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EXTREMAL RADII, DIAMETER AND MINIMUM
WIDTH IN GENERALIZED MINKOWSKI SPACES

THOMAS JAHN

ABSTRACT. We discuss the notions of circumradius,
inradius, diameter and minimum width in generalized
Minkowski spaces (that is, with respect to gauges), i.e.,
we measure the “size” of a given convex set in a finite-
dimensional real vector space with respect to another con-
vex set. This is done via formulating some kind of contain-
ment problem incorporating homothetic bodies of the latter
set or strips bounded by parallel supporting hyperplanes
thereof. This paper can be seen as a theoretical starting
point for studying metric problems of convex sets in gener-
alized Minkowski spaces.

1. Introduction. The celebrated Sylvester problem, which was
originally posed in [26], asks for a point that minimizes the maximum
distance to points from a given finite set in the Euclidean plane. There
are at least two ways to generalize this problem. From a first point of
view, we might keep the participating geometric configuration–given
a set, we are searching a point–but change the distance measurement.
Classically, distance measurement is provided by the Euclidean norm
or, equivalently, by its unit ball, which is a centered, compact, convex
set having the origin as an interior point. Then the Sylvester problem
asks for the least scaling factor, called circumradius, such that there
is a correspondingly scaled version of the unit ball that contains the
given set. In the literature, this setting has already been relaxed by
using norms [1, 15, 20] and even by dropping the centeredness and
the boundedness of the unit ball as well as the finite cardinality of the
given set [6, 7, 8]. Vector spaces equipped with such a unit ball shall
be called generalized Minkowski spaces. The corresponding analogue
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of the norm is the Minkowski functional of the unit ball, which is also
called gauge or convex distance function in the literature.

A second possibility for changing the setting of the Sylvester prob-
lem is as follows. We keep the Euclidean distance measurement but,
instead of asking for a point which approximates the given set in a
minimax sense, we ask for an affine flat of a certain dimension do-
ing this. In this paper, we focus on generalizing the distance mea-
surement and, after obtaining an appropriate notion of circumradius,
discuss how to define the notions of inradius, diameter, and minimum
width within the general setting of generalized Minkowski spaces. The
second method of generalizing the Sylvester problem, namely, by in-
volving affine flats of certain dimension, is investigated in [16].

The paper is organized as follows. In Section 2, we introduce
the notation and recall some basic facts regarding support functions
and width functions. Results on the four classical quantities of
circumradius, inradius, diameter and minimum width are presented
in Section 3. The paper is finished by a collection of open questions
in Section 4.

2. Preliminaries. Four classical quantities for measuring the size
of a given set are: the maximum distance between two of its points
(its diameter), the minimal distance between two parallel supporting
hyperplanes (its minimum width or thickness), the radius of the
smallest ball containing the set (its circumradius) and the radius of
the largest ball that is contained in the set (its inradius). In the
framework of convex geometry, the definitions of these quantities refer
to Euclidean distance measurement, that is, the size of the given set
is compared with the size of the Euclidean unit ball. In the following,
we will describe how diameter, minimum width, circumradius and
inradius can be defined precisely, when comparing sizes with a centered
convex body (not necessarily the Euclidean unit ball), and what may
be done when we also drop the centeredness of the measurement body.
First, we look at support and width functions, which, for convex
sets, are related to some kind of signed Euclidean distances between
supporting hyperplanes and the origin and between parallel supporting
hyperplanes, respectively.
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Throughout this paper, we shall be concerned with the vector space
Rd, with the topology generated by the usual inner product 〈· | ·〉 and

the norm | · | =
√
〈· | ·〉 or, equivalently, its unit ball B. For the

extended real line, we write R := R∪{+∞,−∞} with the conventions

0(+∞) := +∞, 0(−∞) := 0 and (+∞) + (−∞) := +∞.

We use the notation Cd for the family of non-empty closed convex sets
in Rd. We denote the class of bounded sets that belong to Cd by
Kd. We also write Cd0 and Kd0 for the classes of sets having non-empty
interior and belonging to Cd and Kd, respectively. The line segment
between x and y shall be denoted by [x, y]. The abbreviations cl, int
and co stand for closure, interior and convex hull, respectively. For
K,K ′ ⊆ Rd, x ∈ Rd and α ∈ R, we define K ± αK ′ := {x ± αy |
x ∈ K, y ∈ K ′} and write x ± K for {x} ± K. A set K is centrally
symmetric if and only if there is a point z ∈ Rd such that K = 2z−K,
and K is said to be centered if and only if K = −K.

The support function of a set K ⊆ Rd is defined as hK : Rd → R,
hK(x) := sup{〈x | y〉 | y ∈ K}. Its sublevel set

K◦ :=
{
x ∈ Rd | hK(x) ≤ 1

}
is called the polar set of K.

