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DISCRETE CONDUCHE FIBRATIONS
AND C*-ALGEBRAS

JONATHAN H. BROWN AND DAVID N. YETTER

ABSTRACT. The k-graphs in the sense of Kumjian
and Pask [7] are discrete Conduché fibrations over the
monoid N, satisfying a finiteness condition. We examine
the generalization of this construction to discrete Conduché
fibrations with the same finiteness condition and a lifting
property for completions of cospans to commutative squares,
over any category satisfying a strong version of the right Ore
condition, including all categories with pullbacks and right
Ore categories in which all morphisms are monic.

1. Introduction. In 2000, Kumjian and Pask introduced k-graphs
[7] in order to generalize the higher-rank Cuntz-Krieger algebras of
Robertson and Steger [14], and the graph algebras of Kumjian, et al.,
[9]. Their construction of C*-algebras from k-graphs yields algebras
which are uncommonly tractable and include a wide variety of exam-
ples, see, for example, [11]. This combination has led to significant
interest in k-graph C*-algebras.

A E-graph consists of a category A that is fibred over N* by a degree
functor d : A — N, satisfying the unique factorization condition: if
d(A\) = m + n, then there exist unique p,v with d(u) = m, d(v) =n
and A = pv [7]. Tt is suggested [7] that it might be interesting to
study categories A that are fibred over a cancellative abelian monoid.
Recently, [3, 16] used such a construction as a technical tool for
studying the primitive ideals and abelian subalgebras of k-graphs,
respectively. A category fibred over a cancellative abelian monoid (in
particular, a k-graph) is an example of a previously studied notion in
category theory called a discrete Conduché fibration, see Definition 2.1.
In this paper, our goal is to develop a theory of C*-algebras associated
with discrete Conduché fibrations, and thus, generalize k-graph C*-
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algebras. While extensions of the theory of [7] to categories fibred over
a cancellative abelian monoid are relatively straightforward, substantial
difficulties arise when the base of the fibration is a more general
category.

More recently, Spielberg [15] proposed a different construction of
C*-algebras from what he calls categories of paths. These are special
categories which, among other things, contain no inverses to non-
identity morphisms and are both left and right cancellative. He also
does not require any fibration of the category corresponding to the
degree functor, and so his construction has a different flavor from [7].
We allow our categories to have inverses. Thus, a discrete group H
equipped with the identity functor Idy : H — H is an admissible
fibration for our theory, but neither category is a category of paths in
the sense of Spielberg. It turns out that the C*-algebra associated by
our construction to Idy : H — H is the full group C*-algebra of H.
We also consider categories that are not necessarily cancellative.

In Section 2, we introduce a discrete Conduché fibration F : £ — B
and show that there is a universal C*-algebra, C*(F), for the analogous
Cuntz-Kreiger relations.

In Section 3, we restrict our attention to fibrations over strong right
Ore categories, see Definition 3.1. This restriction allows us to define
an infinite path as a section of the functor induced by F on a slice
category. Our infinite paths behave analogously to those of [7], see
Proposition 3.17. Then, in Proposition 3.19, we represent C*(F) on
the set of infinite paths and use this to show that C*(F) # {0}.

In Section 4, we place a topology on the set of infinite paths and
then use a special class of local homomorphisms to construct a locally
compact Hausdorff étale groupoid Gp.

In Section 5, we show that, if morphisms in the category are monic,
then C*(Gr) =2 C*(F). We use this to show that, if morphisms are also
epi, then the category £ can be faithfully represented as a subcategory
of operators on a Hilbert space.

Throughout our discussion, all categories are small, and composition
in categories is written in the customary anti-diagrammatic order as
multiplication; thus, the composition of the morphisms in C' ﬁ) BS5 A
is written 8. We denote the target or codomain of a morphism «
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by r(a) and its source or domain by s(«). Given an object X in a
category C, we denote the set of morphisms in C with range X by XC.
We denote the set of objects in C by Obj(C), and, for a morphism ~
in C, we let vC = {yu : s(y) = r(u),n € C}. We will often identify
categories with their set of morphisms, so that v € C will mean that
is a morphism of C.

2. Discrete Conduché fibrations.

Definition 2.1. A discrete Conduché fibration (dCf) is a functor
F : & — B with the unique factorization lifting property or Conduché
condition: for every morphism ¢ : Y — X in &, every factorization of
F(¢)in B

F(Y) 2 B -2 F(X)

lifts uniquely to a factorization of ¢:
y X7 Py x,

with F'(A\) =\, F(p) = p and F(Z) = B.

As an aside, we note that the more categorically natural notion of
a Conduché fibration, in which the factorization is unique only up to
isomorphism, appears to be inadequate for our purposes, although in
most of our examples, there are no non-identity isomorphisms in £, and
in such cases, the two notions coincide.

A simple argument shows that unique factorization extends to
finitely many factors.

Lemma 2.2. If F : £ — B is a discrete Conduché fibration, u: Y — X
is any morphism of € and F(u) = cba, that is,

F(Y) -% B; % B, -5 F(X)

is a factorization of F(u) : F(Y) — F(X) in B, then there exists a
unique factorization

y 7 Bz, O x
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of win & such that F(a) = a, F(8) =b, F(v) = ¢, F(Z1) = By and
F(Zy) = Bs.

Moreover, in general, any factorization of a morphism in B into
a finite number of composands uniquely lifts to a factorization of any
morphism in its preimage in & into the same number of composands.

Lemma 2.3. If F : £ — B is a discrete Conduché fibration and
F(¢ : X = Y) =1dg for some object B in B, then ¢ is an identity
morphism in &.

Proof. By functoriality of F', we have F'(X) = F(Y) = B. Now,
Idp factors as Idp(Idg), and both Idy(¢) and ¢(Idx) are lifts of
this factorization. Therefore, by the uniqueness condition of dCFs,
Idy = ¢ = Idx, and we see that ¢ is an identity morphism. O

Following Kumjian, Pask and Raeburn [8] we define:

Definition 2.4. A functor F' : & — B is row-finite if, for every object X
in £, and every morphism 8 : B — F(X) in B, the class of morphisms
with target X whose image under F' is § is a finite set.

The next surjectivity condition takes the place of the no sources
condition in the study of graphs and k-graphs.

Definition 2.5. A functor F' : £ — B between small categories is
strong surjective if it is surjective on objects, and, given any object X
in £, the map induced from the set of morphisms targeted at X to the
set of morphisms targeted at F'(X) in B is surjective.

Now, we may rephrase the definition presented in [7].

Definition 2.6. A row-finite k-graph with no sources is a countable
category &€ equipped with a strong surjective, row-finite, dCf to the
additive monoid N¥, regarded as a category with one object.

Now, it is easy enough to describe generators and relations after
the manner of [4, 7, 8] using an arbitrary strong surjective, row-finite
functor between small categories as data.
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Definition 2.7. Given a strong surjective, row-finite discrete Conducé
fibration, F' : &€ — B, a Cuntz-Krieger system associated to F in a
C*-algebra D is:

e a projection Px for each object X of &;
e a partial isometry S, for each morphism a: Y — X of &;

satisfying the relations:

(i) for X #Y, Py L Py;

)
ii) if o and S are composable, then S,3 = S0.S3;
ii) for all x, P, = Sia, = Sfy,;
)
)
)

—~

v) forall a:y — x, S5(Sa) = Py;

if f(a) = f(B) and a # B, then S5(Sa) = 0;
for all X, and for all morphisms b: B — F(X) in B

(
(v
(vi

> SuSi=Px.
{aeXE:F(a)=b}

Remark 2.8. While item (v) follows from item (vi), we will be using
item (v) often enough that we include it in the axioms for emphasis.

We denote the smallest C*-subalgebra of D containing P, S by C* (P, S).

In the next proposition, we show that there exists a universal C*-
algebra for these relations. The proof of this proposition follows [5,
Theorem 2.1].

