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SUBSTITUTION MARKOV CHAINS
AND MARTIN BOUNDARIES

DAVID KOSLICKI AND MANFRED DENKER

ABSTRACT. Substitution Markov chains have been in-
troduced [7] as a new model to describe molecular evolution.
In this note, we study the associated Martin boundaries
from a probabilistic and topological viewpoint. An example
is given that, although having a boundary homeomorphic to
the well-known coin tossing process, has a metric description
that differs significantly.

1. Introduction. Deterministic substitutions are used to construct
symbolic dynamical systems by means of iterating a string rewrite rule
on the letters of a finite alphabet. A classic example is the Thue-Morse
sequence [12]

0110100110010110 · · · ,

which can be obtained by iterating the substitution 0 → 01, 1 → 10
repeatedly on the letter 0. In general, a substitution is defined as
follows. Let A be a finite alphabet, and let A∗ denote the set of all finite
length words formed via concatenation from A. Then, a substitution σ
is a morphism from A into the set A∗ whose domain is then extended to
A∗ by concatenation σ(WV ) = σ(W )σ(V ). The symbolic dynamical
system that arises from this substitution is then the orbit closure under
the shift map on a fixed point obtained from iterating the substitution.

We wish to study randomized versions of such substitutions. The
first analysis of such a randomization was performed by Peyriére in a
series of articles, see [8, 9, 10, 11], where a construction by Mandelbrot
(referred to by Peyriére as an M-system, a random beadset, or a
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random substitution) was taken as the motivation. These articles give
a definition of a random substitution and investigate the convergence
of the frequencies of subwords under various conditions (they also
investigate an associated kind of graph different than that considered
here). The main approach of these papers was to use Doob’s martingale
convergence theorem or an estimation of second moments to obtain the
desired results.

After Peyriére’s papers, the concept of random substitutions lay
dormant until Burton and Wing investigated the behavior of the
complexity function for random substitutions [14].

We take as our starting point a generalization of Peyriére’s definition
of a random substitution, first introduced in the Ph.D. dissertation of
the first author [7]. The main purpose of this note is to show how
Martin boundaries can be determined for transient random substitution
Markov chains in a probabilistic, topological and metric fashion. We do
this by example, in which the key property is to replace the root a with
words aw or wa randomly. This motivates a large class of similar SMC’s
which are persistent and expanding (see Definition 2.2) and where
analysis similar to that in this paper can be performed, for example,
by replacing a with a, aw, or wa (see the examples in Section 3). For
the example considered herein, the Martin boundary can be explicitly
calculated, and we analyze its metric properties in more detail (see
Theorems 4.5 and 4.6).

2. Random substitutions and their properties. Let A =
{a1, a2, . . . , aN} be an alphabet of N symbols. For ℓ ≥ 1, let Aℓ be the
set of all ℓ-length words on A, that is, all concatenations of ℓ symbols
from A. For w ∈ Aℓ, we denote the length of w as |w| = ℓ. Denote the
set of all finite length sequences as A∗ = ∪ℓ>0Aℓ. By a subword of w,
we mean a word u consisting of a contiguous sequence of symbols from
w and denote this relationship by u ⊆ w. Let |w|u denote the number
of times u appears as a subword of w, that is, |w|u is the cardinality of
the set

w(u) = {i : wiwi+1 · · ·wi+|u|−1 = u}.

Definition 2.1 (Substitution Markov chain). A substitution Markov
chain is a Markov chain with state space A∗ and transition operator P
satisfying the following property. For each a ∈ A, there is a probability
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Pa : A∗ → [0, 1] such that, for v ∈ A∗, and w = w1 · · ·wℓ with wi ∈ A,

P (w, v) =
∑

v1...vℓ=v
vi∈A∗

ℓ∏
i=1

Pwi(vi).(2.1)

We will abbreviate “substitution Markov chain” by SMC. According
to the above definition, to define an SMC, we need only specify the
functions Pa for each a ∈ A. This definition appears in [7] for the first
time. It generalizes Peyriére’s definition and the notion of an S-adic
transformation. Section 3 Example 1 is an SMC where the transition
probabilities cannot be defined by Peyriére’s definition of a random
substitution (this follows by comparing our definition with [10]).

