD domain
and T' is a weakly factorial GCD-semigroup [10, Theorem 9]. In this
paper, we study when R = D[X,d/X] is a WFD.

1.1. Results. Let X be an indeterminate over D, d € D, and R =
D[X,d/X]. In this paper, among other things, we show that R is a
WEFD if and only if R is a weakly factorial GCD-domain. The latter
condition holds if and only if D is a weakly factorial GCD-domain and
d =0, dis a unit of D or d is a prime element of D. We also prove that
R is a ring of Krull type if and only if D is a ring of Krull type. We
finally prove that, if D is a weakly factorial GCD-domain, p is a prime
element of D, and n > 2 is an integer, then D[X,p™/X] is an almost
weakly factorial domain with CI(D[X,p"/X]) = Z,.

1.2. Definitions. Let K be the quotient field of D and F(D) the set
of nonzero fractional ideals of D. For I € F(D), let 7! = {z € K |
xIl C D}, I, =YY and I, =U{J, | J C I and J € F(D) is
finitely generated}. We say that I € F(D) is a t-ideal if I; = I, and a
t-ideal of D is a maximal ¢-ideal if it is maximal among proper integral
t-ideals of D. Let t-Max(D) be the set of maximal t-ideals of D. It is
known that t--Max(D) # 0 if D is not a field; each ideal in t--Max(D) is
a prime ideal; each prime ideal minimal over a t-ideal is a t-ideal; and
D = Npetmax(p) Pp- We say that t-dim(D) = 1if D is not a field and
each prime t-ideal of D is a maximal ¢-ideal. An I € F(D) is said to be
t-invertible if (I1~1); = D. Let T(D) be the set of t-invertible fractional
t-ideals of D. Then, T(D) is an abelian group under I * J = (I.J);.
Clearly, Prin(D), the set of nonzero principal fractional ideals of D, is
a subgroup of T'(D), and Cl(D) = T'(D)/Prin(D) is called the (¢-)class
group of D. Note that, if D is a Krull (respectively, Priifer) domain,
then CI(D) is the usual divisor (respectively, ideal) class group of D.

Let X*(D) be the set of height-one prime ideals of D. We say
that D is a weakly Krull domain if D = mPeXl(D) Dp, and this
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intersection has finite character, i.e., each nonzero nonunit of D is a
unit in Dp except finitely many prime ideals in X*(D). In this case,
t-Max(D) = X!(D), and thus, t-dim(D) = 1 when D is a weakly Krull
domain. Clearly, Krull domains are weakly Krull domains. An almost
weakly factorial domain (AWFD) is an integral domain D in which, for
each 0 # d € D, there is an integer n = n(d) > 1 such that d" can be
written as a finite product of primary elements of D. It is known that
D is a WFD (respectively, an AWFD) if and only if D is a weakly Krull
domain with CI(D) = {0} (respectively, Ci(D) torsion) [5, Theorem)]
(respectively, [4, Theorem 3.4]); hence,

WFD = AWFD = weakly Krull domain.

It is easy to see that, if N is a multiplicative subset of a weakly
Krull domain (respectively, WFD, an AWFD) D, then Dy satisfies the
corresponding property. We say that D is a Prifer v-multiplication
domain (PvMD) if each nonzero finitely generated ideal of D is t-
invertible. It is known that D is a PoMD if and only if D[X] is a
PuMD [18, Corollary 4] or, equivalently, D[X,1/X] is a PuMD [16,
Theorem 3.10]. In addition, D is a GCD-domain if and only if D is a
PvMD with CI(D) = {0} [9, Proposition 2].

2. Main results. Let D be an integral domain, X an indeterminate
over D,d€ D, R=D[X,d/X], S={X*|k>0},and T = {(d/X)" |
k > 0}; thus, Rg = D[X,1/X]. Clearly, if d = 0 (respectively, d is
a unit of D), then R = D[X] (respectively, R = D[X,1/X]). Also, if
d # 0, then Rr = D[X/d,d/X], R = Rs N Ry, [1, Lemma 7(b)], and
Rr = D[y,y~!] for an indeterminate y over D.

Lemma 2.1. Let A be a commutative ring with identity and X an
indeterminate over A. Then, the zero ideal of A is primary if and only
if the zero ideal of A[X] is primary.