Lemma 2.1 ([3, Proposition 7.11], [4, Section 15]). Let K,K ′ ⊆ Rd,
x, y ∈ Rd and α > 0. We have

(a) hK = hcl(K) = hco(K),
(b) hK+K′ = hK + hK′ ,
(c) sublinearity : hK(x+ y) ≤ hK(x) + hK(y), hK(αx) = αhK(x),
(d) hαK(x) = αhK(x), h−K(x) = hK(−x).

Lemma 2.1 states that it suffices to consider closed and convex
sets for the study of support functions. The equation |hK(u)| =
dist(0, HK(u)), which is valid for K ∈ Cd and u ∈ Rd with |u| = 1 and
hK(u) < +∞, links the support function to the Euclidean distance
between the origin and supporting hyperplanes

HK(u) =
{
y ∈ Rd | 〈u, y〉 = hK(u)

}
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of K, see [24, Theorem 1.1]. Here, the Euclidean distance function of
a set K evaluated at x ∈ Rd is given via minimal distances, namely,
dist(x,K) := inf{|y − x| | y ∈ K}.

The distances between parallel supporting hyperplanes of a set K
are encoded by its width function wK : Rd → R, wK(x) := hK(x) +
hK(−x). Proving its basic properties is straightforward by using
Lemma 2.1.

Lemma 2.2. Let K,K ′ ⊆ Rd, u ∈ Rd, and α > 0. We have:

(a) wK = hK−K ,
(b) wK = wco(K) = wcl(K),
(c) wK is sublinear and non-negative,
(d) wK+K′ = wK + wK′ ,
(e) wαK = αwK , w−K = wK .
(f) If K ∈ Cd, u ∈ Rd, |u| = 1 and wK(u) < +∞, then wK(u) =

dist(y,HK(−u)) = dist(0, HK(u)) + dist(0, HK(−u)) for all y ∈
HK(u).

3. The four classical quantities.

3.1. Circumradius: Measuring from outside. The definition of
the circumradius can be found, e.g., in [9, 10, 13] for the case C = B
(Euclidean space), and in [11, 20] for the case C = −C ∈ Kd0 (normed
spaces).

Figure 1. Circumradius: The set C is a Reuleaux triangle (bold line,
left), the set K is a triangle (bold line, right). The circumradius R(K,C) is
determined by the smallest homothet of C that contains K (thin line).
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Definition 3.1 ([6, 7, 8]). The circumradius of K ⊆ Rd with respect
to C ∈ Cd is defined as

R(K,C) = inf
x∈Rd

inf{λ > 0 | K ⊆ x+ λC}.

If K ⊆ x + R(K,C)C, then x is a circumcenter of K with respect
to C.

Proposition 3.2. Let K,K ′ ⊆ Rd, C,C ′ ∈ Cd and α, β > 0. Then,

(a) R(K ′, C ′) ≤ R(K,C) if K ′ ⊆ K and C ⊆ C ′,
(b) R(K,C) = R(cl(K), C) = R(co(K), C),
(c) R(K +K ′, C) ≤ R(K,C) +R(K ′, C),
(d) R(x+K, y + C) = R(K,C) for all x, y ∈ Rd,
(e) R(αK, βC) = (α/β)R(K,C),
(f) R(K,C ′) ≤ R(K,C)R(C,C ′).

Proof. For x ∈ Rd and λ ≥ 0, we have

cl(K) ⊆ x+ λC ⇐⇒ K ⊆ x+ λC ⇐⇒ co(K) ⊆ x+ λC.

This proves (b). Statement (c) is also rather simple: if K ⊆ z + λC
and K ′ ⊆ z′ + λ′C for some z, z′ ∈ Rd, λ, λ′ > 0, then K + K ′ ⊆
(z + z′) + (λ + λ′)C. In order to show (f), note that there exist
numbers λ, λ′ > 0 and points z, z′ ∈ Rd such that K ⊆ z + λC and
C ⊆ z′ + λ′C ′. Substituting the latter inclusion into the former one,
we obtain K ⊆ z + λz′ + λλ′C ′. �

Remark 3.3.

(a) The following implication does not hold: If K,K ′ ∈ Cd and
C ∈ Kd0, then R(K +K ′, C +K ′) = R(K,C). For example, take

C = [−e1, e1] + · · ·+ [−ed, ed],
K = (co{0, e1, . . . , ed}), K ′ = [0, ed],

where ei ∈ Rd denotes the vector whose entries are 0 except for the ith
one, which is 1. Then R(K,C) = 1/2 and R(K +K ′, C +K ′) = 2/3.
However, the following implication holds: if K,C ′ ∈ Cd, K ∈ Kd and
R(K,C) = 1, then R(K +K ′, C +K ′) = R(K,C). This is due to the
cancellation rule, which reads as:
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Let K1,K2 ∈ Cd and K ∈ Kd. If K1 + K ⊆ K2 + K,
then K1 ⊆ K2.

