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SIGN-CHANGING SOLUTIONS TO
A CLASS OF NONLINEAR EQUATIONS

INVOLVING THE p-LAPLACIAN

WEI-CHUAN WANG AND YAN-HSIOU CHENG

ABSTRACT. This paper deals with a class of nonlinear
problems

−(rn−1|u′|p−2u′)′ + rn−1q(r)|u|p−2u = rn−1w(r)f(u)

in (0, 1), where 1 ≤ n < p < ∞ and ′ = d/dr. We study the
existence of nodal solutions to this nonautonomous system.
We give necessary and sufficient conditions for the existence
of sign-changing solutions and also observe an application
related to the case of multi-point boundary conditions.
Methods used here are energy function control, shooting
arguments and Prüfer-type substitutions.

1. Introduction. The aim of this paper is to study the properties
of existence and nonexistence of sign-changing solutions to a class of
nonlinear equations

−(rn−1|u′|p−2u′)′ + rn−1q(r)|u|p−2u = rn−1w(r)f(u),(1.1)

u′(0) = u(1) = 0,(1.2)

where r = |x|, ′ = d/dr, p > 1 and n ≥ 1. It is known that (1.1)–(1.2)
is a radial version of the following p-Laplacian problem considered on
the unit ball in Rn,

(1.3) −△pu = f(|x|, u),

where △pu = div(|∇u|p−2∇u). The p-Laplacian operator has attracted
much attention and arises in various fields, such as non-Newtonian flu-
ids and nonlinear diffusion problems. The quantity p is a characteristic
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of the medium. Media with p > 2 are called dilatant fluids, and those
with p < 2 are called pseudoplastics. If p = 2, they are Newtonian flu-
ids. For the above topics, one may refer to [9, 10, 17, 20, 24, 28, 29]
and their bibliographies. Recently, some results for radial solutions re-
lated to (1.3) have been obtained [7, 13, 14, 23, 26, 31]. For the
radial eigenvalues related to (1.3) in R2, one may refer to [1].

In [15, 16], the author dealt with the case of n = 1 (non-radially
symmetric case) for the 2-Laplacian operator. Here, we consider the
general case n > 1, p > 1. Furthermore, the purpose of this paper is to
extend our previous work [31] to a more general p-Laplacian equation
with restrictions (C1)–(C4) mentioned below. Throughout the paper,
we assume that the following conditions hold:

(C1) p > n;
(C2) w, q ∈ C1(R+), and w ≥ δ1 on [0,∞) for some δ1 > 0;
(C3) f ∈ C1(R), f(s) > 0 for s > 0 and f(−s) = −f(s) for s ̸= 0;
(C4) there exist extended real numbers 0 ≤ f0, f∞ ≤ ∞ such that

lims→0+ f(s)/s
p−1 = f0 and lims→∞ f(s)/sp−1 = f∞.

In fact, the eigenvalues are easy to analyze for one-dimensional p-
Laplacian eigenvalue problems coupled with two-point boundary con-
ditions [2, 4, 5, 6, 11, 18], etc. In [31], the authors considered
(1.1)–(1.2) with q ≡ 0. Two sufficient conditions for the existence of
sign-changing solutions with prescribed number of zeros are established
by comparing the ratios f(u)/|u|p−2u at infinity and zero, respectively,
with the eigenvalues of the radial p-Laplacian problem with Neumann-
Dirichlet boundary conditions.

In [8], del Pino and Manásevich studied the bifurcation of solutions
from eigenvalues of the p-Laplacian. They also discussed the existence
of sign-changing radial solutions for

−∆pu = g(u) in Ω; u = 0 on ∂Ω,

where Ω is a bounded domain in RN with boundary ∂Ω of C2,β and
g : R → R is continuous with g(0) = 0. They showed [8, Theorem 4.2]
that, if

sup
s∈R

∣∣∣∣ g(s)

|s|p−2s

∣∣∣∣ <∞ and lim
s→0

g(s)

|s|p−2s
< λk ≤ λn < lim inf

|s|→∞

g(s)

|s|p−2s
,
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then, for each k ≤ j ≤ n, there is a radial solution with exactly
j − 1 nodes, where λk is the kth eigenvalue of −(rn−1|u′|p−2u′)′ =
µrn−1|u|p−2u coupled with u′(0) = 0 and u(1) = 0.

Motivated by [8, 31], we study in this paper (1.1)–(1.2) with a
nonautonomous nonlinear term which is different from [8, Theorem
4.2] and extend the result in [31] to the general case; see Theorems
1.1, 1.2 and Corollary 1.3. Corollary 1.3 gives necessary and sufficient
conditions for the existence and nonexistence of sign-changing solutions
with the prescribed number of zeros to this problem. However, this
extension is not trivial due to the fact that two energy functions
(mentioned in Section 2) with a general q may not be nonnegative.
More subtle arguments are needed in the proofs even when one develops
the elementary property to the initial value problem. Under the
derivation of the results of Theorems 1.1, 1.2 and Corollary 1.3, we
observe an application to the case of multi-point boundary conditions.
The existence of solutions, especially positive solutions, of boundary
value problems with multi-point boundary conditions have been studied
extensively, see, for example, [12, 21, 22, 25, 32] and the references
therein. Moreover, to the best of the authors’ knowledge, there is
nothing so far on the existence of nodal solutions to problems with
the multi-point boundary conditions related to (1.1). Essentially, the
methods used in this work are the energy function control, shooting
arguments and Prüfer-type substitutions.