Substitution Markov chains form a subclass of all possible Markov
chains with countable state space, and this class certainly contains
all finite state Markov chains. It is worth mentioning that an SMC
defines a multitype branching process in a canonical way (see [2] for
a definition). Let A denote the different types of a branching process.
Then, starting with one species i of type b ∈ A, the SMC creates
words and we consider the letters appearing in it as descendants of i.
If Xi = (Xi,a)a∈A denotes the vector of the number of descendants of
types a ∈ A, we can define a multitype branching process by

Z0 = (1, 0, . . . , 0) Zn =

( Zn−1,a∑
i=1

Xi,a

)
a∈A

,

where Zn−1,a denotes the ath coordinate of Zn−1. Clearly, Zn is
a Markov chain as well, and its properties, in particular its Martin
boundary, are well examined in the literature (for example, see [1, 4]).

It is clear from this that the investigation of SMCs and their
boundary properties are more elaborate than similar questions for
multitype branching processes. There is another difference to be
mentioned here. In view of the application, we are not interested
in studying the number of different genotypes/subletters but rather
the structure of genomes/words. This requires the consideration of
topological and metric properties as well, which is usually not done for
branching processes. In particular, we are interested in the metrically
isomorphic embedding of the state space into a compact space keeping
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the probabilistic structure meaningful. This viewpoint is in accordance
with Martin’s original idea.

Therefore, we have the next definition.

Definition 2.2. Let (A∗, (Pa)a∈A) be an SMC.

(i) A letter a ∈ A is called persistent if there exists w ∈ A∗ with
Pa(w) > 0 and |w|a > 0, and it is called expanding if, in addition,
|w| ≥ 2.

(ii) A substitution Markov chain is called persistent if each a ∈ A is
persistent.

(iii) An element a ∈ A is called a root of the Markov chain if, for each
w ∈ A∗ with Pa(w) > 0, it follows that |w|a = 1, and, for each
a ̸= b ∈ A∗ and w ∈ A∗ with Pb(w) > 0, a is not a subword of w:
a ̸⊂ w.

(iv) An SMC is of constant length if there exists an L ∈ N such that,
for all a ∈ A and w ∈ A∗ with Pa(w) > 0, |w| = L.

Lemma 2.3. Let a ∈ A be a root for the SMC (A∗, (Pc)c∈A). Then,
every word w ∈ A∗ with n-step transition probabilities P (n) (a,w) > 0
for some n ≥ 0 has a unique representation as a subset in AZ,

[w] = {(xk)k∈Z : xk = wk ∈ A, r ≤ k ≤ s},

where w0 = a and wrwr+1 · · ·ws = w.

Proof. By induction, one shows that each w with P (n) (a,w) > 0
contains the letter a exactly once. �

Lemma 2.4. A substitution Markov chain (A∗, (Pc)c∈A) with a per-
sistent and expanding letter a ∈ A is transient under the initial distri-
bution ϵa(·), the point mass in a.

Proof. Let

η =
∑

w∈A∗:|w|≥2

Pa(w).

Since P (v, w) > 0 implies that |w| ≥ |v|, by persistence, we must have
that

P (n)(v, v) ≤ (1− η)n;
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hence, v returns to itself only finitely often, unless η = 0. The latter is
impossible by the expanding property. �

Remark 2.5. The convergence of subword frequencies was shown
in [7]. We state the associated theorem for the special case of con-
vergence of subletter (i.e., c ∈ A) frequencies. Due to the previously
observed fact that one can use an SMC to define a multitype branch-
ing process, the results contained in [2, V.6] can be used to prove the
convergence of subletter frequencies (called particles in [2]), while the
full statement of [7, Theorem 2.4.10] gives convergence of frequencies
for subwords (i.e., w ∈ An) as well. Furthermore, [7, Theorem 2.4.10]
also provides an algorithm by which one may explicitly calculate such
frequencies.