It can easily be proved via support functions. For all λ > 1, there
exists a z ∈ Rd such that K ⊆ z + λC. It follows that K + K ′ ⊆
z+λC+K ′ ⊆ z+λ(C+K ′). In other words, R(K+K ′, C+K ′) ≤ 1.
Conversely, assume that R(K+K ′, C+K ′) < 1. Then there are λ < 1
and z ∈ Rd such that K + K ′ ⊆ z + λ(C + K ′) ⊆ z + λC + K ′. By
virtue of the cancellation rule, we have K ⊆ z + λ(C +K ′) ⊆ z + λC,
which is a contradiction to R(K,C) = 1.

(b) Proposition 3.2 (c) holds with equality if K ′ = αC for all α > 0.

Lemma 2.2 states that the circumradius of K with respect to C is
invariant under translations of both K and C. Thus, without loss of
generality, we may assume that 0 belongs to the relative interior of C.
Then the circumradius can be equivalently written as

R(K,C) = inf
x∈Rd

sup
y∈K

γC(y − x),

where γC : Rd → R is the Minkowski functional defined by γC(x) :=
inf{λ > 0 | x ∈ λC}.

In subsection 3.3, we deal with the notion of diameter of a set which
is classically defined via the maximum distance between points of this
set. For a convex set, this coincides with the maximum length of
segments contained in the chosen set. Thus, we now consider how to
define the length of a segment in the setting of generalized Minkowski
spaces, that is, with respect to the geometry of a given set C ∈ Kd0.

Lemma 3.4. Given x, y, z ∈ Rd, α > 0, and C ∈ Kd0 with 0 ∈ int(C),
we define g(x, y) := 2R({x, y}, C). The following statements are true:

(a) g(x, y) ≥ 0 with equality if and only if x = y,
(b) g(x, y) = g(y, x),
(c) g(x+ z, y + z) = g(x, y),
(d) g(αx, αy) = αg(x, y),
(e) g(x, y) ≤ g(x, z) + g(z, y).
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Proof. The non-negativity follows from the definition. The char-
acterization of the equality case is a consequence of the more gen-
eral result that R(K,C) = 0 if and only if K is contained in a
translate of the cone {y ∈ Rd | y + C ⊆ C} when the set of ex-
treme points of C is bounded, see [7, Lemma 2.2]. The symmetry
g(x, y) = g(y, x) is clear. The invariance under translations and the
compatibility with scaling follow from Proposition 3.2 (d), (e). Finally,
since g is translation-invariant and symmetric, we only need to check
g(0, x+ y) ≤ g(0, x) + g(0, y) for the triangle inequality. However, we
have

g(0, x+ y) = R({0, x+ y}, C)

≤ R({0, x, y, x+ y}, C)

≤ R({0, x}, C) +R({0, y}, C)

= g(0, x) + g(0, y)

by Proposition 3.2 (c). �

Since the triangle inequality for g is true, the mapping x 7→
2R({0, x}, C) defines a norm on Rd. The unit ball of this norm
is (C − C)/2. This fact can be proved as follows. First, we show
that, if x ∈ (C − C)/2, then R({0, x}, C/2) ≤ 1, namely, there exist
y1, y2 ∈ C/2 such that x = y1 − y2. Thus,

R({0, x}, 12C) = R({y1, y2}, 12C) ≤ 1.

The reverse implication is as easy as the first. If R({0, x}, C/2) >
1, then there is no point z ∈ Rd such that {0, x} ⊆ z + C/2
or, equivalently, such that {−z, x − z} ⊆ C/2. Thus, there is no
representation x = (x− z)− (−z) ∈ (C/2)− (C/2).

For centered sets K, the maximal circumradius of two-element
subsets is attained at antipodal points of K.

Proposition 3.5. Let K ⊆ Rd be a bounded set, and let C ∈ Kd0. If
K = −K, then

sup{R({−x, x}, C) | x ∈ K} = sup{R({x, y}, C) | x, y ∈ K}.
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Proof. Using Proposition 3.2, we have

sup{R({x, y}, C) | x, y ∈ K} ≤ sup{R({0, x, y, x+ y}, C) | x ∈ K}
≤ sup{R({0, x}, C) | x ∈ K}

+ sup{R({0, y}, C) | y ∈ K}
= 2 sup{R({0, x}, C) | x ∈ K}
= sup{R({0, 2x}, C) | x ∈ K}
= sup{R({−x, x}, C) | x ∈ K}
≤ sup{R({x, y}, C) | x, y ∈ K}. �

If both C and K are centered, there is another convenient repre-
sentation of the circumradius.

Proposition 3.6 ([11, (1.1)]). Let K ⊆ Rd, C ∈ Cd0 , 0 ∈ int(C),
C = −C, K = −K. Then,

R(K,C) = sup{γC(x) | x ∈ K}.