Now, in order to discuss the main result, we introduce the following
eigenvalue problem

−(rn−1|y′|p−2y′)′ = rn−1(λw(r)− q(r))|y|p−2y,(1.4)

y′(0) = y(1) = 0.(1.5)

It is well known that, cf., [2, 27, 30], (1.4)–(1.5) has a countable
number of eigenvalues {λi}i∈N satisfying

−∞ < λ1 < λ2 < λ3 < · · · < λk < λk+1 < · · · −→ ∞,

and the corresponding eigenfunction yk(r) has exactly k − 1 zeros in
(0, 1). In the sequel, we assume λm is the first positive eigenvalue of
(1.4)–(1.5) and define Nm = {n ∈ N : n ≥ m}. Similarly, (1.4) with
the Neumann boundary conditions

(1.6) y′(0) = y′(1) = 0,
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has a countable number of eigenvalues {µi}i∈N satisfying

−∞ < µ1 < µ2 < µ3 < · · · < µk < µk+1 < · · · −→ ∞,

and its corresponding kth eigenfunction has exactly k zeros in (0, 1).

Our main result is the following.

Theorem 1.1.

(i) For all u ∈ (0,∞), if f(u)/up−1 < λk for some k ∈ N, then
(1.1)–(1.2) has no solution with exactly i zeros in (0, 1) for any
i ≥ k − 1.

(ii) For all u ∈ (0,∞), if λk < f(u)/up−1 for some k ∈ N, then
(1.1)–(1.2) has no solution with exactly i zeros in (0, 1) for any
i ≤ k − 1.

(iii) For all u ∈ (0,∞), if f(u)/up−1 ̸= λk for any k ∈ N, then (1.1)–
(1.2) has no nontrivial solution.

Theorem 1.2. Let f0 and f∞ be defined as in (C4). Assume that
there exists k ∈ Nm such that either λk ∈ (f0, f∞) or (f∞, f0). Then
(1.1)–(1.2) has a solution with exactly k − 1 zeros in (0, 1).

The combination of Theorems 1.1 and 1.2 immediately leads to the
following necessary and sufficient conditions.

Corollary 1.3. Assume f(u)/up−1 ∈ (f0, f∞) or (f∞, f0) for all
u ∈ (0,∞). Then, for k ∈ Nm, (1.1)–(1.2) has a solution with exactly
k − 1 zeros in (0, 1) if and only if λk ∈ (f0, f∞) or (f∞, f0).

As a byproduct from the derivation of the above result, we intend
to extend the similar result to the case of (1.1) coupled with the multi-
point boundary conditions

u′(0) = 0, u′(1)−
d∑

i=1

kir
n−1/p−1
i u′(ri) = 0,(1.7)
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or

u′(0) = 0, u(1)−
d∑

i=1

kiu(ri) = 0,(1.8)

where d ∈ N and ri ∈ (0, 1) for i = 1, 2, 3, . . . , d. Note that, by
definition, the following property for f0 and f∞ is valid. Assume that

(1.9) f0, f∞ <∞.

By (C4) and (1.9), i.e., for every ϵ > 0, there exists anM > 0 such that
|f(u)| ≤ (f∞ + ϵ)|u|p−1 for |u| ≥M . Then, for this M , there exists an
N1 > 0 satisfying |f(u)| ≤ N1|u|p−1 for |u| < M . Thus, for every u,
there exists an N > 0 which is independent of u such that

(1.10) |f(u)| ≤ N |u|p−1.

Now, we define two constants

(1.11) N ≡ max{w(r)N + |q(r)| : r ∈ [0, 1]} and N̂ ≡ p− 1

p− n
+N.

Then, we obtain the next result for the multi-point boundary value
problem.

Theorem 1.4.

(i) Consider problems (1.1) and (1.7), and denote by {λi}i∈N the
eigenvalues of (1.4) and (1.5). Assume that f0 < λk and λk+1 <
f∞ < ∞ for some k ∈ N. Suppose that the following additional
condition is valid

(1.12) 1− eN̂/(p−1)
d∑

i=1

|ki| > 0.

Then, (1.1) and (1.7) has a solution with k zeros in (0, 1).
(ii) Consider problems (1.1) and (1.8), and denote by {µi}i∈N the

eigenvalues of (1.4) and (1.6). Assume that f0 < µk and µk+1 <
f∞ < ∞ for some k ∈ N. Suppose that condition (1.12) holds.
Then, (1.1) and (1.8) have a solution with k or k + 1 zeros in
(0, 1).
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The outline of this paper is as follows. In Section 2, some elementary
properties for the initial value problem are first developed. A version
of the Pohozaev identity is also discussed in this section. In Section 3,
some technical lemmas are represented. Finally, the proofs of Theorems
1.1, 1.2 and 1.4 are given in Section 4.

2. Preliminaries. In this section, we focus on elementary proper-
ties for solutions to the initial value problem consisting of (1.1) coupled
with

(2.1) u(0) = α, u′(0) = 0,

where α is a positive parameter. The local existence and uniqueness of
the solution to (1.1) and (2.1) is valid and can be quoted from [23, 26];
it will be stated in Theorem 2.1. Then, we will show global existence
to the local solution by dividing the arguments into two cases.

Theorem 2.1. [23, Theorem EUCD], [26, Theorems 1, 4]. Assume
that conditions (C1) and (C2) hold. Then, there exists a local solution
u(r;α) of (1.1) and (2.1). Moreover, this solution is unique in a
neighborhood J = [0, a] for some a > 0.

By local existence in J , assume here that J = [0, a] is the maximal
interval of the existence of solution u(r;α).

Note that (1.1) may be rewritten as follows, for r ̸= 0:

(|u′|p−1u′)′ +
n− 1

r
|u′|p−2u′ + wf(u)− q|u|p−2u = 0;

i.e., for r ̸= 0:

(2.2) −(n− 1)
|u′|p−2u′

r
= −q|u|p−2u+ wf(u) + (p− 1)|u′|p−2u′′.