Proposition 2.9. Let F : £ — B be a strong surjective, row-finite
discrete Conduché fibration. Then there exists a C*-algebra C*(F)
generated by a Cuntz-Krieger system {px, s} such that, for any Cuntz-
Krieger system {Qx,T,} associated to F in a C*-algebra B, there is a
unique x-homomorphism from C*(F) to B extending the map so — Ty .

Proof. Let Kp be the free complex x-algebra generated by the
morphisms of &, that is, K is a vector space over C with basis given
by the set of words VW in symbols

{a:aeU{p*: eI U{X: X eO0bj()},
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multiplication induced by concatenation of words and involution in-
duced by the maps a € £ — a* and ¢ € C — ¢. Define a seminorm

[ [l on KF by
Z Cpw|| = Z lcwl,

weN I wenN

where N is a finite subset of W and ¢,, are complex numbers.

Let J be the ideal in K generated by the Cuntz-Krieger relations.
Then, I'(F) = Kp/J and || - || induces a seminorm || - || on I'(F') by

Ha+J||1'* = inf ||b+J||]
b+J=a+J
Let

llallo = sup{||p(a)|| : p is a T’ — seminorm decreasing

* —representation of I'(F") on a Hilbert space},

for a € T'(F). Since || ||o is bounded by || -||r, this gives a C*-seminorm
on I'(F).

Now, define C*(F) := I'(F)/ker(]| - |o). Then, || - ||o induces a
C*-norm || - || on C*(F)p. Complete C*(F)g in this norm to obtain a
C*-algebra C*(F). Denote the images of objects X and morphisms pu
of £ in C*(F) by px and s, respectively.

It remains to show that this C*-algebra satisfies the required uni-
versal property. Suppose that {Qx} xcobje) and {T } ee is a Cuntz-
Krieger family in a C*-algebra B. By the Gelfand-Nainmark theorem,
we can assume that B is a subalgebra of the bounded operators on a
Hilbert space. By the universal property of the free algebra K, there
exists a *-homomorphism p from I'(F') to B. By the definition of || - ||o,
this representation is norm decreasing on C*(F)g, and thus, extends to
s-homomorphism p from C*(F) to B, as desired. By construction, p
must send px to Qx and s, to 7}, and thus, is determined on the
dense subalgebra C*(F')q. Thus, p is unique. O

A question immediately arises: under what circumstances is the map
5y : & = C*(F) injective?

The upshot of results in [7] is that, when F is a row-finite, strong
surjective dCF over N*, i.e., a k-graph, the map s¢y €= C*(F) is
injective. This result uses an infinite path construction. We will use a
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similar construction to prove Proposition 3.19, which gives some mild
conditions that ensure that C*(F') # {0}, and Proposition 5.4, which
gives conditions that guarantee that the map & — C*(F) given by
Qa — Sq 1S injective.

3. Kumjian-Pask fibrations and infinite paths. Recall that a
morphism « is epi if fa = ya implies 8 = v; a is monic if af = ay
implies 8 = . A category B is right (respectively, left) cancellative if
every morphism is epi (respectively, monic).

One initially might think that cancellation conditions after the
manner of [15] are necessary. However, as we shall see, weaker
conditions suffice for most of the construction, although for some
results, cancellation conditions on the base category are required.

Following Johnstone [6], define:

Definition 3.1. A category satisfies the right Ore condition or, for
brevity, is a right Ore category, if every cospan A = B & C can be
completed to a commutative square.

We extend this notion to:

Definition 3.2. A category is strong right Ore if it is right Ore and,
moreover, for every cospan m,n € B with p1,p2,q1,q2 € B with
mp; = ng; for i = 1,2, there exist a,b € B with pja = p3b and
q1a = g2b.

Such categories are plentiful:

Proposition 3.3.

(i) Any category with pullbacks is strong right Ore;
(ii) any left cancellative right Ore category is strong right Ore.

Proof. For item (i), the existence of pullbacks implies that the
category is right Ore. In order to show that such a category is strong
right Ore, suppose that (P, t,w) is the pullback of the cospan (m,n)
so that mt = nw and (Z1,p1,q1) and (Z2,p2,q2) are two completions
of (m,n) so that mp; = ng;. By the universal property of pullbacks,
u; : Z; — P exists such that tu; = p; and wu; = ¢;. Now, (uq,us) is
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a cospan, so let (@, a,b) be the pullback of this cospan. By definition,
we have p1a = pob and q1a = ¢ob.

For item (ii), given a cospan m,n, let mp; = ng; for i = 1,2 be
two completions to commutative squares, and let a and b complete the
cospan mpi, mps to a commutative square mpia = mpab. Now, since
m is monic, it follows that pja = p2b. Since the completed cospan
could also be considered to be nqq,ngs, and n is monic, it follows that
q1a = q2b. O

Since all lattices in the order-theoretic sense (including the lattices
of open sets in topological spaces) have pull-backs, they are all strong
right Ore. Similarly, since all groups, groupoids and the positive cones
of lattice-ordered groups are left cancellative, they are strong right Ore
as well.

Proposition 3.4. IfC; fori € T is a set-indexed family of categories,
each of which is strong right Ore, then the product category [[;c; Ci is
strong right Ore.

Proof. The required completions of diagrams exist in the product
because their components exist in the factors. O

Definition 3.5. Given a category C and an object X in C, the slice
category C/X is the category whose objects are morphisms of C with
target X, and morphisms given by commutative triangles, that is, for
a, € XC = Obj(C/X), a morphism from /3 to « is given by a v € C
with ey = . We can thus view morphisms in C/X as ordered pairs
(a,7) € XC x C with r(v) = s(a). The range of (a,7) is «, and its
source is ay. Composition (o, v)(3,d) can only occur if 8 = «a, and,
in this case, we have («,v)(ay,0) = (a,7d). Let m; be the projection
onto the ith factor of C/X. Note that 7 (e, y)m2(e,y) = ay and that
ma((a, ) (ay,d)) = ma(a,y)ma(ay,d). (Slice categories are a special
instance of a more general construction, known as a comma category,
see [10] for more details.)

For any object X in C, a functor F' : C — D will induce a natural
functor from C/X to D/F(X), which, by abuse of notation, we also
denote by F.
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Definition 3.6. A functor F': £ — B is locally split if, for every object
X € &, the induced functor (also denoted F', by abuse of notation) F :
£/X — B/F(X) admits a splitting (or section) = : B/F(X) — £/X,
that is, a functor such that F'ox = Idg,p(x). (Contrary to the usual
practice in category theory of denoting functors by capital letters, we
will use lower case Latin letters near the end of the alphabet to denote
local splittings of the fibration, as these will play the role of infinite
paths, denoted by such letters in [7].)

Note that a locally split functor which is surjective on objects is
strong surjective.

Let z : B/F(X) — £/X be a splitting of F as above and (a,b) €
B/F(X). Then, a is an object in B/F(X). By the functoriality of
2 and the unique factorization lifting property of F, for z(a,b) =
(z1(a,b),z2(a,b)), we have

z(a) = z1(a,b) = 22(Idp(x), a).

Definition 3.7. A functor F' : £ — B targeted at a strong right Ore
category is a Kumjian-Pask fibration (KPf) if it is a locally split dCf.

Note that we do not require strong surjectivity; however, we have:

Proposition 3.8. If F': £ — B is a KPf, then so is F:&— F(&).
Moreover, F' is strong surjective.