Theorem 2.6. ([7, Theorem 2.4.10]). For M , a matrix indexed by
A × A associated to an SMC (A∗, (Pc)c∈A) with expanding root a, is
defined for c, c′ ∈ A by :

(M)c,c′ =
∑

w∈A∗

Pc′(w) |w|c ,

if M is primitive (that is, irreducible and aperiodic), then the right
eigenvector e of M associated to the eigenvalue 1 with ||e||1 = 1 gives
the expected frequency of appearance of each c ∈ A in the SMC, that is,
for Xn, the nth coordinate process for the Markov chain (A∗, (Pc)c∈A)
with initial distribution unit mass on a, then for c ∈ A and E, the
expectation

(e)c = lim
n→∞

E
|Xn|c
|Xn|

.

We apply this theorem to the second example given below.

3. Examples. Here, we gather a few sample SMC’s that are partic-
ularly analytically tractable.

3.1. Example 1. Let A = {a, b}. Then define Pa and Pb as

Pa(w) =

{
1/2 if w = ab or ba,

0 otherwise,
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Pb(w) =

{
1 if w = b,

0 otherwise.

A portion of the SMC beginning at symbol a is included in Figure 1.
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Figure 1. A portion of the substitution Markov chain associated to Σeg 1.

A compact way to represent this SMC is to use the following
notation:

Σeg 1 :

a −→

{
ab with probability 1/2,

ba with probability 1/2,

b −→ b

Note that a is persistent and is a root. This SMC was studied in
[7] wherein it was shown that the associated Martin boundary (see
Section 4) is homeomorphic to the unit interval.

3.2. Example 2. For a second example, let A = {a, b}. Then define
Pa and Pb as

Pa(w) =

{
1/2 if w = aa or ab,

0 otherwise,

Pb(w) =

{
1 if w = ba,

0 otherwise.
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Written in the alternative notation:

Σeg 2 :

a −→

{
aa with probability 1/2,

ab with probability 1/2,

b −→ ba

Note a and b are persistent and the SMC has constant length. We cal-
culate the frequency of appearance of a, b in this SMC via Theorem 2.6.
Calculating

M =
a
b

a b[
3/2 1
1/2 1

]
gives the eigenvector

e =

[
2/3
1/3

]
.

Hence, a and b appear with frequency 2/3 and 1/3, respectively. This
SMC was also studied in [7] where it was shown that the associated
Martin boundary (see Section 4) is homeomorphic to a Cantor space.

Here, we add to this by considering a more subtle SMC showing the
diversity of this class of Markov chains.

3.3. Example 3. Let A = {a, b, c}; then define

Pa(w) =

{
1/4 if w = ab, ba, ac, or ca,

0 otherwise.

Pb(w) =

{
1 if w = b,

0 otherwise.

Pc(w) =

{
1 if w = c,

0 otherwise.
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Written in the alternative notation:

Σeg 3 :


a −→


ab with probability 1/4

ba with probability 1/4

ac with probability 1/4

ca with probability 1/4

b −→ b

c −→ c

Note that this SMC is expanding; hence, it is a transient Markov
chain. The letter a is persistent and also a root of the Markov chain.
This will simplify the calculations in Section 4.

3.4. Example 4. Let A = {a, b, c}. Then define

Pa(w) =


q/4 if w = ab, ba, ac, or ca,

1− q if w = a,

0 otherwise.

Pb(w) =

{
1 if w = b,

0 otherwise.

Pc(w) =

{
1 if w = c,

0 otherwise.

Written in the alternative notation:

Σeg 4 :



a −→



ab with probability q/4

ba with probability q/4

ac with probability q/4

ca with probability q/4

a with probability 1− q

b −→ b

c −→ c
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3.5. Example 5. Let A = {a, b, c, d, e}. Then define

Pa(w) =

{
1/4 if w = ab, ba, ac, or ca

0 otherwise.

Pb(w) =

{
1/2 if w = bde or edb

0 otherwise.

Px(w) =

{
1 if w = x and x ∈ {c, d, e}
0 otherwise.

Written in the alternative notation:

Σeg 5 :



a −→


ab with probability 1/4

ba with probability 1/4

ac with probability 1/4

ca with probability 1/4

b −→

{
bde with probability 1/2

edb with probability 1/2

c −→ c

d −→ d

e −→ e

The fourth and fifth examples are variations of the third and have
Martin kernels which are explicitly computable. However, we focus
on the third example for the remainder of this manuscript and, in
particular, compute its Martin boundary.