As (2.2) is multiplied by u′(r), then

(2.3) −(n− 1)
|u′|p

r
= −q|u|p−2uu′ + wf(u)u′ + (p− 1)|u′|p−2u′u′′.

Since the local solution uniquely exists in J by Theorem 2.1, all
terms on the right-hand side of (2.2) are bounded in J . Then
(|u′|p−2u′)/r is also bounded in J . Similarly, in (2.3), the boundedness
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of (|u′(r)|p)/r in J is obtained. By (2.3) and the initial conditions (2.1),
limr→0(|u′(r)|p)/r = 0.

Now, we show the global existence of u(r, α) in [0, 1]. Here two
versions of energy are employed to achieve this goal.

(i) Consider the case of lims→∞ f(s)/sp−1 = f∞ = ∞. Let u be a
solution of (1.1) and (2.1), and define the functional E[u](r, α) by:

(2.4) E[u](r, α) ≡ |u′(r)|p

p
+ w(r)F (u(r))− 1

p(p− 1)
q(r)|u(r)|p,

with

(2.5) E[u](0, α) = w(0)F (α)− q(0)

p(p− 1)
αp,

where F (s) ≡ 1/(p− 1)
∫ s

0
f(t) dt. Then, it follows from (1.1), (2.3)

and the boundedness of (|u′(r)|p)/r that, for r ∈ (0, a],

d

dr
E[u](r, α) ≡ E[u]′(r, α)

= −n− 1

p− 1
· |u

′(r)|p

r
+ w′(r)F (u(r))− q′(r)

p(p− 1)
|u(r)|p(2.6)

≤ kw(r)F (u(r))− (k + 1)

p(p− 1)
q(r)|u(r)|p

+
1

p(p− 1)
[(k + 1)q(r)− q′(r)] |u(r)|p,(2.7)

where

k = max

{
|w′(r)|
w(r)

: r ∈ [0, 1]

}
.

Since w(r) > 0 is continuous and q, q′ are bounded on [0, 1], we can
find some positive constant h such that
(2.8)

h

p(p− 1)
[(k + 1)q(r)− q′(r)] ≤ w(r) and

h

p(p− 1)
|q(r)| ≤ w(r).

In this case, f∞ = ∞, there exists an M > 0 such that |u(r)|p ≤
hF (u(r)) for |u(r)| ≥ M . For r ∈ JM ≡ {r ∈ J : |u(r)| ≤ M}, there
exists NM > 0 satisfying E′[u](r, α) ≤ NM on JM . Furthermore, for
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r ∈ J\JM , by (2.7), (2.8), we have

E[u]′(r, α) ≤ kw(r)F (u(r))− k + 1

p(p− 1)
q(r)|u(r)|p + w(r)

h
· hF (u(r))

= (k + 1)

{
w(r)F (u(r))− 1

p(p− 1)
q(r)|u(r)|p

}
≤ (k + 1)E[u](r, α).

Note that the second term of (2.8) implies that E[u](r, α) ≥ 0 on J\JM .
Hence, for r ∈ J ,

E[u]′(r, α) ≤ NM + (k + 1)E[u](r, α).

Integrating the above inequality, we can obtain that, for r ∈ J ,

E[u](r, α) ≤ E[u](0, α) + aNM +

∫ r

0

(k + 1)E[u](t, α) dt.

By Gronwall’s inequality and (2.5), for r ∈ J ,

(2.9) E[u](r, α) ≤
(
w(0)F (α)− q(0)

p(p− 1)
αp + aNM

)
e(k+1)a.

(ii) Let f∞ < ∞. Then, for any ϵ > 0, there exists an M ′ > 0 such
that |f(u)| ≤ (f∞ + ϵ)|u|p−1 for |u(r)| ≥ M ′. Now, rewrite (1.1) and
(2.1) as:

u
′(r) = |v(r)|p∗−2v(r),

v′(r) = q(r)|u(r)|p−2u(r)− w(r)f(u(r))− n− 1

r
|u′(r)|p−2u′(r),

(2.10)

with u(0) = α and v(0) = 0, where p∗ = p/(p− 1) is the conjugate
exponent of p. Note that (n− 1)[|u′(r)|p−2u′(r)]/r can be bounded by
some positive constant kα from (2.2) and the argument below (2.3).
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Integrating (2.10) over [0, r] for r ∈ J , we have

u(r) = α+

∫ r

0

|v(t)|p
∗−2v(t) dt,(2.11)

v(r) =

∫ r

0

q(t)|u(t)|p−2u(t) dt(2.12)

−
∫ r

0

w(t)f(u(t)) dt

− (n− 1)

∫ r

0

|u′(t)|p−2u′(t)

t
dt.

For |u(r)| < M ′ and by (2.12), it is easy to obtain that |v(r)| ≤
NM ′ + kα, where NM ′ is some constant dependent upon M ′. On the
other hand, by the above for |u(r)| ≥M ′ and r ∈ J , we obtain

|v(r)| ≤
∫ r

0

|q(t)||u(t)|p−1dt

+

∫ r

0

w(t)(f∞ + ϵ)|u(t)|p−1dt+ ka

≤ kα + c1

∫ r

0

|u(t)|p−1dt,

where c1 > 0 is some constant. Thus, for r ∈ J ,

|v(r)| ≤ (NM ′ + kα) + c1

∫ r

0

|u(t)|p−1dt.