Proof. Since F is a locally split dCF, F is as well; Fis surjective
on objects, and therefore, strong surjective. In order to show that Fis
a KPf, it suffices to show that F (&) is strong right Ore. We begin by
showing that F(€) is right Ore. Let (m,n) be a cospan in F(£) and
A = r(m). Since m € F(£), we can choose u € £ with F(u) = m.
Thus, F(r(n)) = r(m) = A. Let X = r(u). Since F is locally split,
choose a section z : B/A — £/X. Since m,n € B and B is right
Ore, there exists p,q € B such that mp = ng. Now, F(xa(m,p)) = p
and F(z2(n,q)) = q. Thus, p,q € F(£), that is, F(£) is right Ore.
Similarly, if mp; = ng;, then, since B is strong right Ore, there exist
a,b € B with pja = pob and ¢1a = gob. Therefore, F(xy(mp1,a)) = a
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and F(z2(np2,b)) = b. Thus, a,b € F(E), that is, F(£) is strong right
Ore as well. 0

There are many examples:

Example 3.9. If d : A — N* is a row-finite k-graph with no sources,
then d is a KPf.

Example 3.10. If B is any strong right Ore category, Idg : B — B is
a KPf.

Of particular interest is a special case of the last example:

Example 3.11. If H is a discrete group, regarded as a one object
category, then the identity group homomorphism Idy regarded as
a functor is a KPf. In this example, the C*-algebra C*(Idy) is
particularly easy to compute. Suppose that (S, P) is a Cuntz-Krieger
system for Id g in a C*-algebra A. Since H has only one object e, and we
have P.S; = S P, for all t € H, thus (S, P) is a Cuntz-Krieger system
in the unital C*-algebra PAP with unit P. Because we are using
the identity functor, the sum in relation (6) has only one summand
and, combining with relation (iv), we have S;S; = P = S;S; for all
t € H. This gives that S; is unitary. Now, by relation (2), we get that
t — S; is a group homomorphism, and thus is a unitary representation
of H. Since C*(H) is universal for unitary representations of H,
and C*(Idy) is universal for Cuntz-Krieger systems, we obtain that
C*(Idy) = C*(H).

As a preliminary to our next examples, recall that any poset (P, <)
induces a category, which, by abuse of notation, we also denote by
P, whose objects are elements of P and whose morphisms are ordered
pairs (p,q) € P x P with p < ¢, with 7((p,q)) = ¢ and s((p,q)) = p
and composition defined by (q,7)(p,q) = (p,7), cf., [10]. Note that
reversing the ordering gives another poset. There is an arbitrary choice
in this convention, which was made so that the abstract maps of a
poset would correspond in the case of concrete posets of subobjects
of a mathematical object to the inclusion maps from one subobject to
another which contains it. (The convention, unfortunately, appears to
be at odds with that adopted in [7] for their category €, in which
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the morphisms have the greater k-tuple as source and the lesser as
target. In fact, (), is the opposite category of (N*, <), regarded as a
category in the standard way, a fact either intentionally or fortuitously
emphasized by the fact that Kumjian and Pask [7] denote the unique
morphism from p’ to p when p’ > p by (p,p’), the same notation by
which the standard convention for a poset would denote the unique
morphism in the opposite direction. As we will see in Example 3.15,
Qy is better thought of as arising not from the poset of k-tuples of
natural numbers but as the slice category of the monoid (N*, 4-,0), as
a one-object category, over its unique object, which naturally gives the
morphisms in the direction from greater to lesser, although it will also
suggest the use of a different notation for them.)

Example 3.12. Let X be a topological space and & a presheaf of sets
on X, that is, a contravariant functor from the lattice of open sets Tx
ordered by inclusion to Sets, the category of sets and set-functions. As
usual, we regard the images of elements of &(U) under maps &(V,U)
as restrictions, denoting &(V,U)(c) by oy for o € &(U).

Let S be the set of local sections, that is, pairs (U, o) where U is an
open set and o € &(U). Then, S is partially ordered by restriction,
with (V,7) < (U,0) exactly when V C U and 7 = o|y. Now,

((Vi7), (U, 0)) — (V,U)

defines a functor F: S — Tx. If (V,7),(U,0)) € Sand VC W CU
so that (V,W)(W,U) is a factorization of F'((V,1),(U,0)) = (V,U),
then (V,7), W,o|lw))(W,o|w), (U,0)) is the unique factorization of
((V, 1), (U,0)) lifting the factorization of (V,U) as (V,W)(W,U).

Since Tx has pullbacks, it is strong right Ore. Finally, for any
object (U, o) in S, the induced functor F : §/(U,0) — Tx /U admits a
splitting given by

(V7 U) — ((V7 U|V)’ (U7 U))7
and thus, F: S — Tx is a KPf.

In fact, this last example generalizes:

Example 3.13. If B is a right Ore poset (i.e., a poset in which every
pair of elements which admits an upper bound also admits a lower
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bound, necessarily strong right Ore since all morphisms are monic) and
S : B°? — Sets is a presheaf of sets on B, then the poset of sections g
with elements all pairs (U,a) with U € Ob(B) and a € S(U), and
(V,b) < (U,a) exactly when V' < U and b = aly (using the usual
notation in the context of presheaves on a space) admits an obvious
monotone map (U, a) — U to B which, regarded as a functor, is a KPf.

Among the last two classes of examples, those arising from presheaves
of finite sets will be row-finite.

Definition 3.14. Let F : £ — B be a row-finite, Kumjian-Pask
fibration.

(i) For an object X of &, an infinite path to X is a section x :
B/F(X)— £/X of the functor F : £/X — B/F(X).

(ii) We denote the set of all infinite paths to X by Z(X) and the set
of all infinite paths, that is, UXeOb(E) Z(X), by F.

(iii) For a morphism u: Y — X in &, an infinite path ending in p is
an infinite path = to X for which z(F(p)) = p. We denote the
set of all infinite paths ending in p by Z(u).

(iv) When an infinite path x is introduced without explicitly stating
that it is a functor from B/F(X) to £/X for a specified object X,
we will denote the object over which its target category is a slice
category by r(x).

These notions are consistent with the usual notion of infinite paths
for row-finite source free k-graphs. Indeed, the next example is the
motivation for regarding splittings of the induced functors on slice
categories as infinite paths.

Example 3.15. Let d : A — N* be a row-finite k-graph, for some
k > 0, with no sources. The base category is the additive monoid N¥,
regarded as a category with a single object * in the usual way.

Using the conventions of Definition 3.5, the objects of N¥/x are
elements of N*, while morphisms are ordered pairs (p, ¢) € N¥xN¥, with
range p and source p+q. Note that, if p and p’ are two objects of Nk/*7
there is a unique morphism from p’ to p exactly when p’ > p in the
product partial order on N*, and thus, the slice category is isomorphic
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to the category denoted by Qj [7]. The unique map from p’ to p, when
one exists (denoted by (p,p’) in [7]) is denoted by (p,p’ — p) in our
convention for slice categories. The functor by which Kumjian and
Pask [7] endow € with a k-graph structure maps all objects to x, and
the morphism which we denote by (p,p’ — p) and [7] denote (p,p’) to
p’ — p. This is precisely the natural forgetful functor from the slice
category N¥ /x to NF.

It remains to show that an infinite path in the sense of [7] that is
a degree preserving functor from  to A, or equivalently from N/x
to A, is equivalent to a splitting of the induced functor d : A/v — N/x.
Given any functor F': C — D, and an object X of C, the square formed
by the given F', the induced F' : C/X — D/F(X) and the forgetful
functors from the slice categories to the C and D commute.

Applying this observation to the degree functor of A, we see that,
if  is a splitting of d : A/v — N/x, and U : A/v — A is the forgetful
functor, then = := UZ is a degree-preserving functor from N/x to A
since dUT = Ydz = Y, where T : N/x — N is the forgetful functor
which coincides with Kumjian and Pask’s degree functor on €2 by the
preceding discussion, the first equation holding by the commutativity
of the square of functors just observed and the second by the fact that
T splits the induced d. In particular, x will be an infinite path in the
sense of [7] to the object v of A.