Proof. If K ⊆ z + λC for suitable z ∈ Rd and λ > 0, then
K ⊆ −z + λC, due to the centeredness of C and K. It follows that

K ⊆ 1

2
K +

1

2
K ⊆ 1

2
(z + λC) +

1

2
(−z + λC) = λC,

in other words, the circumradius is already determined by the sets λC
with λ > 0:

R(K,C) = inf{λ > 0 | K ⊆ λC} = sup{γC(x) | x ∈ K}. �

3.2. Inradius: Measuring from inside. The definition of the
inradius may be found, e.g., in [9, 10, 13] for the case C = B
(Euclidean space) and in [11] for the case C = −C ∈ Kd0 (normed
spaces).

Definition 3.7. The inradius of K ⊆ Rd with respect to C ∈ Cd is
defined as

r(K,C) = sup
x∈Rd

sup{λ ≥ 0 | x+ λC ⊆ K}.
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This definition is similar to that of the circumradius, and so are the
corresponding basic properties.

Figure 2. Inradius: The set C is a triangle (bold line, left), the set K is
a Reuleaux triangle (bold line, right). The inradius r(K,C) is determined
by the largest homothet of C that is contained in K (thin line).

Proposition 3.8. Let K,K ′ ⊆ Rd, C,C ′ ∈ Cd and α, β > 0. Then

(a) r(K ′, C ′) ≥ r(K,C) if K ′ ⊆ K and C ⊆ C ′,
(b) r(K,C) = r(cl(K), C) if K is convex,
(c) r(K +K ′, C) ≥ r(K,C) + r(K ′, C),
(d) r(x+K, y + C) = r(K,C) for all x, y ∈ Rd,
(e) r(αK, βC) = (α/β)r(K,C),
(f) r(K,C ′) ≥ r(K,C)r(C,C ′).

Proof. The proof holds using arguments similar to those in the proof
of Proposition 3.2. �

3.3. Diameter. In Euclidean geometry, the diameter of a given set
is usually defined as the maximum distance of two points of this set.
There are several other representations of this quantity which do not
coincide when replacing the Euclidean unit ball by a convex body C
in general (but, at least, if C = −C). This offers various possibilities
to think about an appropriate extension of the notion of diameter. At
first, let us consider the interpretation of the diameter as the maximum
distance between the points of the set. Here, the distance notion is
provided by the Minkowski functional of C. Then, we can rewrite the
expression for the diameter as the supremum of the Euclidean width
function over the polar set of C. Another representation involves the
maximal chord-length function and the radius function of a convex
body which are the maximal Euclidean length of chords with given
direction and the Euclidean distance from the origin 0 to the boundary,
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respectively. More precisely, the maximal chord-length function of
K ⊆ Rd is defined via lK : Rd → R,

lK(x) = sup{α > 0 | αx ∈ K −K}.

The radius function rK : Rd → R, defined as

rK(u) = sup{α > 0 | αu ∈ K},

is the pointwise inverse to the Minkowski functional γK .

Theorem 3.9. For K ⊆ Rd and C ∈ Kd0 with 0 ∈ int(C), the following
numbers are equal :

(a) sup{γC(x− y) | x, y ∈ K,
(b) sup{wK(u) | u ∈ C◦},
(c) sup{〈u | x〉} | u ∈ C◦, x ∈ K −K}.

If K ∈ Cd, then the following number also belongs to this set of equal
quantities:

(d) sup{lK(u)/rC(u) | u ∈ Rd \ {0}}.

Proof. Using [17, Lemma 2.1], we have

sup
x,y∈K

γC(x− y) = sup
x,y∈K

sup
u∈C◦

〈u | x− y〉

= sup
u∈C◦

sup
x,y∈K

〈u | x− y〉

= sup
u∈C◦

sup
x,y∈K

(〈u | x〉+ 〈−u | y〉)

= sup
u∈C◦

(hK(u) + hK(−u)) = sup
u∈C◦

hK−K(u)

= sup{〈u | x〉 | u ∈ C◦, x ∈ K −K}.

If K ∈ Cd, then

sup
x,y∈K

γC(x− y) = sup
u∈Rd\{0}

sup
α>0:αu∈K−K

γC(αu)

= sup
u∈Rd\{0}

sup
α>0:αu∈K−K

αγC(u)

= sup
u∈Rd\{0}

lK(u)γC(u) = sup
u∈Rd\{0}

lK(u)

rC(u)
. �
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Other representations of the diameter in the Euclidean case are
written in terms of circumradii, see [2, Theorem 2]. Together with the
representation from Theorem 3.9, we obtain a chain of inequalities.

Theorem 3.10. If K ⊆ Rd and C ∈ Kd0 with 0 ∈ int(C), then
(3.1)

2 sup

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= 2 sup{R({x, y}, C) | x, y ∈ K}

= R

(
K −K, 1

2
(C − C)

)
≤ R(K −K,C)

≤ sup{γC(x− y) | x, y ∈ K},

with equality if C = −C. If K ∈ Cd, then we also have

(3.2) sup{R({x, y}, C) | x, y ∈ K} = sup

{
lK(u)

lC(u)

∣∣∣∣ u ∈ Rd \ {0}
}
.