Then, it follows from the Hölder inequality that

|v(r)| ≤ (NM ′ + kα) + c2

(∫ r

0

|u(t)|pdt
)(p−1)/p

for some c2 > 0, i.e.,

|v(r)|p/(p−1) ≤ [NM ′ + kα]
p/(p−1) +

(∫ r

0

|u(t)|pdt
)
(c

p/(p−1)
2 +Nα),

where Nα is another constant. Thus, for r ∈ J ,

(2.13) |v(r)|p/(p−1) ≤ c3 + c4

∫ r

0

|u(t)|pdt,
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where c3 and c4 are positive constants. Similarly, for some constant
c5 > 0,

(2.14) |u(r)|p ≤ αp + c5

∫ r

0

|v(t)|p/(p−1)dt.

From (2.13)–(2.14), we obtain

|u(r)|p + |v(r)|p
∗
≤ (αp + c3) + c6

∫ r

0

(|u(t)|p + |v(t)|p
∗
) dt,

where c6 = max{c4, c5}. Note that the constants ci, i = 1, 2, . . . , 6,
depend on α, a and M ′. By Gronwall’s inequality, for r ∈ J and fixed
α > 0,

(2.15) |u(r)|p + |v(r)|p
∗
≤ (αp + c3) exp(c6a) <∞.

From the above two cases, we derive the following result.

Proposition 2.2. For α > 0, the solution u(r;α) of the initial value
problem (1.1), and (2.1) exists over the whole interval [0, 1].

Proof. Suppose that u(r;α) does not exist on the whole interval.
Without loss of generality, we assume that u(r;α) exists on a maximal
right interval [0, c) for 0 < c < 1. Then, u(r;α) is unbounded on [0, c),
limr→c− |u(r;α)| = ∞. Otherwise, if u(r;α) is bounded on [0, c), then
limr→c− u

′(r;α) exists by integrating (1.1) over the interval [0, c). This
implies that u(r;α) can be extended through c.

On the other hand, since limr→c− |u(r;α)| = ∞, there exists a
sequence rn → c− such that |u(rn;α)| → ∞. For the case of f∞ = ∞,
this implies that lims→∞ (F (s))/|s|p = f∞ = ∞. Thus, by (2.4), we
have

E[u](rn, α) ≥
(
w(rn)

F (u(rn))

|u(rn)|p
− 1

p(p− 1)
q(rn)

)
· |u(rn)|p −→ ∞ as n→ ∞.

This provides a contradiction to the argument in (2.9). For the case
of f∞ < ∞, it also contradicts the argument in (2.15). Therefore, the
solution u(r;α) exists on [0, 1]. �
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Now, we represent a variant of the well-known Pohozaev identity for
(1.1) and (2.1) in Lemma 2.3 for the sake of independent interest. The
proof may easily be verified by differentiating (2.16) and applying (1.1).
Therefore, it is omitted here.

Lemma 2.3. (Pohozaev identity). Any solution u = u(r;α) of (1.1)
and (2.1) satisfies the identity

d

dr
P (r;u) =

n

p
rn−1

(
pw(r)F (u)

[
1 +

rw′(r)

nw(r)

]
− |u|p

[
q(r) +

rq′(r)

n

])
,

where
(2.16)

P (r;u) =
p− 1

p
rn|u′|p+ n− p

p

∫ r

0

sn−1|u′|pds+rnwF (u)− 1

p
rnq(r)|u|p

with F (u) =
∫ u

0
f(t) dt. Furthermore, if the solution u is nontrivial and

has infinitely many zeros in [0,∞), then there exists a sequence {rj}
such that rj → ∞ and (d/dr)P (rj ;u) = 0 for every j.

3. Prüfer-type substitutions and some technical lemmas. At
the beginning of this section, we introduce a Prüfer-type substitution
for the solution u(r;α) of (1.1) and (2.1) by using the generalized sine
function Sp(r). The generalized sine function Sp has been extensively
studied in the literature, see Lindqvist [19] or [2, 11, 27] with a minor
difference in setting. Note that

πp ≡ 2

∫ (p−1)1/p

0

dt

1− (tp/(p− 1))1/p
=

2(p− 1)1/pπ

p sin(π/p)

is the first zero of Sp in the positive real axis. With the help of the
generalized sine function, we introduce phase-plane coordinates ρ > 0
and θ for a solution u(r;α) of (1.1) and (2.1) as follows:
(3.1){

|u(r;α)|p−2u(r;α) = ρ(r;α)|Sp(θ(r;α))|p−2Sp(θ(r;α)),

rn−1|u′(r;α)|p−2u′(r;α) = ρ(r;α)|S′
p(θ(r;α))|p−2S′

p(θ(r;α)),

with

(3.2) θ(0;α) =
πp
2

and ρ(0;α) = αp−1.
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Then

(3.3) ρp/(p−1)(r;α) = |u(r;α)|p + rp(n−1)/(p−1)

p− 1
|u′(r;α)|p

and
rn−1|u′|p−2u′

|u|p−2u
=

|S′
p|p−2S′

p

|Sp|p−2Sp
.

Differentiating both sides with respect to r and employing (1.1), we
obtain

θ′(r;α) =
rn−1

p− 1

(
w(r)

f(u(r;α))

|u(r;α)|p−2u(r;α)
− q(r)

)
(3.4)

· |Sp(θ(r;α))|p + r1−n/p−1|S′
pθ(r;α)|p ≡ G(r;α; θ),

ρ′(r;α)

ρ(r;α)
=

[
r1−n/p−1 − rn−1

(
w(r)

f(u(r;α))

|u(r;α)|p−2u(r;α)
− q(r)

)]
(3.5)

· |Sp(θ(r;α))|p−2Sp(θ(r;α))S
′
p(θ(r;α)).