Conversely, if z : N¥ — A is a degree preserving functor, we construct
a factorization of z of the form UZ for 7 : N¥/x — A/x(0), a splitting
of the induced d : A/x(0) — N¥/x as follows:

For an object ¢ of N¥/x, that is, a morphism of N* let Z(q) =
x(q,0). For a morphism (p,q) of N¥/% from p + ¢ to ¢, let Z(p,q) =
(z(p,q),x(q,0)). The functoriality of  follows easily from that of x.
It follows from the preservation of degree by x that dZ(q) = ¢ and
dz(p,q) = d(z(p,q),z(q,0)) = (p,q), so that T is a splitting of the
induced functor d on slice categories. Finally, the forgetful functor from
a slice category to the underlying category is given in our notation
by the second projection UZ(q) = Ux(q,0) = x(q) and UZ(p,q) =
U(z(p,q),7(q,0)) = 2(p, q).

It is easy to see that the two constructions are inverse to each other.

The next lemma is easy to verify.
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Lemma 3.16. Let F : &€ — B be a Kumgjian-Pask fibration. If
b: B — F(X) is a morphism in B, then

Z(X) = U Z(B),
{BEXE: and F(B)=b}

and the union is disjoint.

The hypothesis that F' is locally split does not seem to guarantee
any infinite paths ending in a particular morphism. However, the next
proposition, in particular, implies that, for a Kumjian-Pask fibration
F : & — Band a € &, there exists an infinite path € Z(«).
Proposition 3.17 defines maps which are crucial to the rest of our study,
so we enumerate their properties here.

Proposition 3.17. If F : & — B is a row-finite Kumjian-Pask
fibration, for any morphism p:Y — X € £, there exist bijections

ind, : Z(Y) — Z(n) and res,:Z(u) — Z(Y),
satisfying the properties:

(i) ind,(z)(F(p)a) = px(a) for any a € F(s(p))B;

(ii) ind, ores, = Idy(,) and res, oind, = Idz(,(u);

(iii) for X an object in £, indiqy = resiay = Idz(x);

(iv) for wv € & with s(p) = r(v), res,(Z(pv)) = Z(v) and
ind, (Z(v)) = Z(uw);

(v) for p,v € & with s(u) = r(v), then the domain of res, ores, is
Z(pv) and res, ores,, = Tres,y;

(vi) for p,v € & with s(u) = r(v), then the domain of ind, oind, is

Z(s(v)) and ind, oind, = ind,, .

Proof. We begin by defining the maps ind,, and res,. Since res, is
easier to describe, we define it first.

Let  be an infinite path ending in u, z : B/F(X) — £/X. Recall
that, for (¢,d) € B/F(X), we denote z(c,d) = (z1(c,d), z2(c,d)), and
then x(cd) is a morphism in & whose factorization with respect to cd is
z1(c,d)z2(c, d). The idea of res,(x) is that it removes the first p part
of the morphism x(F(u)ab).
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As objects can be identified with identity morphisms, it is enough
to describe res, (x) on pairs of the form (a,b) with r(a) = F(s(u)) and
r(b) = s(a). Now, (F(u)a,b) € B/F(X), and

z(F(p)a,b) = (z1(F(p)a,b), z2(F(p)a, b))
)a)7x2(F(:U‘)avb))
= (pz2(F(p),a),z2(F(p)a,b)) € £/X C € x E.

We then define

ves, (2)(a,0) = (22(F(), a), 25(F()a, ).

Since

and

r(za(F(p)a, b)) = s(@x(F(p)a)) = s(z2(F(p), a)),

we obtain that res, () maps into £/s(u). As z is a section,

F(resy(z)(a,)) = (F(22(F(p), a)), F(z2(F(p)a, b)) = (a,b);
thus, res, () is a section of F': £/s(u) — B/F(s(u)). Lastly, in order

to see that x is a functor, if (a,b), (ab,c) € B/F(s(y)), then
res, (z)(a, b) res, (ab, ¢) = (x2(F(p), a), x2(F(u)a, b))
(@2 (F(p), ab), o (F(p)ab, c))
= (22(F(p),a), x (F/M% b)xs(F(p)ab, c))

( (1)
= (22(F(p); a), 22 (F(p)a, be))

Thus, res,(z) : B/F(s(n)) = £/s(n), as desired.

We turn our attention to defining ind,. The idea of ind, is to
add p onto the beginning of infinite paths. Suppose that x € Z(s(u)).
Consider (a,b) € B/F(X). Now, F(u),ab is a cospan in B. Since B
is right Ore, (¢,d) € B exists such that F(u)c = abd. By unique

. . . . c,d c,d ¢c,d :
factorization, unique morphisms Ay b Balp 5@ » € & exist such that

_ ¢d pe,d ge,d
MSL’(C)—Oéab ab(sab7
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and F(aly) = a, F(83(b)) = b, and F(3.(d)) = d. Take
ind,,(z)(a,b) = (a5}, Be)-

We need to show that this does not depend on the choice of the
span c¢,d. For this, we use the strong right Ore condition. Suppose
that there exist ¢; and d; that complete the cospan F(u),ab into a
commuting square. By strong right Ore, t,u € B exist such that
c1t = cou and dit = dau. Thus, it suffices to show that (a;'; dl,,Bcl dl) =
(aS') d1t7ﬁclt 4ty Consider px(cit) = pa(cr)wa(c1,t). By definition,

pa(cr)za(cr, t) = pa(et) = 04215 d”ﬂfﬁﬁ it 5clt dlt,
with F(aSP ") = a, F(ﬁ;f;’dlt) = b and F(5) ") = dyt. By unique
factomzatmn7 v, T exist with y7 = Jgflf’dlt and F(v) = dy, and F(7) =

Since F(al'y dltﬁgflf’dltv) = abdy = F(ux(c1)), by unique factorization,

we have

017d1 BChdl 501,d1 cit, dltﬁclt,dlt,y.

= pa(er) = ay),

a,b
. . . . c1,d1 cit,dit
Thus, by unique factorization, again we have Q= Ay and

ﬁgiédl = B;jlf’dlt, as desired. Therefore, ind, () is well defined.

We must check that ind,(x) is a section of F' : £/Y — B/F(Y).
Note that r(ag’z) = r(p) and (87 9 = s(ozZ:Z) by definition. It follows
that ind,(z)(a,b) € £/Y. Also, by definition, F(ind,(x)(a,b)) =
(a,b). It remains to show that ind,(x) is a functor. Suppose that
(a,b)(ab,t) € B/F(Y). Consider the cospan F(u) and abt. By right
Ore, ¢,d € B exist with F(u)c = abtd. Thus, by unique factorization,
unique «, 8, 7,4 exist such that F(a) = a, F(8) = b, F(r) = t and
F(6) =d, and px(c) = af7ré. By definition,

agy = a=agl,,

ctd __
ab ’
c,d

aabt Oéﬂ,

c,d
ﬂabtiT

ﬂabt 67—
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Thus,
ind,,(x)(a,b) ind,(z)(ab, t) = (o, B)(af, ) = (o, f7) = ind,(a, bt),
so that ind,, is indeed a functor.

In order to see that ind,(z) € Z(u) and res, is the inverse for ind,,
we need the next claim:

(3.1) (ind,,(2))1 (F()a, b) = pua(a)
and

(ind#(x))g(F(,u)a, b) = x2<a7 b)

for all (a,b) € B/F(Y). Next note that F(u), F(u)ab is a cospan, and
the span ab, s(b) completes it to a commuting square. Thus, we have,
by the definition of ind,,(z), that

p(a)rs(a,b) = pa(ab) = (indy(x))1(F(p)a, b)(ind,(x))2(F(p)a, b).
Unique factorization now gives equation (3.1).

Since ind,, (@) (F()a) = ind, (@)1 (F(n)a, F(s(1))) = pa(a), item (i)
follows immediately from equation (3.1); in particular, taking a = s(«a)
gives ind,(z) € Z(p).