Proof. Let N(B) (respectively, Z(B)) be the set of nilpotent ele-
ments (respectively, zero divisors) of a ring B. Clearly, N(B) C Z(B),
and the zero ideal of B is primary if and only if N(B) = Z(B). Hence, it
suffices to show that Z(A) C N(A) if and only if Z(A[X]) C N(A[X]).
Assume that Z(A) C N(A), and let f € Z(A[X]). Then, fg = 0 for
some 0 # g € A[X]. Hence, if ¢(h) is the ideal of A generated by the
coefficients of a polynomial h € A[X], then by the Dedekind-Mertens
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lemma [12, Theorem 28.1], there is an integer n > 1 such that

c(f)"elg) = c(f)"e(fg) = (0).

Note that ¢(f) C Z(A) since g # 0, and c(f) is finitely generated.
Hence, by assumption, ¢(f)™ = (0) for some integer m > 1. Thus,

fme (e(HIXD™ = e(f)"X] = (0),

and hence, f € N(A[X]). The converse follows since Z(A) C Z(A[X]).
O

Proposition 2.2. The following statements are equivalent for R =
D[X,d/X] with0#d e D.

(i) X is irreducible (respectively, prime, primary) in R;
(ii) d/X is irreducible (respectively, prime, primary) in R;
(iii) d is a nonunit (respectively, prime, primary) in D.

Proof. The properties of irreducible and prime appear in [1, Propo-
sition 1]. For the primary property, note that

(D/dD)[X] = D [X7 )d(} /(X)=D [X, ;]/(;)

Also, note that an ideal I of a ring A is primary if and only if Z(A/I) =
N(A/I). Thus, the result follows directly from Lemma 2.1. O

Corollary 2.3. Let d € D be a nonzero nonunit and R = D[X,d/X].
If dD is primary in D, then v XR is a mazimal t-ideal of R and
(X,d/X), = R.

Proof. By Proposition 2.2, X R is a primary ideal of R, and thus,
VXR is a maximal ¢-ideal [8, Lemma 2.1]. Next, note that

1 1
R|l—|=D|x, =
%] - %]
and dD[X,1/X] is primary. Hence, if @ = dD[X,1/X]N R, then Q
is primary. In addition, d = X -d/X and X ¢ /Q since QR[1/X] C
R[1/X]. Thus, d/X € @, and, since d/X is primary by Proposition 2.2,
(X,d/X), = R. O
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A nonzero prime ideal @ of D[X] is called an upper to zero in D[X]
if @ N D = (0), and we say that D is a UMT-domain if each upper
to zero in D[X] is a maximal ¢-ideal of D[X]. It is known that D
is a PuMD if and only if D is an integrally closed UMT-domain [14,
Proposition 3.2]. In addition, D[X] is a weakly Krull domain if and
only if D[X,1/X] is a weakly Krull domain, which is exactly when D
is a weakly Krull UMT-domain [3, Propositions 4.7, 4.11].

Proposition 2.4. Let d € D be a nonzero monunit and R =
D[X,d/X]. Then, R is a weakly Krull domain if and only if D is
a weakly Krull UMT-domain.

Proof. Let S = {X* |k >0} and T = {(d/X)* | k > 0}. If Ris a
weakly Krull domain, then Rg = D[X,1/X] is a weakly Krull domain,
and thus, D is a weakly Krull UMT-domain. Conversely, assume that
D is a weakly Krull UMT-domain. Then, both

1 d X

RS:D|:X,X:| and RT:D|:X7d:|
are weakly Krull domains. Note that R = Rg N Rp. Thus, R is a
weakly Krull domain. |

Let S be a saturated, multiplicative set of D and
N(S)={de D] (s,d), =D for all s € S}.

Clearly, D = Dgs N Dy(s). We say that S is a splitting set if, for each
0 # d € D, we have d = st for some s € S and ¢t € N(S). It is known
that, if S is a splitting set of D generated by a set of prime elements,
then Dy gy is a UFD and CI(D) = Cl(Ds) [2, Theorem 4.2].

Lemma 2.5. Let S be a splitting set of an integral domain D generated
by a set of prime elements in D. Then, D is a WED if (and only if)
Dg is a WFD.

Proof. Since CI(D) = Cl(Dg) = {0}, it suffices to show that D is
a weakly Krull domain. Note that Dy (g) is a UFD; thus, Dy(g) is a
weakly Krull domain. Hence, D is a weakly Krull domain since Dg is
a weakly Krull domain, by assumption, and D = Ds N Dy g)- |
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We next give the main result of this paper for which we recall from
[10, Theorem 9] that the following three conditions are equivalent:

(i) D[X] is a WFD;
(ii) D[X,1/X] is a WFD; and
(iii) D is a weakly factorial GCD-domain.