It is clear that u(r;α) is a solution to (1.1) and (2.1) if and only if
{θ(r;α), ρ(r;α)} satisfies (3.4)–(3.5) with conditions (3.2). Similarly,
the Prüfer phase function for (1.4)–(1.5) with λ = λk satisfies
ϕ′k(r;λk) =

rn−1

p− 1
(λkw(r)− q(r))|Sp(ϕk(r;λk))|p

+r1−n/p−1|S′
p(ϕk(r;λk))|p ≡ F (r;λk;ϕk),

ϕk(0;λk) =
πp
2
, ϕk(1;λk) = kπp.

Note that a similar method may be found in [5, 6, 27, 31].

The following lemmas are necessary for the proof of Theorem 1.2.

Lemma 3.1.

(i) Assume f0 < λk for some k ∈ Nm. Then, there exists an α∗ > 0
such that θ(1;α) < kπp for all α ∈ (0, α∗).

(ii) Assume f0 > λk for some k ∈ Nm. Then, there exists an α∗ > 0
such that θ(1; ρ) > kπp for all α ∈ (0, α∗).
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Remark 3.2. The proof of Lemma 3.1 is basically the same as that of
[31, Lemma 4.1] by applying the comparison lemma [3, page 30]. Since
no further argument is necessary, the proof of this lemma is omitted.

Lemma 3.3. Let M, α > 0, and define IM,α = {r ∈ (0, 1] : |u(r;α)| <
M}. For any L > 0 and sufficiently large M , there exists an α∗ > 0
such that |u′(r;α)| > L for α > α∗ and r ∈ IM,α.

Proof. The proof is divided into two cases of f∞ <∞ and f∞ = ∞,
individually. Here, the significance is to analyze two versions of energy.

(i) Let f∞ < ∞. By (3.5) and the Prüfer-type substitution (3.1),
for r ∈ IM,α, we obtain the boundedness:∣∣∣∣(w(r) f(u(r;α))

|u(r;α)|p−2u(r;α)
− q(r)

)
· |Sp(θ(r;α))|p−2Sp(θ(r;α))S

′
p(θ(r;α))

∣∣∣∣ ≤M1

for some M1 > 0. Thus, for r ∈ IM,α,

ρ′(r;α)

ρ(r;α)
≥ −r1−n/p−1 −M1.

For r ∈ (0, 1]\IM,α, there exists an M2 > 0 such that

w(r)

∣∣∣∣ f(u(r;α))

|u(r;α)|p−2u(r;α)

∣∣∣∣+ |q(r)| ≤M2.

Hence, for r ∈ (0, 1] and M = max{M1,M2}, we obtain

(3.6)
ρ′(r;α)

ρ(r;α)
≥ −r1−n/p−1 −M.

Integrating (3.6) over [0, r] for r ∈ (0, 1], by (C1) we obtain

ln
ρ(r;α)

ρ(0;α)
≥ − p− 1

p− n
rp−n/p−1 −Mr(3.7)

≥ − p− 1

p− n
−M ≡ −M̂.

Then, by (3.2) for r ∈ (0, 1],

ρ(r;α) ≥ ρ(0;α)e−M̂ = αp−1e−M̂ −→ ∞ as α→ ∞.
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By (3.3), for any L > 0, there exists an α∗ > 0 such that α > α∗ and
r ∈ IM,α,(
Mp +

rp(n−1)/p−1

p− 1
|u′(r;α)|p

)(p−1)/p

≥ ρ(r;α)

>

(
Mp +

rp(n−1)/p−1

p− 1
Lp

)(p−1)/p

.

This leads to the inequality |u′(r;α)| > L.

(ii) Let f∞ = ∞. For any fixed α > 0, recall (2.3) and
limr→0 |u′(r)|p/r = 0, i.e., for every α, ϵ > 0 there exists a δα,ϵ > 0
such that n− 1/p− 1 · |u′(r)|p/r < ϵ whenever 0 < r < δα,ϵ. Now,
returning to (2.6), for r ∈ (0, δα,ϵ), we obtain

d

dr
E[u](r, α) ≡ E[u]′(r, α)

= −n− 1

p− 1
· |u

′(r)|p

r
+ w′(r)F (u(r))− q′(r)

p(p− 1)
|u(r)|p

≥ −ϵ+ w′(r)F (u(r))− q′(r)

p(p− 1)
|u(r)|p.

For r ∈ [δα,ϵ, 1],

E[u]′(r, α) ≥ − p(n− 1)

δα,ϵ(p− 1)
· |u

′(r)|p

p
+ w′(r)F (u(r))− q′(r)

p(p− 1)
|u(r)|p.

Then, for r ∈ (0, 1], we get

E[u]′(r, α) ≥ −ϵ− p(n− 1)

δα,ϵ(p− 1)
· |u

′(r)|p

p
(3.8)

+ w′(r)F (u(r))− q′(r)

p(p− 1)
|u(r)|p

≥ −ϵ− p(n− 1)

δα,ϵ(p− 1)
· |u

′(r)|p

p

− kw(r)F (u(r)) +
(k + 1)

p(p− 1)
q(r)|u(r)|p

− 1

p(p− 1)
[(k + 1)q(r) + q′(r)]|u(r)|p.(3.9)
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For r ∈ IM,α, by (3.8), there exists a k > 0 such that

E[u]′(r, α) ≥ −ϵ− p(n− 1)

δα,ϵ(p− 1)

(3.10)

· |u
′(r)|p

p
− k

(
w(r)F (u(r))− 1

p(p− 1)
q(r)|u(r)|p

)
≥ −ϵ− k̂E[u](r, α),

where k̂ = max{p(n− 1)/(δα,ϵ(p− 1), k)}. Applying a similar argu-
ment as that in (2.8), we rewrite (3.9) as