We now show item (ii), that is, ind,, is the inverse of res,. Let « €
Z(p) and (a,b) € B/F(r(p)); we want to show ind,,(res,(z))(a,b) =
x(a,b). We compute ind, (res,(z))(a,b). Now, F(u),ab is a cospan in
B, so there exist ¢,d € B with F(u)c = abd. Thus,
x1(a,b)xs(a,b)ze(ab, d)=x1(ab, d)x2(ab,d)

=x(abd)

=a(F(p)e)

=pza(F(p),c) since x € Z ()

=pres,(x)(c) by definition of res,

= (ind(res, (x))1(a, b)(ind (res, (x))2(a, b)ég:‘;
by definition of ind,,. Therefore, ind,(res,(z))(a,b) = x(a,b) by unique
factorization.

Now suppose that x € Z(s(u)) and (a,b) € B/F(s(u)). We want
to show that res,(ind,(z))(a,b) = z(a,b). Using equation (3.1), we
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compute:

res, (ind,,(z)(a, b)) = (in

a.

w(2)2(F(p), @), ind, (2)2(F(p)a, b)))
(

as desired.
The other properties now follow fairly quickly.

For item (iii), note that
residy (2)(a,b) = (z2(Idx, a),z2(Idx a,b))
= (z1(a, b), z2(a, b)) = z(a,b),

so that resjqy = Idz(x). Now,
indiq, = (resldx)fl = Idg(lx) = IdZ(X) .

For item (iv), we first show that
(3.2) ind,(Z(v)) C Z(pv) and res,(Z(uv)) C Z(v).
For the former, note that, if € Z(v), ind, (z)(F(p)F(v)) = px(F(v))
= pv by item (i). For the latter, if x € Z(uv), then
pv = x(F(p)Fv)) = z1(F(p), F(v))za(F(p), F(v)).
Since F(z2(F(un), F(v))) = F(v), we have zo(F(p), F(v)) = v by
unique factorization. Therefore,
res,, (¢)(F(v)) = res, (2)1(F(v), s(v))) = z2(F(p), F(v)) = v,
that is, res,(z) € Z(v).

It now suffices to show the reverse inclusions. If z € Z(v), then
ind,(xz) € Z(pv). Thus, x = res,(ind,(x)) € res,(Z(uv)), that is,
Z(v) C res,(Z(pv)), and thus, res,(Z(uv)) = Z(v). Similarly, if z €
Z(pv), then res,(x) € Z(v), so that « = ind,,(res,(z)) € ind,(Z(v)),
that is, Z(puv) C ind,(Z(v)), and thus, ind,(Z(v)) = Z(uv).

For item (v), we first show that the domain of res, ores, = Z(uv).
We want to show that = € Z(uv) by letting « be in the domain of



DISCRETE CONDUCHE FIBRATIONS AND C*-ALGEBRAS 729

res, ores,. Now, = ind, oind, (res, ores,(z)) so that
z(F(p)F(v)) = ind, oind, (res, ores,(x))(F(u)F(v))
= pind, (res, ores,(z))(F(v)) = pv
where we used item (i) twice. Thus, z € Z(uv). Now, if z € Z(uv),

then by item (iv), res,(z) € Z(v), and thus, = is in the domain of
res, ores,, as desired.

Next, we show that res, ores, = res,,, is equal. For this, we compute
res, ores,(x)(a,b) = ((resu(x))2(F(v),a), (resu(x))2(F(v)a,b))
= (22(F(w), a), z2(F(pv)a, b))
=res,, (2)(a, b),
as desired.

For item (vi), notice that by item (v), we have res, ores, = res,,.
Thus,
ind,, oind, = (res, ores,) " = (res,,) ' = ind,,,

which completes the proof. O

Remark 3.18. Note that, defining resg merely requires that F': £ — B
be a dCF. We only use that I is a KPf to define indg.

We can now show that C*(F') # 0 for row finite Kumjian-Pask
fibrations.

Proposition 3.19. Let F : £ — B be a row finite Kumjian-Pask
fibration. Then, C*(F) # 0.

Proof. Consider ¢2(F>°). For p € &, define
Too— ind,z ifxe Z.(S(M)),
0 otherwise,

and let Qx be the projection onto the subspace spanned by Z(X). A
quick computation shows that

Trp = J TS T ifre ?(,u),
0 otherwise.
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Proposition 3.17 shows that @) and T satisfy all of the conditions of a
Cuntz-Krieger F-family except (6). But, (6) follows immediately from
Lemma 3.16. Thus, by the universal property, C*(Q,T) is a quotient
of C*(F). Since C*(Q,T) is nonzero, we have that C*(F') # 0. O

4. The groupoid of a Kumjian-Pask fibration. In this section,
we use the infinite path space of a Kumjian-Pask fibration to construct
a groupoid.

A groupoid G is a small category in which every morphism is
invertible. We identify the objects in G with the identity morphisms
and denote both by G(®. As G is a category, we can send any
morphism v to its range and source and denote these maps by r and
s, respectively. A topological groupoid is a groupoid with a topology
in which composition is continuous and inversion is a homeomorphism.
It follows that r» and s are also continuous. An open subset B of a
topological groupoid G is called a bisection if r|p and s|p are injective
and open. We say that a topological groupoid is étale if it has a basis
of bisections.

We are interested in locally compact Hausdorff étale groupoids
because there is a well-developed theory of the C'*-algebras constructed
from them. We will show that Kumjian-Pask fibrations give rise to
étale groupoids. First, however, we sketch the construction of locally
compact Hausdorff étale groupoid C*-algebras for the convenience of
the reader; for details, see [12].

Let G be a locally compact Hausdorff étale groupoid. Define a
convolution algebra structure on the continuous compactly supported
functions C.(G) on G by

Frg( =Y g™y, f=Ffa"0.

n:r(m)=r(vy)

The sum is finite because f is compactly supported, and the inverse
image of a point under an étale map (here, r~1(v)) is discrete. We
say that a sequence of functions {f;} in C.(G) converges to f in the
inductive limit topology if

1fi = flloe = sup{[fi(y) = F(NI} — 0,
veG

and there exists a compact set K C G such that supp(f;) € K
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eventually. Define Rep (C.(G)) to be the set of x-homomorphisms
from C.(G) to B(H) such that the image of inductive limit convergent
sequences is weak-x convergent. Define a norm on C.(G) by

1f1l = sup{[[z (/)] : = € Rep (Ce(G)) -

We then define C*(G) to be the completion of C.(G) in || - ||. (It is non
trivial that the supremum defining the norm exists, see [12].) Given a
unit u € G| there is a representation L" : C*(G) — B({?*(Gu)) given
by

LY(f)oe =D f(n) e
s(n)=r(§)

A quick computation shows that L* € Rep (C.(G)). We define I, =
Nuego ker(L*) and C}(G) = C*(G) /1.

In order to describe the groupoid constructed from a row finite
Kumjian-Pask fibration, we first need to topologize the infinite path
space. In Definition 3.14, we described for each a € £ a set of infinite
paths Z(a) = {z € F*° : 2(F(«)) = a}. In this section, we show that,
under a mild countability hypothesis, the collection of these sets forms

a basis of compact open sets for a locally compact Hausdorff topology
on F'*°.

Lemma 4.1. Let F : £ — B be a row finite Kumjian-Pask fibration.
(1) If o, 0 € € with r(0) = s(a), then Z(ad) C Z(«).
(i) If a, B € € with F(a) = F(B), then Z(a) N Z(B) # 0 if and only
if a = 0.

Proof. For item (i), observe that, if x € Z(ad), then z(F(a)F(J)) =
ad; thus, by unique factorization xz(F(a)) = a.

For item (ii), if x € Z(a) N Z(B), then a = z(F(a)) = z(F(B))
= 0. O

Proposition 4.2. Let F' : € — B be a row finite Kumjian-Pask
fibration and o, 8 € € with Z(a)NZ(B) # 0. Then, there exist c,d € B
such that

F(a)e = F(8)d,
I={ay:s(a) = r(7), F(7) = ¢ N {86 : 5(8) = r(5), F(6) = d} # 0
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and

2(e)n 2(8) = | Z(w).

nel

Further, the sets Z(u) for u € I are mutually disjoint.