Proof. If C = −C, then we have

2 sup

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= sup

{
hK−K(u)

hC(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= sup

{
hK−K(u)

hC(u)

∣∣∣∣ u ∈ B \ {0}}
= sup

{
hK−K

(
u

hC(u)

) ∣∣∣∣ u ∈ B \ {0}}
= sup{hK−K(x) | x ∈ C◦ \ {0}} = sup{hK−K(x) | x ∈ C◦}
= sup{γC(x− y) | x, y ∈ K} = R(K −K,C)

= R

(
K −K, 1

2
(C − C)

)
= sup{γ(C−C)/2(x) | x ∈ K −K}

= 2 sup{R({0, x}, C) | x ∈ K −K}=2 sup{R({x, y}, C) | x, y∈K}
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by using Theorem 3.9, Proposition 3.6, Lemma 3.4 and Proposition
3.2. Note that Lemma 3.4 is independent of centeredness of C and,
therefore, can be similarly used in the general case which follows.

From now on, we do not assume that C = −C. We apply calcula-
tions for the symmetric case and obtain:

2 sup

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= 2 sup

{
h(K−K)−(K−K)(u)

h(C−C)−(C−C)(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= R
(

(K −K)− (K −K),
1

2
((C − C)− (C − C))

)
= R

(
K −K, 1

2
(C − C)

)
= 2 sup{R({x, y}, C) | x, y ∈ K}
= 2 sup{R({0, x}, C) | x ∈ K −K}
= sup{R({−x, x}, C) | x ∈ K −K} ≤ R(K −K,C)

≤ inf{λ > 0 | K −K ⊆ λC} = sup
x∈K−K

γC(x)

= sup
x,y∈K

γC(x− y).

In order to prove the addendum (3.2), let K ∈ Cd. Then,

2 sup{R({x, y}, C) | x, y ∈ K}

= 2 sup

{
|x− y|

lC((x− y)/|x− y|)

∣∣∣∣ x, y ∈ K, x 6= y

}
= 2 sup

u∈Rd\{0}
sup

{
α

lC(u)

∣∣∣∣ α > 0, αu ∈ K −K
}

= 2 sup
u∈Rd\{0}

sup{α | α > 0, αu ∈ K −K}
lC(u)

= 2 sup

{
lK(u)

lC(u)

∣∣∣∣ u ∈ Rd \ {0}
}
. �

The next examples show that the inequalities in (3.1) need not be
strict if C and K are not centrally symmetric, but, on the other hand,



EXTREMAL RADII, DIAMETER AND MINIMUM WIDTH 837

may be strict even if K is centrally symmetric. An illustration of these
examples is provided by Figure 3.

(a) C and K are Reuleaux trian-
gles.

(b) C is an equilateral triangle,
K is a square.

Figure 3. Illustration of Example 3.11: the sets C and K are depicted in
bold lines.

Example 3.11.

(a) Let d = 2 and

C = −K = ((2, 0) + 2
√

3B)

∩ ((−1,
√

3) + 2
√

3B)

∩ ((−1,−
√

3) + 2
√

3B).

Then K −K = C − C = 2
√

3B, i.e.,

2 sup

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= 2,

but R(K − K,C) = sup{γC(x − y) | x, y ∈ K} = (3 +
√

3)/2 ≈
2.366025.

(b) Let d = 2, C = co({(2, 0), (−1,
√

3), (−1,−
√

3)}), and

K = co{{(−
√

3,−
√

3), (−
√

3,
√

3), (
√

3,−
√

3), (
√

3,
√

3)}}.
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Then

sup{γC(x− y) | x, y ∈ K} = 3 +
√

3 ≈ 4.732,

R(K −K,C) = 2 +
4√
3
≈ 4.3094,

2 sup{R({x, y}, C) | x, y ∈ K} =
2

3
(3 +

√
3) ≈ 3.1547,

2 sup

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

=
2

3
(3 +

√
3) ≈ 3.1547.

Note that usually the diameter is defined on the lines of Theorem
3.9 (a), see [9, 10, 13] for the Euclidean case, i.e., C = B, and [11]
for the normed case, i.e., C = −C ∈ Kd0. In the general setting, each of
the representations may have its own benefits. However, following [7,
Definition 5.2], we can define the notion of diameter via the circumradii
of two-element subsets which is, by Lemma 3.4, the usual diameter
with respect to the norm generated by (C − C)/2.

Definition 3.12. The diameter of K with respect to C is

D(K,C) = 2 sup{R({x, y}, C) | x, y ∈ K}.

The diameter also behaves conveniently under hull operations and
Minkowski sums in the first arguments, as well as under independent
translations and scalings of both arguments.