E[u]′(r, α) ≥ −ϵ− p(n− 1)

δα,ϵ(p− 1)
· |u

′(r)|p

p
(3.11)

− kw(r)F (u(r)) +
(k + 1)

p(p− 1)
q(r)|u(r)|p

− w(r)

h
|u(r)|p,

for some h > 0. In the case f∞ = ∞, there exists a sufficiently large
M > 0 such that |u(r)|p ≤ hF (u(r)) for |u(r)| ≥ M . Hence, for
r ∈ (0, 1]\IM,α, (3.11) becomes

E[u]′(r, α) ≥ −ϵ− p(n− 1)

δα,ϵ(p− 1)
· |u

′(r)|p

p
(3.12)

− (k + 1)

(
w(r)F (u(r))− 1

p(p− 1)
q(r)|u(r)|p

)
≥ −ϵ− k̃E[u](r, α),

where k̃ = max{p(n− 1)/(δα,ϵ(p− 1)), k + 1}. By (3.10) and (3.12),
for r ∈ (0, 1], we obtain

(3.13) E[u]′(r, α) ≥ −ϵ−KE[u](r, α),

where K = max{k̂, k̃}. Solving (3.13) for r ∈ (0, 1] and sufficiently
large M , we have

(3.14) E[u](r, α) ≥ − ϵ

K
+

(
E[u](0, α) +

ϵ

K

)
e−K .
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In this case, by (2.5) and (C2),

(3.15) E[u](0, α) = αp

(
w(0)

F (α)

αp
− q(0)

p(p− 1)

)
−→ ∞ as α→ ∞.

Note that, in (2.4), the term∣∣∣∣− 1

p(p− 1)
q(r)|u(r;α)|p + w(r)F (u(r;α))

∣∣∣∣
can be uniformly bounded by some K1 > 0 for all α > 0 and r ∈ IM,α.
For any L > 0, by (3.14)–(3.15), we choose α∗ sufficiently large such
that

E[u](r, α) >
Lp

p
+K1 for α > α∗ and r ∈ (0, 1].

Then, for α > α∗ and r ∈ IM,α,

|u′(r)|p

p
+K1 ≥ E[u](r, α) >

Lp

p
+K1.

This concludes |u′(r, α)| > L for α > α∗ and r ∈ IM,α. �

Note that the next corollary is useful to the proof of Lemma 3.5.
For the sake of convenience, it is represented independently.

Corollary 3.4. For sufficiently large α, assume that the number of
zeros of u(r;α) are uniformly bounded in (0, 1). Then, the measure of
IM,α tends to zero as α→ ∞.

Proof. The proof of this corollary is similar to that of [31, Corollary
3.4 (ii)] by applying Lemma 3.3. Hence, it can be omitted. �

Lemma 3.5.

(i) Assume f∞ > λk for some k ∈ Nm. Then, there exists an α∗ > 0
such that θ(1;α) > kπp for all α ∈ (α∗,∞).

(ii) Assume f∞ < λk for some k ∈ Nm. Then, there exists an α∗ > 0
such that θ(1;α) < kπp for all α ∈ (α∗,∞).

Remark 3.6. The idea of the proof of this lemma is similar to that
used in [31, Lemma 4.2 (ii)]. For the sake of convenience, we provide
the details here.
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Proof.

(i) Assume the contrary. Then, there exists an αl with αl → ∞ such
that θ(1;αl) ≤ kπp. This implies that u(r;αl) has at most k − 1 zeros
in (0, 1). By Corollary 3.4, we have that

(3.16) lim
αl→∞

∥IM,αl
∥ = 0,

where ∥ · ∥ is the Lebesgue measure. Since f∞ > λk, we choose λ > 0
such that λk < λ < f∞ and take M > 0 such that

f(u(r;α))

|u(r;α)|p−2u(r;α)
≥ λ for |u(r;α)| ≥M.

For each α > 0, let ϕ(r;α) and ϕk(r;α) be Prüfer angles of the solutions
of (1.4) and (2.1) with λ and λk, respectively. Then, ϕk(1;α) = kπp,
and hence, by the comparison theorem, ϕ(1;α) = kπp + ϵ for some
ϵ > 0. Here, recall that ϕ(r;α) satisfies

ϕ′(r;α) =
rn−1

p− 1
(λw(r)− q(r))|Sp(ϕ(r;α))|p(3.17)

+ r1−n/p−1|S′
p(ϕ(r;α))|p ≡ F (r;α;ϕ),

from (3.6). On the other hand, define

g(r;α) =


f(u(r;α))

|u(r;α)|p−2u(r;α)
|u(r;α)| < M,

λ |u(r;α)| ≥M.

By (3.4),

θ′(r;α) ≥ rn−1

p− 1
(w(r)g(r;α)− q(r))|Sp(θ(r;α))|p(3.18)

+ r1−n/p−1|S′
pθ(r;α)|p ≡ H(r;α; θ).