Proof. f ® € Z(a) N Z(B), then r(a) = r(z) = r(B). Thus,
F(a),F(B) is a cospan in B and, since B is right Ore, there exist
¢, d € B with F(a)e = F(B)d. For x € Z(a) N Z(f), axe(F(a),c) =
z(F(a)e) = z(F(B)d) = Bx2(F(B),d), we then have axs(F(a),c) € I
and z € Z(aza(F(a),c)). Thus, Z(a) N Z(B) C U,e; Z(1). Now,
the reverse inclusion follows from Lemma 4.1. Finally, Lemma 4.1 also
gives that Z(p) is mutually disjoint. O

Corollary 4.3. Let F' : £ — B be a Kumgian-Pask fibration. Then the
set {Z(a) : a € E} is a basis for a topology on F*°. Furthermore, if B
is countable and F' is row-finite, then F° is second countable. If each
slice category B/ B is countable and F is row-finite, then each Z () and
each Z(X) is second countable.

Proof. Since F* = |y copje) Z(X), Proposition 4.2 shows that
{Z(a) : @ € £} is a basis. For the second statement, if B is countable
and F' : £ — B is row-finite, then £ and {Z(a) : a € £} are count-
able. g

Remark 4.4. B countable implies that B/B is countable for all
objects B in B. The latter can happen without B being countable, for
instance, if B is the uncountable disjoint union of countable categories.

Henceforth, we regard F°° as a topological space with topology
induced by the basis {Z(8) : 8 € £}, and the subsets Z(5) and Z(X)
for morphisms 8 and object X of £ as spaces in the subspace topology.

The next lemma will be quite useful in what follows.

Lemma 4.5. Let F : £ — B be a row-finite KPf, X an object in &,
x,y € Z(X) and (a,b) € B/F(X). The following are equivalent:

(i) z(a,b) = y(a,b) as morphisms in £/X;
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(ii) z(a) = y(a) and xz(ab) = y(ad) as objects in £/X;
(iii) z(ab) = y(ab) as objects in E/X.

Consequently, if © and y agree on all objects of B/F(X), then x = y.

Proof. For the first statement, note that (i) implies (ii), since equal-
ity of morphisms implies equality of their sources and targets, and
(ii) implies (iii), trivially. To see that (iii) implies (i), recall that
z1(a,b)xs(a,b) = x(ab) = y(ab) = y1(a,db)yz(a,b). Thus, by unique
factorization, x;(a,b) = y;(a,b) for i = 1,2, and therefore, x(a,b) =
y(a,b).

The second statement follows from the first, since agreement on the
source of a morphism implies agreement on the morphism. O

Proposition 4.6. Let F' : £ — B be a row-finite KPf. Then F*> is
Hausdorff.

Proof. Suppose that z € Z(X) andy € Z(Y) witha #£y. f X £V,
then Z(X)NZ(Y) = 0, and we are done. If X =Y, then by Lemma 4.5,
there is a morphism (object in the slice category) b : B — F(X) such
that z(b) # y(b). But, then z € Z(z(b)) and y € Z(y(b)) give open
neighborhoods that are disjoint. O

Theorem 4.7. If F : £ — B is a row-finite, strong surjective KPf and,
moreover, every slice category B/B is countable, then for each € £,

(i) Z(B) is compact; and
(ii) F'* is totally disconnected.

Proof.

(i) implies (ii), because F'*° is Hausdorff, and thus, Z(8) compact
implies that it is closed. Since the B/B are each countable, each Z(f3) is
second countable; thus, it suffices to show that each Z(3) is sequentially
compact.

Fix a morphism 8 :Y — X in &, and order the objects of B/F(X)
so as to give a sequence {b; : B; — F(X)}2, with by = F ().

Given a sequence {x,}°2, in Z(f), we will construct a conver-
gent subsequence by a diagonalization argument. Let {z,0}22, =
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{zn}5, and observe that, for all n,

Zn,0(bo) = B,

that is, x,,0(bo) is constant, and thus, a fortiori, eventually constant.

Now, suppose that we have constructed sequences {z,;}?2, for
i =0,...,k, such that

(1) {xn j+1}0%0 is a subsequence of {z, ;}°2,; and
(ii) @y (b;) is constant for all j <.

Note that the nesting of subsequences ensures that j < i < h < k
implies x,, ;(b;) = Ty 1 (bj).

We construct a subsequence x, 41 of =, satisfying item (ii).
Consider the list of objects in £/X given by {xy 1 (br+1)}52,. Each
element of this list is a preimage of b1, but, by row-finiteness, there
are only finitely many distinct preimages. Thus, by the pigeonhole
principle, xn k(bxy1) occurs infinitely often. Let {z, r41}neo be the
subsequence of all z,, ;s for which @, 1 (br+1) = N 1 (br+1). Now, since
it is a subsequence of {z, }52,, our new sequence is constant on the
b; for j < k, and, by construction, it is constant on byy1. Thus, , k41
satisfies item (ii), as desired.

We claim the diagonal sequence {x,,,}, necessarily a subsequence
of our original sequence {z,}52, is convergent. By construction, for
eachb: B — F(X), x,, () is eventually constant, and, by Lemma 4.5,
for any morphism (¢, d) in B/F(X), @y n(c,d) is eventually constant.

We define the limiting infinite path = by z(w) = lim,— Zpnn(w),
whether w is an object or morphism of B/F(X), and the limit exists by
eventual constancy. In order to see that x is a functor, let (a, b), (ab, c) €
B/F(X). Then n exists sufficiently large so that

z(a,b)x(ab, c) = z,(a,b)x,(ab, ¢) = x,(a, bec) = z(a, be),

that is, x is a functor. Likewise, that x is a section of F follows
from its agreement with z,, for n sufficiently large on each object
and morphism.

It remains only to show that z = lim,, o @5, in the topology on
F°°. However, the basic opens containing z are given by {Z(x(b;)) :
i =0,1,2,...}, and, by construction, z, , € Z(z(b;)) for all n > i.
Thus, the proof is complete. O
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Now, having equipped F'*° with a topology, we consider the conti-
nuity of our two families of maps res,, and ind,,.

Proposition 4.8. Let F' : £ — B be a row-finite KPf and p € €. Then,
res, : Z(p) = Z(s(w)) and ind,, : Z(s(p)) — Z(p) are continuous.

Proof. In order to see that res,, is continuous, it suffices to show that
res, ' (Z(v)NZ(s(p))). The inverse image of generic basic open sets for
the subspace topology, is open.

However, Z(v) N Z(s(n)) = 0, unless r(v) = s(u), in which case,
Z(v)N Z(s(n)) = Z(v). Now, res;; ' (Z(v)) = ind,(Z(v)) = Z(uv) by
Proposition 3.17, and is thus open.

In order to see that ind, is continuous, it again suffices to show
that ind;l(Z(,u) N Z(y)) is open for any v € £. Now, Z(u) N Z(y)
is either empty or a disjoint union of sets of the form Z(uv) by
Proposition 4.2. It suffices to show that ind;l(Z(,uy)) is open. Thus,
by Proposition 3.17, ind;I(Z(/w)) = res,(Z(uv)) = Z(v) is open, as
desired. ]

With this result, we begin our construction of the groupoid. Let
Gr ={(pyv,x) EEXEXF®:x € Z(v) and s(u) = s(v)}.

We think of (p, v, ) as a map taking x to ind,(res,)(z). We define a
relation on Gp by (u,v,x) ~ (¢, v, '), if

(i) z=2a';
(ii) there exists a A € & with « € Z(A\) C Z(v) N Z(V') and
ind, ores, [z(n) = ind,s ores,s |z(n);
(iii) there exist a,b € B with F(u)a = F(')b and F(v)a = F(V')b.