Proposition 3.13. Let K,K ′ ⊆ Rd, C,C ′ ∈ Cd, and α, β > 0. Then,
we have

(a) D(K ′, C ′) ≤ D(K,C) if K ′ ⊆ K and C ⊆ C ′,
(b) D(K,C) = D(cl(K), C) = D(co(K), C),
(c) D(K +K ′, C) ≤ D(K,C) +D(K ′, C),
(d) D(x+K, y + C) = D(K,C) for all x, y ∈ Rd,
(e) D(αK, βC) = (α/β)D(K,C),
(f) D(K,C ′) ≤ D(K,C)D(C,C ′).

Proof. Statement (a) is a consequence of Proposition 3.2 (a).
Clearly, we haveD(K,C) ≤ D(cl(K), C) andD(K,C) ≤ D(co(K), C).



EXTREMAL RADII, DIAMETER AND MINIMUM WIDTH 839

Furthermore, we obtain

D(co(K), C)

= sup{R({x, y}, C) | x, y ∈ co(K)}
= sup{R({0, z}, C) | z ∈ co(K −K)}

= sup

R
({

0,

n∑
i=1

λixi

}
, C

) ∣∣∣∣∣∣∣
n ∈ N, xi ∈ K −K, λi ≥ 0,

i ∈ {1, . . . , n},
n∑
i=1

λi = 1


≤ sup

R
( n∑
i=1

λi{0, xi}, C
) ∣∣∣∣∣∣∣

n ∈ N, xi ∈ K −K, λi ≥ 0,

i ∈ {1, . . . , n},
n∑
i=1

λi = 1


≤ sup


n∑
i=1

λiR({0, xi}, C)

∣∣∣∣∣∣∣
n ∈ N, xi ∈ K −K, λi ≥ 0,

i ∈ {1, . . . , n},
n∑
i=1

λi = 1


≤ sup


n∑
i=1

λiD(K,C)

∣∣∣∣∣∣∣
n ∈ N, λi ≥ 0,

i ∈ {1, . . . , n},
n∑
i=1

λi = 1


= D(K,C) sup


n∑
i=1

λi

∣∣∣∣∣∣∣
n ∈ N, λi ≥ 0,

i ∈ {1, . . . , n},
n∑
i=1

λi = 1


= D(K,C)

and

D(cl(K), C) = sup{R({x, y}, C) | x, y ∈ cl(K)}
= sup{R({xi, yi}, C) | xi, yi ∈ K, i ∈ N, xi → x, yi → y}

≤ sup

{
sup{R({w, z}, C) | w, z ∈ K}

∣∣∣∣xi, yi ∈ K, i ∈ N,
xi → x, yi → y

}
= sup{R({w, z}, C) | w, z ∈ K}.

This yields claim (b).

In order to prove part (c), we observe that

D(K +K ′, C) = sup{R({x, y}, C) | x, y ∈ K +K ′}
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= sup{R({w + w′, z + z′}, C) | w, z ∈ K, w′, z′ ∈ K ′}
≤ sup{R({w + w′, z + z′, w + z, w′ + z′}, C) | w, z ∈ K, w′, z′ ∈ K ′}
≤ sup{R({w, z}, C) +R({w′, z′}, C) | w, z ∈ K,w′, z′ ∈ K ′}
= sup{R({w, z}, C) | w, z ∈ K}+ sup{R({w′, z′}, C) | w′, z′ ∈ K ′}
= D(K,C) +D(K ′, C).

In order to prove (f), we use the representation

D(K,C) = sup{γC−C(x) | x ∈ K −K}.

Without loss of generality, we may assume that K is bounded since,
otherwise, D(K,C) = D(K,C ′) = +∞ due to the positive ho-
mogeneity of Minkowski functionals. Furthermore, we assume that
0 ∈ int(C) ∩ int(C ′) due to (d). Denoting the boundary of B by
bd(B), we have

D(K,C ′) = sup{γC′−C′(x) | x ∈ K −K}
= sup{γC′−C′(αu) | u ∈ bd(B), α ∈ [0, rK−K(u)]}
= sup{γC′−C′(rK−K(u)u) | u ∈ bd(B)}

= sup

{
rK−K(u)γC−C(u)

γC′−C′(u)

γC−C(u)

∣∣∣∣ u ∈ bd(B)

}
= sup{rK−K(u)γC−C(u)rC−C(u)γC′−C′(u) | u ∈ bd(B)}
≤ sup{rK−K(u)γC−C(u) | u ∈ bd(B)}
· sup{rC−C(u)γC′−C′(u) | u ∈ bd(B)}