Let ψ(r;α) be the solution of equation

(3.19) ψ′(r;α) = H(r;α;ψ),

satisfying ψ(0;α) = πp/2. Now, from (3.17)–(3.19), we obtain, for
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α = αl and r ∈ (0, 1],

ψ(r;α)− ϕ(r;α) =

∫ r

0

(H(s;α;ψ)− F (s;α;ϕ)) ds

=

∫ r

0

[(H(s;α;ψ)− F (s;α;ψ))

+ (F (s;α;ψ)− F (s;α;ϕ))] ds

=

∫ r

0

sn−1

p− 1
w(s)[g(s;α)− λ]|Sp(ψ(s;α))|pds

+

∫ r

0

∂

∂ϕ
F (s;α; ξ)[ψ(s;α)− ϕ(s;α)] ds,

where ξ(s;α) is between ψ(s;α) and ϕ(s;α). By (3.16), we have∣∣∣∣ ∫ r

0

sn−1

p− 1
w(s)[g(s;α)− λ]|Sp(ψ(s;α))|pds

∣∣∣∣
≤

∫
IM,α

sn−1

p− 1
w(s)|g(s;α)− λ| ds −→ 0,

as α = αl → ∞. Thus, for any δ > 0, we choose α∗ sufficiently large
such that, for α = αl > α∗,∣∣∣∣ ∫ r

0

sn−1

p− 1
w(s)[g(s;α)− λ]|Sp(ψ(s;α))|pds

∣∣∣∣ < δ.

Note that |(∂/∂ϕ)F (s;α; ξ)| is uniformly bounded by some constant
K > 0 for all r ∈ (0, 1] and α > α∗. Then, we have

|ψ(r;α)− ϕ(r;α)| < δ +

∫ r

0

K|ψ(s;α)− ϕ(s;α)| ds for α > α∗.

By Gronwall’s inequality, we obtain

|ψ(r;α)− ϕ(r;α)| < δeKr < ϵ,

if δ < ϵe−K . Therefore,

ψ(1;α) > ϕ(1;α)− ϵ on (0, 1].

Combining (3.18)–(3.19) and the above, for α = αl > α∗ and r ∈ (0, 1],
we obtain

θ(1;α) ≥ ψ(1;α) > ϕ(1;α)− ϵ = kπp.
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Here, we have reached a contradiction.

(ii) The proof of (ii) is quite similar to that of (i). Here, we merely
give a sketch. By assumption, we choose λ > 0 satisfying f∞ < λ < λk
and take M > 0 large enough such that

f(u(r;α))

|u(r;α)|p−2u(r;α)
≤ λ for |u(r;α)| ≥M.

By the comparison theorem, we assume that ϕ(1;α) = kπp−ϵ for some
ϵ > 0. Then, we define g(r;α) as in (i) and obtain

θ′(r;α) ≤ H(r;α; θ).

For |u(r;α)| < M ,

g(r;α)|Sp(θ(r;α))|p =
f(u(r;α))

ρ(r;α)
Sp(θ(r;α))

is uniformly bounded for sufficiently large α by Lemma 3.3 and (3.3).
Hence, θ(r;α) is uniformly bounded for sufficiently large α. By Corol-
lary 3.4, limα→∞ ∥IM,α∥ = 0. Then, by a similar discussion as in the
proof of (i), we also obtain

θ(1;α) ≤ ψ(1;α) < ϕ(1;α) + ϵ = kπp.

We omit the details. �

4. Proofs of the main results. In this section, we give the proofs
of Theorems 1.1, 1.2 and 1.4.

Proof of Theorem 1.1.

(i) Assume, on the contrary, that (1.1)–(1.2) has a solution u(r) with
exactly i zeros in (0, 1) for some i ≥ k − 1. Let

w(r) = w(r)
f(u(r))

|u(r)|p−2u(r)
.

Then w(r) is continuous on [0, 1] by the continuous extension since
f0 < ∞. Recall that θ(r) is the Prüfer angle of u(r) with θ(0) = πp/2
and satisfies (3.4). By the above and hypothesis, we have

θ′(r) < F (r;λk; θ),

by (3.6). Applying the comparison lemma, we conclude that θ(1) <
ϕk(1) = kπp. This provides a contradiction.
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(ii) Assume, on the contrary, that (1.1)–(1.2) has a solution u(r)
with exactly i zeros in (0, 1) for some i ≤ k − 1. By assumption, we
have (f(u(r)))/(u(r)p−1) > λk whenever u(r) ̸= 0. By (3.4), if rn
satisfies θ(rn) = nπp, i.e., u(rn) = 0, then θ′(rn) > 0 is valid. This
implies that |u(r)| > 0 when r > rn and r is close to rn. This means
that u(r) cannot vanish on any nontrivial subintervals of (0, 1). Hence,
by (3.4) and (3.6) we obtain

θ′(r) > F (r;λk; θ) almost everywhere on [0, 1].

By the comparison lemma and a similar argument as in (i), we obtain

θ(1) > ϕk(1) = kπp.

This provides a contradiction.

(iii) The assumption implies that, either:

(a) λk < (f(u(r)))/(u(r)p−1) < λk+1 for some k ∈ N for all u ∈
(0,∞), or

(b) 0 < (f(u(r)))/(u(r)p−1) < λ1 for all u ∈ (0,∞) if k = 1.

By uniqueness, the conclusion immediately follows from (i) and (ii). �

Proof of Theorem 1.2. Assume that f0 < f∞. By Lemma 3.1 (i),
there exists an α∗ > 0 such that θ(1;α) < kπp for all α ∈ (0, α∗). By
Lemma 3.5 (i), there exists an α∗ > α∗ such that θ(1;α) > kπp for all
α ∈ (α∗,∞). Since θ(1;α) is continuous in α on (0,∞), there exists
an αk ∈ [α∗, α

∗] such that θ(1;αk) = kπp. This implies that u(r;αk)
is a solution of (1.1)–(1.2) with exactly k − 1 zeros in (0, 1). The case
of f∞ < λk < f0 may be proved by using Lemma 3.1 (ii) and Lemma
3.5 (ii). We omit the proof here. �

Proof of Theorem 1.4.