A quick check shows that ~ is reflexive, symmetric and transitive,
thus, it is an equivalence relation. Define Gr = Gp/ ~, and denote the
image of (u,v,x) in Gg by [u, v, z].

We define the composition of morphisms in Gg. As we are thinking
of [, v,x] as a morphism taking « to ind,(res,)(z), we would like to
compose [, v, 2], [0, 7,y] € Gr X Gp if x = ind, ores,(y), and the
map should be y — ind, ores, oind, ores,(y). However, to define
composition in this way, we need to find (£,{) € £ x £ with the map
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ind¢ ores¢ = ind, ores, oind, ores, on a neighborhood of y and then
deﬁne [:U’7 v, .’E] . [07 T, ZU] = [5’ C? y]

Consider [p,v,z],[0,7,y] € Gr X G with = ind, ores,(y). We
construct a candidate for [£, (, y]. Since x = ind, ores,(y), z(F(v)) = v
and z(F (o)) = 0. Thus, F(v), F(0) is a cospan in the right Ore cate-
gory B, and there exist a,b € B with F'(v)a = F(o)b. Therefore,

veo(F(v),a) = x(F(v)a) = x(F(0)b) = oxe(F(0),b).
Take v = x2(F(v,a)) and n = 22(F(0),b) so that vy = on.
Note that, on Z (1), we have

ind, ores, oind, ores; =ind, oind, ores, ores, oind, oind, ores, ores,
=ind,, ores,, oindy, ores,,

=ind,, ores .

Lemma 4.9. The formula

1, v,indg oresr(y)][o, 7, y] == [y, 70, 4],
form and v, as in the discussion above, with x = ind, ores,(y), gives
a well-defined composition in Gp.
Proof. Suppose that [o,7,y] = [¢/,7,y] and [u,v,ind, ores,(y)] =
[,V ind,s ores;/(y)]. Choose v/ and n’ such that v/ = o’n’. Then,
1, v,inds ores- (y)][o, 7, y] = [y, ™0, 9]

and

W',V indgr ovesy (y)lo’, 7', y) = [/, 7'n, y].

We must show that [uy,7n,y] = [+, 7', y]. We have y = y and,
since composition of germs is well defined, a A € £ exists so that, on
Z(A),
ind,,, ores;, = ind, ores, oind, ores;
= ind,s ores,s oind, ores,

= ind, /s ores; i,y .
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It remains to show that R and R’ exist such that F(uy)R =
F(w/~")R and F(tn)R = F(7'n')R’. Let

m = F(u) ' = F()
n=F(v), n' =F(@)
w = F(o), w' = F(do')
t=F(r), t'=F(r)

= F(7), g =F>")

h = F(n), W' =F('),

so that

(4.1) ng = wh,

(4.2) n'g =w'h'.

Since [w,v,ind, ores,(y)] = [p/,V/,indy ores,/(y)] and [o,7,y] =

[0/, 7', y], there exist p,p’,q,q € B such that

(4.3) mp=m'p',  np=n'p,

(4.4) wqg=w'q, tg=1tq.

Since (p, 9), (v',¢'), (¢,b), (¢’,b") are cospans, by the right Ore condition,
ay, az, by, ba, ajay, by, by € B
exist such that
(4.5) pay = gby, qas = hbo,
(4.6) play = g'bl, q al = h'th,.
Since s(p) = s(p’) and s(q) = s(¢’), we have that (a1, a]) and (az, ab)

are cospans. Using the right Ore condition again, ¢1, ¢}, dy, d] € B exist
such that

(4.7) ajc; = aycl, asdy = abd).
Since r(b1) = s(g) = s(h) = r(b2) and r(b)) = s(g') = s(h') = r(by),

we have that (bic, bady) and (b}, bad)) are cospans. Using the right
Ore condition, cg, ¢, ds, dy € B exist such that

(48) b16162 = bgdldg, b’lc'lc’Q = bédlldé
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Define
M = ngbicy = npaicy = n'p'ayc) =n'g'bic},
and

N = whbydy = wqasd; = w'q'abyd) = w'h'blyd].

Now, M, N is a cospan and Mcy = Ndy and Mc), = Nd,. Thus, by
strong right Ore, k, ¢ € B exist with

(49) 62]{5 = Clzf dgk = déf
Take R = bicicok and R’ = b/ cjche. Then,

mgR = mgbicicok = mpaicieok by (4.5)
= mpajcicyl by (4.9)
= mpa’ ) cyl by (4.7)
=m/pa)cchl by (4.3)
=m/g'b|c chl by (4.6)
=m'g' R,
and
thR = thbycicok = thbadydak by (4.8)
= tqazdidak by (4.5)
= tqasdidye by (4.9)
= tqasdydyl by (4.7)
=t'q' asd)dyl by (4.4)
— VRV, b by (4.6)
= t'W'bc\cht by (4.8)
=t'WR.
We obtain that multiplication is well defined on Gp. |

Lemma 4.10. Under the multiplication defined in Lemma 4.9, G is
a groupoid.
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Proof. Note that, for [u,v,z] € GF,
[r(u),(w), indy (ves, ()], v, 2] = [r(p)p, vs(pn), 2] = |1, v, 2]

and

[/LJ@:EHT(I/),T(V),(E] = [/j,s(l/)ﬂ“(lj)l/, IE] = [/j,,l/, x]v

that is, elements of the form [r(z),r(x),z] act as units in G, and the
map x +— [r(z),r(z), z] identifies F*° with the unit space of Gp. Also,
[r(z),r(x),z] = [z(a),z(a), x] for any object a in B/F (r(x)).

Now, for [u, v, x] € GF, consider [v, u,ind,(res, (x))]. Then
(1, v, v, p, ind  (ves, (2))] = [, p, ind (ves, ()]

and

[V, p,ind,, (res, (2))][p, v, x| = [v, v, 2],

that is, the inverse of [u,v, ] is [v, 4, ind,(res,(x))]. Thus, Gp is a
groupoid. O

Remark 4.11. Let F': £ — B be a row finite Kumjian-Pask fibration
where B (and hence, £) is left and right cancellative. Suppose that &
has no inverses. Then & is a finitely aligned category of paths in the
sense of [15, Definition 3.1]. Let X be an object in £. Define Ax to
be the set of finite disjoint unions of sets of the form

(EOR(VEY

j=1

and Qx the set of ultra filters on Ax, that is, w € Qx is a subset of
the power set on Ax which does not contain the empty set with the
property that, for every £ € Ax, either E € w or there is an F' € w such
that FNE = (. Take Q = Uxconje)Qx. For f € XE, we can define

a set BE = {w € Qx : B€ € w}. The set {5?}565 forms a subbasis
for a topology on 2. For a € &, there is a map a : Agn) — Apa)
characterized by a(8E) = (af)E; & then induces a continuous map
a: Qga) = Q- In [15], Spielberg defines a groupoid G(&) to be
the groupoid generated by the germs of the maps a for all « € £. The
unit space of G(€) can then be identified with .
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We can view Gg,?) =F> CQ=G(E)® by taking € F> to
Wy ={E € Ayz) 1 2(a)€ C E for some a € B,r(a) = F(r(z))}.

In order to see that w, is an ultrafilter on A, ,), we need to see that,
if E € A,), then either there exists an a with xz(a) C E or an
z(a)é N E = (. Suppose that z(b)é N E # ( for all b € B with
r(b) = F(r(z)). Now,

- 0((0)- (G9)

Since B is right Ore, a € B exists that extend F(co ;) and F(f; %) for
all choices of 4,j and k. We claim that z(a)é C E. We know that
z(a)£ N E # 0. Thus, ig and jy exist such that

M,
z(a)EN (aio,joe - ( U 5i0,k5>) 0.
k=1
Let

M,
WS CL’(G)E N <aio,jog - < U ﬂio,kg>>v
k=1

so that v = z(a)y = au, ;7" Since a extends F(a;, j,), by unique
factorization, we obtain z(a) = a;, j,n for some n. Thus, z(a)€ C
Q.50 Now, v & 5, 1€ for all k. Since a extends F(f;, «) for all k, we
must have z(F(8;,.1)) # ﬂzo,k for all k so that z(a)€ N By 1€ = O for
all k, that is, z(a)€ C ;€ (U;C Biy k€) C E, as desired. Thus,
w; is an ultra filter, and we can view F > C Q as claimed.