Note also that D is a PuMD if and only if Dp is a valuation domain
for all P € t-Max(D) [13, Theorem 5].

Theorem 2.6. Let R = D[X,d/X] with d € D. Then, the following
statements are equivalent.

(i) R is a WFD;
(ii) R is a weakly factorial GCD-domain;
(iii) D is a weakly factorial GCD-domain, and d = 0, d is a unit
of D or d is a prime element of D.

Proof.

(i) = (ii). If d =0 or d is a unit of D, then R = D[X] or R = D[X,
1/X], and hence, R is a weakly factorial GCD-domain.

Now, assume that d is a nonzero nonunit. It suffices to show that
R is a PuMD since a GCD-domain is a PoMD with trivial class group.
Let Q € t-Max(R). Then, htQ = 1. If X ¢ @, then Qs ¢ Rg,
where S = {X™ | n > 0}. Note that Rg is a WFD by (i) and
Rs = DI[X,1/X]; thus, D is a weakly factorial GCD-domain, and
hence, Rg is a PvMD. Thus, Rg = (Rs)gs is a rank-one valuation
domain. Next, assume that X € Q. Then, d/X ¢ @ by Corollary 2.3,
and hence, if T = {(d/X)™ | n > 0}, then Rr = D[d/X, X/d] and
Qr € Rr. Note that D is a PoMD; thus, D[d/X, X/d] is a PvMD.
Note also that Qr is a prime t-ideal of Ry since ht(Qr) = 1. Hence,
Ro = (Rr)q, is a rank-one valuation domain. Thus, R is a PuMD.

(ii) = (iii). Note that R[1/X] = D[X,1/X] is a WFD. Hence, D is
a weakly factorial GCD-domain. Assume that d is a nonzero nonunit.
Then, X is irreducible in R by Proposition 2.2, and, since R is a GCD-
domain, X is a prime in R. Thus, again by Proposition 2.2, d is a
prime element of D.

(iii) = (i). If d = 0, then R = D[X], and hence, R is a WFD. Next,
if d is a unit, then R = D[X,1/X]. Thus, R is a WFD. Finally, assume
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that d is a prime element of D. Then, X is a prime element of R by
Proposition 2.2. In addition, (),—, X™R = {0} since dD is a height-one
prime ideal of D; thus, S = {X™ | n > 0} is a splitting set of R [2,
Proposition 2.6]. Note that Rg = D[X,1/X]. Hence, Rg is a WFD.
Thus, R is a WFD by Lemma 2.5. ]

An integral domain D is a ring of Krull type if there is a set {V,}
of valuation overrings of D such that

(i) each V,, = Dp for some prime ideal P of D;
(i) D =[]Va; and

[e3
(iii) this intersection has finite character.

Then D is a ring of Krull type if and only if D is a PoMD of finite
t-character (i.e., each nonzero nonunit of D is contained in only finitely
many maximal ¢-ideals) [13, Theorem 7]. It is known that D is a ring
of Krull type if and only if D[X] is a ring of Krull type or, equivalently,
D[X,1/X] is a ring of Krull type (cf., [13, Propositions 9, 12]).

Theorem 2.7. Let R = D[X,d/X] with d € D. Then, R is a ring of
Krull type if and only if D is a ring of Krull type.

Proof. If d = 0 (respectively, d is a unit of D), then R = D[X]
(respectively, R = D[X,1/X]). Hence, we may assume that d is a
nonzero nonunit of D. Let

S={X"|n>0} and T:{<;> |n>0}.
Then ) X d
RSD|:XaX:|7 RTD|:d7X:|7

and R = Rs N Ry. Also, D[X/d,d/X] is isomorphic to D[y, 1/y] for
an indeterminate y over D.

If R is a ring of Krull type, then Rg is a ring of Krull type [13,
Proposition 12], and thus, D is a ring of Krull type. Conversely,
assume that D is a ring of Krull type. Then, both Rg and Ry are
rings of Krull type. Let A = {P € t-Spec(R) | Ps € t-Max(Rg)} and
B = {P € t-Spec(R) | Pr € t-Max(Rr)}. Then, Rp is a valuation
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domain for each P € AU B,

R:RSmRT:<ﬂ Rp>m( N Rp>,

PcA pPeB

and this intersection has finite character. Thus, R is a ring of Krull
type. (Il

A generalized Krull domain is an integral domain D such that

(i) Dp is a valuation domain for all P € X!(D);

(i) D =\pexi(p) Dpr; and
(iii) this intersection has finite character.