(i) By Lemma 3.1 (i) and Lemma 3.5 (i), there exists a 0 < α∗ <
α∗ <∞ such that

θ(1;α) < kπp for α ∈ (0, α∗)

and

θ(1;α) > (k + 1)πp for α ∈ (α∗,∞).
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By the continuity of θ(r;α) in α, there exists an α∗ ≤ αk < αk+1 ≤ α∗

such that

(4.1) θ(1;αk) = kπp and θ(1;αk+1) = (k + 1)πp,

and

(4.2) kπp < θ(1;α) < (k + 1)πp for αk < α < αk+1.

By (3.5) and (1.10)–(1.11), for r ∈ (0, 1], we obtain

(4.3)
ρ′(r;α)

ρ(r;α)
≥ −r1−n/p−1 −N.

Integrating (4.3) over [ri, 1] for 1 ≤ i ≤ d, by (C1) and (1.11), we obtain

ln
ρ(1;α)

ρ(ri;α)
≥ − p− 1

p− n
(1− r

p−n/p−1
i )−N(1− ri)

≥ − p− 1

p− n
−N = −N̂ .

Then,

(4.4) ρ(ri;α) ≤ eN̂ρ(1;α), i = 1, 2, 3, . . . , d.

By (3.3), we observe that, for α = αk and α = αk+1,

(p− 1)ρp/(p−1)(ri;α) ≥ r
p(n−1)/p−1
i |u′(ri;α)|p, 1 ≤ i ≤ d,

and
(p− 1)ρp/(p−1)(1;α) = |u′(1;α)|p.

Thus, for α = αk, α = αk+1 and 1 ≤ i ≤ d,

r
n−1/p−1
i |u′(ri;α)| ≤ p−1

√
(p− 1)(p−1)/pρ(ri;α)(4.5)

and

|u′(1;α)| = p−1

√
(p− 1)(p−1)/pρ(1;α).

Define

(4.6) Γ(α) = u′(1;α)−
d∑

i=1

kir
n−1/p−1
i u′(ri;α).
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Assume that k = 2n− 1 for n ∈ N. Note that
(4.7)

u′(1;α2n−1) = u′(1;αk) < 0 and u′(1;α2n) = u′(1;αk+1) > 0,

by (4.1) and (3.1). Now, applying (1.12) and (4.4)–(4.7), we obtain

Γ(α2n−1) = u′(1;α2n−1)−
d∑

i=1

kir
n−1/p−1
i u′(ri;α2n−1)

≤ − p−1

√
(p− 1)(p−1)/pρ(1;α2n−1)

+
d∑

i=1

|ki| p−1

√
(p− 1)(p−1)/pρ(ri;α2n−1)

≤ − p−1

√
(p− 1)(p−1)/pρ(1;α2n−1)

+

d∑
i=1

|ki|
p−1

√
(p− 1)(p−1)/peN̂ρ(1;α2n−1)

= p−1

√
(p−1)(p−1)/pρ(1;α2n−1)

(
− 1+eN̂/(p−1)

d∑
i=1

|ki|
)

< 0

and

Γ(α2n) = u′(1;α2n)−
d∑

i=1

kir
n−1/p−1
i u′(ri;α2n)

≥ p−1

√
(p− 1)(p−1)/pρ(1;α2n)

−
d∑

i=1

|ki| p−1

√
(p− 1)(p−1)/pρ(ri;α2n)

≥ p−1

√
(p− 1)(p−1)/pρ(1;α2n)

−
d∑

i=1

|ki|
p−1

√
(p− 1)(p−1)/peN̂ρ(1;α2n)

= p−1

√
(p− 1)(p−1)/pρ(1;α2n)

(
1− eN̂/(p−1)

d∑
i=1

|ki|
)
> 0.
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By the continuity of Γ(α), there exists an α ∈ (α2n−1, α2n) such that
Γ(α) = 0 and similarly for the case of k = 2n with n ∈ N. In both
cases, from (4.2),

kπp < θ(1;α) < (k + 1)πp.

Hence, the solution u(r;α) has k zeros in (0, 1) and satisfies the multi-
point boundary condition (1.7). The proof of (i) is complete.

(ii) The idea of this proof is basically the same as that of (i). First,
we outline the modification. For the case of Neumann eigenvalues, by
Lemmas 3.1 and 3.5, we similarly obtain

θ(1;α) <

(
k +

1

2

)
πp for α ∈ (0, α∗)

and

θ(1;α) >

(
k +

3

2

)
πp for α ∈ (α∗,∞),

where α∗ and α∗ are positive numbers satisfying 0 < α∗ < α∗ < ∞.
Then, there exist α∗ ≤ αk < αk+1 ≤ α∗ such that

θ(1;αk) =

(
k +

1

2

)
πp and θ(1;αk+1) =

(
k +

3

2

)
πp,

and (
k +

1

2

)
πp < θ(1;α) <

(
k +

3

2

)
πp for αk < α < αk+1.

Thus, for α = αk, α = αk+1 and 1 ≤ i ≤ d,

|u(ri;α)| ≤ p−1
√
ρ(ri;α) and |u(1;α)| = p−1

√
ρ(1;α).

Define

Γ(α) = u(1;α)−
d∑

i=1

kiu(ri;α).

Assume that k = 2n− 1 for n ∈ N. Similarly to arguments in (i), there
exists an α ∈ (α2n−1, α2n) such that Γ(α) = 0. Then, we obtain(

k +
1

2

)
πp < θ(1;α) <

(
k +

3

2

)
πp.
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Hence, the solution u(r;α) has k or k + 1 zeros in (0, 1) and satisfies
the multi-point boundary condition (1.8). Therefore, the proof is
complete. �
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