= sup{γC−C(x) | x ∈ K −K}
· sup{γC′−C′(x) | x ∈ C − C}

= D(K,C)D(C,C ′). �

Finally, we remark that a classical upper bound of the diameter
in terms of the circumradius is still valid in generalized Minkowski
spaces, namely, D(K,C) ≤ 2R(K,C) for all K ⊆ Rd and C ∈ Kd0 with
0 ∈ int(C) with equality if, e.g., C = −C and K = −K. This follows
immediately from Proposition 3.2 (a) and Theorem 3.10. An estimate
of the diameter in terms of the circumradius from below is given by
Jung’s inequality, see [5].
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3.4. Minimum width. In Euclidean space, the notion of minimum
width is intimately related to the notion of diameter. The latter is
the supremum of the width function (see Theorem 3.9), the former is
classically defined as the corresponding infimum. Here, the reference
to the (possibly non-centered) “unit ball” is done by considering the
ratio of the width functions. First, we collect relations between several
representations of minimum width in normed spaces [2, Theorem 3]
and within the general setting.

Lemma 3.14. Let K ⊆ Rd and C ∈ Kd0. If C = −C, we have

2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= inf

{
hK−K(u)

γC◦(u)

∣∣∣∣ u ∈ Rd \ {0}
}
,

in other words, the minimal ratio of the (Euclidean) width function is
equal to the minimal distance of parallel supporting hyperplanes of K,
measured by the norm γC . If hK−K(u) > 0 for all u ∈ Rd \ {0}, then
the reverse implication is also true.

Proof. The first statement is clear by the relations γC◦ = hC ,
C − C = 2C and Lemma 2.1 (d).

For the reverse statement, assume that hK−K(u) > 0 for all
u ∈ Rd \ {0} and
(3.3)

2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}
< inf

{
hK−K(u)

hC(u)

∣∣∣∣ u ∈ Rd \ {0}
}
.

Then,

2
hK−K(u)

hC−C(u)
<
hK−K(u)

hC(u)
for all u ∈ Rd \ {0},

which is equivalent to
hC−C

2
< hC

or hC > h−C , which is impossible. We arrive at the same conclusion
if we assume the reverse inequality in (3.3). �
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Lemma 3.15. If K,C ∈ Kd0, then

r(K −K,C) = R(C,K −K)−1

= (sup{〈u | x〉 | u ∈ (K −K)◦, x ∈ C})−1 .

Proof. Note that K −K is centered, and apply Theorem 3.10. �

Remark 3.16. The claim of Lemma 3.15 fails if K is not convex. For
example, if K is a finite set, then r(K −K,C) = 0. However,

(co(K)− co(K))◦ = (co(K −K))◦

= {y ∈ Rd | hco(K−K)(y) ≤ 1}

= {y ∈ Rd | hK−K(y) ≤ 1}
= (K −K)◦,

where we merely used Lemma 2.1 (a). It follows that

sup{〈u | x〉 | u ∈ (K −K)◦, x ∈ C}
= sup{〈u | x〉 | u ∈ (co(K)− co(K))◦, x ∈ C},

which does not equal zero in general.

Lemma 3.17. Let K ∈ Kd and C ∈ Kd0. Then,

(3.4) r(K −K,C) ≤ 2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

with equality if C = −C.

Proof. For all α < r(K − K,C), there exists a z ∈ Rd such that
z + αC ⊆ K −K. Using Lemma 2.2, we obtain

wz+αC(u) ≤ wK−K(u) for all u ∈ Rd \ {0}

⇐⇒ wαC(u) ≤ wK−K(u) for all u ∈ Rd \ {0}

⇐⇒ αwC(u) ≤ 2hK−K(u) for all u ∈ Rd \ {0}

⇐⇒ α ≤ 2
hK−K(u)

hC−C(u)
for all u ∈ Rd \ {0}.
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Passing α to r(K − K,C), we obtain (3.4). Now, let C = −C, and
assume that (3.4) is a strict inequality, i.e., an α exists such that

r(K −K,C) < α < 2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}
.

As above, we obtain wαC < wK−K . Dividing by 2, we have hαC <
hK−K . It follows that

r(K −K,C)C ( αC ( K −K.

This is a contradiction to the definition of r(K −K,C). �

Remark 3.18. If C 6= −C, we may have a strict inequality in (3.4).
In the situation of Example 3.11 (a), we obtain

2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= 2,

but obviously, r(K −K,C) =
√

3 6= 2, see Figure 4.

Figure 4. Illustration of Remark 3.18: K and C are Reuleaux triangles
(bold lines).

Summarizing, we obtain the next theorem on the notion of mini-
mum width in normed spaces.

Theorem 3.19 ([2, Theorem 3]). For K ∈ Cd and C ∈ Kd0 with
C = −C, the following numbers are equal :

(a) r(K −K,C),
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(b) 2 inf{hK−K(u)/hC−C(u) | u ∈ Rd \ {0}},
(c) inf{hK−K(u)/γC◦(u) | u ∈ Rd \ {0}},
(d) (sup{〈u | x〉 | u ∈ (K −K)◦, x ∈ C})−1.