We now turn to the problem of defining a topology on Gg. For
w,v € €, consider the set

Z(Ma”) = {[O{,67.'L'] € GF : [OZ,B,I‘] = [[J,,l/,l‘]}7
that is, [, B, 2] € Z(u,v) if x € Z(v) and (o, B, ) ~ (1, v, ).
Given (a, ), (u,v) € € x &, note that, if an a exists such that
F(a)a = F( ) and F(8)a = F(v), then Z(,u7u) C Z(a, B) if there

exists v with F(v) = a and (a, 87) = (p, v), and Z(p,v)NZ(c, B) = 0,
otherwise.
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Indeed, if Z(pu,v) N Z(a,B8) # O, then [u,v,z] € Z(«,B) exists.
Therefore, 2(F(v)) = z(F(8)a) = x(F(8))x2(F(B),a) and, by unique
factorization, we have x(F(8)) = 8 and v = By with v = z5(F(8), a).
Now,

p = ind, oresg(z)(F(a)a) = aresg(x)(a) = ar.

Proposition 4.12. Suppose that Z (o, )N Z(o,7) # 0. Then a,b € B
and I = {(ay,By) € EXE: F(y) =a}n{(on,™m) € EXE: F(n) =
b} # O exist such that

Z(e,B)nZor)= |J Z(uv
(n,v)el

and the union on the right hand side is disjoint.

Proof. Since Z(a,8) N Z(o,7) # 0, x € F*> exists with [, 3, 2] =
[0,7,x]. This occurs if and only if ind, oresg = ind, ores, on some
neighborhood of = and a,b € B exist such that

F(a)a= F(o)b and F(8)a= F(7)b.

Take I for this a,b € B. By the definition of I, if (u,v) € I, then
Z(u,v) C Z(a, B) N Z(o, 7). Thus,

U Zwv) c 2(a,8)nZ(0,7).

(p,v)el

Now, we assume [a, 8,z] = [0, 7,2] € Z(o, ) N Z(0,7) # 0. Take
v = x2(F(8),a) and n = z2(F(7),b). By definition, we then have
By = xz(F(B)a) = x(F(r)b) = mn, and since ind, oresg = ind, ores,
on a neighborhood of x, we also have
ay = aza(F(B),a) = aresg(z)(a)

= ind, oresg(z)(F(a)a)

= ind, ores,(z)(F(0)b)

=01,
that is, (v, fy) = (on,mn) € I, and thus, [, 5, 2] € U(W,)GI Z(p,v).
Thus,

Z(o, )N Z(o,T) U Z(u,v
(n,v)eIL
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as desired. Now, for (u,v),(1,v") € I, F(p) = F(u') and F(v) =
F(@') so that Z(p,v) N Z(W',v') = 0 if (u,v) # (¢/,v') by unique
factorization. O

Corollary 4.13. The set {Z(u,v)} is a basis for a topology on Gp.

Lemma 4.14. With respect to this topology, composition is continu-
ous and inversion is a homeomorphism, that is, Gg is a topological
groupoid.

Proof. In order to see that inversion is continuous, note that
Z(u,v)~t = Z(v,p); since inversion is an involution, it is a homeo-
morphism.

In order to see that composition is continuous, let Z(u,v) be a
basic open set and [«, 8,indy (res, (x))][o, T, 2] = [ay, ™0, 2] € Z(p,V);
in particular, ,B'y = on. We need to find neighborhoods Z(o/, ")
and Z(U’,T’) f o, B8, ind, (res, (z))] and [, T, 2], respectively, so that
Z(a, B)Z(0",7') C Z{,1).

Since [ay, ™0, 2] € Z (1, V), d,e € B exist such that
F(ay)d=F(n)e and F(rn)d= F(v)e.
Further, k € B exists such that
ind, ores, | z(z(F(v)ek)) = INdary OT€Sry | 2(a(F (rn)dk))-
Choose 9, ¢,k € € such that
vek = x(F(v)ek) = x(F(rn) dk) = mndk

and F(0) =d, F(e) = e, F(k) = k. Since vy = on, s(y) = s(n) = r(9).
Take

o =avydk, B =pBvik, o =onék and T =TNiK.
By construction, 8’ = ¢’. Thus, by definition,

Z(, B2 (", ") = Z(d,7") = Z(aydk, oK) = Z(aydk, vek).



DISCRETE CONDUCHE FIBRATIONS AND C*-ALGEBRAS 743

We want to show that Z(o/,8")Z (o, 7") C Z(u,v), and, by the above
computation, it suffices to show that aydx = pex. However,

avydk = indg oresq (z)(F(ay) dk)
=ind, ores, (z)(F (o) dk)
=ind, ores, (z)(F(n)ek) = pex,

as desired. O

Lemma 4.15. For p, v € £. The maps |7,y : Z(p,v) — Z(p) and
slz(uw) + Z(u,v) = Z(v) are homeomorphisms, and Gr is étale.

Proof. We begin by showing that s|z(,.) : Z(p,v) — Z(v) is a
homeomorphism. First, note that s|z(,,,) is injective. Now, since
Z(a, B) forms a basis for Gp (and therefore, for Z(u,v)) and Z(5)
forms a basis for F'*° (and hence, for Z(v)) it suffices to show that
s(Z(a,B)) = Z(B). Now, if z € Z(8), then [a, 8,2] € Z(«, 3), and
thus, Z(8) C s(Z(«,B)). By definition, s(Z(«,B)) C Z(8), so that
5(Z(a,B)) = Z(B), as desired. Thus, s|z(u.) : Z(p,v) — Z(v) is

a homeomorphism. Since 7([a, 8,7]) = s([a, 3,2]71), and inversion
is a homeomorphism, we obtain that r|z,.y : Z(u,v) = Z(u) is a
homeomorphism as well. By definition, Gg is now étale. |

Theorem 4.16. Let F : &€ — B be a row finite Kumjian-Pask
fibration with every slice category B/B countable. Then, Gg with the
topology induced by the basis {Z(u,v) : (u,v) is a span in E} is totally
disconnected locally compact Hausdorf.

Proof. Note that Z(u,v) is homeomrphic to Z(v) by Lemma 4.15,
and Z(v) is compact from Theorem 4.7. Thus, G is locally compact;
it will also follow that G is totally disconnected once we show that Gg
is Hausdorff. In order to show that Gg is Hausdorff, first note that,
if two morphisms [a, 8, z] and [, d, 2] both lie in a basic open Z(u,v),
then they are equal since both are [y, v, x].

For brevity, having chosen to denote morphisms in £ with Greek
letters, we denote their image under F with the corresponding Latin
letter (thus, for instance F'(«) will be denoted a).
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Now, suppose that [a, 3, x] # [, d,y]. First, suppose that « # y. If
r(B) # r(d) or r(a) # r(y), it is immediate that Z(a, 8) and Z(v,9)
are disjoint. Thus, suppose that «, 3 and ~,§ are two spans between
a pair of objects I' = r(y) = r(a) and A = r() = r(f) in €. Since
x # y, amorphism f : X — D in B exists for which x(f) # y(f) are
distinct lifts.

By the right Ore condition, we can complete the cospan b, d to a com-
mutative square bk = df and the cospan bk = df, f to a commutative
square fn = bkm (= dfm). By the unique factorization lifting prop-
erty it follows that x(f) # y(f) implies z(bkm) = z(f