Then, we have the following implications:

e Generalized Krull domain < ring of Krull type + ¢-dimension one
& weakly Krull domain + PvMD = weakly Krull domain,

® Generalized Krull domain =———=> ring of Krull type

M

Krull domain ———> PvMD ———> UMT-domain.

However, in general, the reverse implications do not hold.

Corollary 2.8. Let R = D[X,d/X] with d € D. Then, R is a

generalized Krull domain if and only if D is a generalized Krull domain.

Proof. Let the notation be as in the proof of Theorem 2.7, and note
that a generalized Krull domain is merely a ring of Krull type with
t-dimension one. Note also that R and D are PvMDs by Theorem 2.7;
hence, t-dim(R) = 1 < t-dim(Rg) = t-dim(Rr) = 1 & ¢-dim(D) = 1.
Thus, again by Theorem 2.7, R is a generalized Krull domain if and
only if D is a generalized Krull domain. |

A Krull domain D is called an almost factorial domain if Cl(D)
is torsion. It is known that a Krull domain D is an almost factorial
domain if and only if D is an AWFD [11, Proposition 6.8]. In addition,
if D is a UFD, p is a prime element of D, and n > 1 is an integer, then
D[X,p"/X]is a Krull domain with CI(D[X,p"/X]) = Z,, [1, Theorems



WEAKLY FACTORIAL PROPERTY OF D[X,d/X] 2183

8 and 16]. The next result is an AWFD analog for which we first note
that, if R = D[X,d/X] with d € D, then R is a Z-graded integral
domain with deg(aX™) = n and deg(a(d/X)") = —n for 0 # a € D
and the integer n > 0. Let

k
H:{an|O7éaeDandk20}U{a(;i(> O#aeDandeO}.

Then, H is the set of nonzero homogeneous elements of R, and, if @ is
a maximal #-ideal of R with Q N H # (), then Q is generated by Q N H
[7, Lemma 1.2].

Corollary 2.9. Let D be a weakly factorial GCD-domain, p a prime
element of D and n > 2 an integer. Then, R = D[X,p"/X] is an
AWFD with CI(R) = Zy,.

Proof. A generalized Krull domain is a weakly Krull PvMD, and
thus, R is a weakly Krull PuMD by Corollary 2.8. Hence, it suffices to
show that Cl(R) = Z,.

Let Q = VXR, S = {X¥ | & > 0}, and note that Q is a
unique maximal t-ideal of R with Q NS # () since X is primary by
Proposition 2.2. Let A = {P € t-Max(R) | PN S = 0}. Then, ¢
Max(R)\ A = {Q}, and Rs = D[X,1/X] is a WFD, so Cl(Rg) = {0}.
Thus, CI(R) is generated by the classes of ¢-invertible Q-primary ¢-
ideals of R [3, Theorem 4.8].

Note that X is homogeneous, (X,p"/X), = R, and (a,p), = R for
all a € D\ pD. Hence, @ = (X,p),, and, since R is a PoMD, Q is a
t-invertible prime t-ideal. Note that

n

n n n '3 n p
(@ = (X = (X = (X x5 ) = xR
(see [6, Lemma 3.3] for the second equality), while (Q¥), is not
principal for ¥ = 1,...,n — 1. Note also that, if A is a Q-primary
t-ideal of R, then A = (Q™); for some m > 1, and thus, (4"); = X™R.
Hence, Cl(R) = Zy,. O

We conclude this paper with some examples of weakly factorial GCD
domains with prime elements.



2184 G.W. CHANG

Example 2.10.

(1) Let V be a rank-one nondiscrete valuation domain, y an inde-
terminate over V and D = V[y|. Then, D is a weakly factorial GCD-
domain, and y is a prime of D. Thus, R = D[X,y/X] is a WFD, and
D[X,y™/X] is an AWFD with

(o[ 2]) -z,

(2) Let D be a weakly factorial GCD-domain, X an indeterminate
over D, and S = {f € D[X] | f # X, f aprimein D[X]}. Then,
D[X]s is a one-dimensional weakly factorial GCD-domain with a prime
element X. (For, if Q is a prime ideal of D[X] with htQ > 2, then @
contains a nonconstant prime polynomial since D is a GCD-domain.)

for all integers n > 2.
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