Proof. This is a combination of the previous lemmas. If hK−K ≡
+∞, then K = Rd and all the numbers equal +∞. Similarly, if there is
a u ∈ Rd\{0} such that hK−K(u) = 0, then all of the numbers equal 0.
(For the last item, use the conventions 1/0 = +∞, 1/(+∞) = 0.) �

Since we focus on containment problems, that is, finding in some
sense extremal scaling factors, it is useful to take the minimal ratio of
support functions as the definition of minimum width.

Definition 3.20 ([7, Definition 2.6]). The minimum width of K with
respect to C is:

ω(K,C) :=2 inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

=2 inf{R(K,C + L) | L ∈ Ldd−1},

where Ldd−1 denotes the family of (d−1)-dimensional linear subspaces

of Rd.

Proposition 3.21. Let K,K ′ ⊆ Rd, C,C ′ ∈ Cd, and α, β > 0. Then,
we have:

(a) ω(K ′, C ′) ≥ ω(K,C) if K ′ ⊆ K and C ⊆ C ′,
(b) ω(K,C) = ω(cl(K), C) if K is convex,
(c) ω(K +K ′, C) ≥ ω(K,C) + ω(K ′, C),
(d) ω(x+K, y + C) = ω(K,C) for all x, y ∈ Rd,
(e) ω(αK, βC) = (α/β)ω(K,C),
(f) ω(K,C ′) ≥ ω(K,C)ω(C,C ′).

Proof. For x ∈ Rd, λ ≥ 0 and L ∈ Ldd−1, we have

cl(K) ⊆ x+ L+ λC ⇐⇒ K ⊆ x+ L+ λC.

This proves (b).
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In order to prove part (c), we observe

ω(K +K ′, C) = inf

{
hK+K′−K−K′(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= inf

{
hK−K(u)

hC−C(u)
+
hK′−K′(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

≥ inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

+ inf

{
hK′−K′(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= ω(K,C) + ω(K ′, C).

Finally, we obtain

ω(K,C ′) = inf

{
hK−K(u)

hC−C(u)

hC−C(u)

hC′−C′(u)

∣∣∣∣ u ∈ Rd \ {0}
}

≥ inf

{
hK−K(u)

hC−C(u)

∣∣∣∣ u ∈ Rd \ {0}
}

· inf

{
hC−C(u)

hC′−C′(u)

∣∣∣∣ u ∈ Rd \ {0}
}

= ω(K,C ′)ω(C,C ′). �

4. Open questions. An increasing interest in real vector spaces
equipped with Minkowski functionals may be observed in various di-
rections. For example, gauges or convex distance functions occur in
computational geometry, operations research and location science, see,
e.g., [12, 14, 17, 19, 24, 25]. In the present paper, a gentle start
is provided for applying this setting to basic metrical notions of con-
vex geometry. Various further natural questions occur immediately.
Propositions 3.2 (c), 3.13 (c), 3.8 (c), and 3.21 (c) refer to lower bounds
for the circumradius, the diameter, and to upper bounds for the in-
radius and the minimum width of the Minkowski sum of two sets in
terms of the sum of the respective quantities for the single sets. The
question of the existence of reverse inequalities can be answered easily
as follows. If K,C ∈ Kd0 and, as before, B denotes the Euclidean unit
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ball, we can derive inequality:

R(K,C) +R(K ′, C)

R(B,C)
≤ R(K,B) +R(K ′, B)

≤
√

2R(K +K ′, B)

≤
√

2R(C,B)R(K +K ′, C)

by using Proposition 3.2 (f) and [9, Theorem 1.1]. This implies

(4.1) R(K,C) +R(K ′, C) ≤
√

2R(C,B)R(B,C)R(K +K ′, C).

Similarly, Proposition 3.13 (f) and [9, Theorem 1.2] yield

(4.2) D(K,C) +D(K ′, C) ≤
√

2D(C,B)D(B,C)D(K +K ′, C).

According to [9, Theorems 1.1, 1.2], there exist no constants α, β such
that

r(K,B) + r(K ′, B) ≥ αr(K +K ′, B),

ω(K,B) + ω(K ′, B) ≥ αω(K +K ′, B).

Of course, this implies the non-existence of analogous inequalities if
the Euclidean unit ball B is replaced by an arbitrary set C ∈ Kd0.
However, it remains open whether the constants in inequalities (4.1)
and (4.2) can be improved. Furthermore, with the notions of diameter
and minimum width, the investigation of diametrical maximal bodies
[22, 23], constant width bodies [21, Section 2] and reduced bodies
[18] in generalized Minkowski spaces is enabled. (First results in this
direction are derived in [5].) As pointed out before, the quantities
defined in Definitions 3.12 and 3.20 shift the problem to normed spaces.
However, Theorems 3.10 and 3.19 provide other expressions which
are suitable as definitions for generalizations of diameter and width,
respectively, and might have their own benefits for specific purposes.
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