4. Martin boundaries. The Martin boundary is an important
topological boundary from a probabilistic and potential theoretic view-
point as it describes all positive harmonic functions by integrals over
this boundary and solves the associated Dirichlet problem. The first
thorough treatment of the Martin boundary for Markov chains was
by Dynkin [3] who wrote a well-considered and polished account of
Hunt’s paper [5]. In the context of Markov chains, the standard
sources are the books by Kemeny, Snell and Knapp [6], Revuz [13],
and Woess [15, 16].
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The key difference between the aforementioned classical literature
and the substitution Markov chains considered here is that a non-
degenerate SMC is never irreducible on any non-trivial subset of the
state-space. Besides Dynkin, the classical literature ([6, 13, 15, 16])
all consider Markov chains (X,P ) that are irreducible. Dynkin [3]
considered Markov chains (X,P ) and initial distributions γ referred to
by him as standard measures: a measure γ : X → R is called standard
if, for all y ∈ X, ∑

x∈X

γ(x)
∞∑

n=0

Pn(x, y) > 0.

We wish to consider initial distributions that are point masses: x ∈ X,
γ = δx, which fit into that concept if one changes the state space X to
be all those states reachable when starting at a.

4.1. Notation. Here, we consider an expanding SMC with root a.
First, we fix the root to be a ∈ A and define the language to be

L = {x ∈ A∗ : there exists n ≥ 0 : P (n)(a, x) > 0}.

For x, y ∈ L, let

(4.1) G(x, y) =
∞∑

n=0

P (n)(x, y), K(x, y) =
G(x, y)

G(a, y)

be the Green’s function and Martin kernel, respectively. Choose
weights wz > 0 such that ∑

z∈L

wz

G(a, z)
< ∞.

The Martin metric defined on L× L is given by

θ(x, y) =
∑
z∈L

wz|K(z, x)−K(z, y)|.(4.2)

Clearly, θ is a pseudometric, and, if there exist x ̸= y such that
θ(x, y) = 0, then it must be that, for all z, K(z, x) = K(z, y). In
particular,

K(x, y) = K(x, x) =
1

G(a, x)
> 0
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and

K(y, x) = K(y, y) =
1

G(a, y)
> 0,

and hence, both G(x, y) > 0 and G(y, x) > 0, contradicting the
expanding property of the SMC.

The Martin compactification is given by the completion L̂ of the
metric space (L, θ), and the Martin boundary is given by the compact-

ification minus its interior: M = L̂ \ L. Equivalently, (see [7]), for
xn, yn ∈ L, the Martin boundary is given by equivalence classes of
sequences (xn)n≥0, (yn)n≥0 which leave every finite subset, such that
(xn)n≥0 and (yn)n≥0 are equivalent if and only if, for all z ∈ L,

lim
n→∞

K(z, xn) = lim
n→∞

K(z, yn).

Lemma 4.1. A constant length, persistent substitution Markov chain
(A∗, (Pc)c∈A) with an expanding root a ∈ A that satisfies |supp(Pa)| ≥
2 and for all c ∈ A,

supp(Pc) \
∪

c̸=b∈A

supp(Pb) ̸= ∅

has a non-trivial Martin boundary.

Proof. We will demonstrate this fact by explicitly constructing a
strictly positive, non-constant harmonic function. Given such an SMC
(A∗, (Pc)c∈A), define a deterministic substitution σ: for each c ∈ A, fix
a

wc ∈ supp(Pc) \
∪

c̸=b∈A

supp(Pb),

and let σ(c) = wc. Since the SMC has an expanding root a, we have
|σn(a)|a = 1 and |σn+1(a)| > |σn(a)|. Now, let (sn)n≥0 be a sequence
of real numbers defined by the recursion relation:

s0 = 1, sn+1 =
sn − k

P (σn(a), σn+1(a))
+ k
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for a fixed k ∈ R+, k ̸= 1. Then, for w ∈ A∗, define

f(w) =

{
sn, if w = σn(a)

k, otherwise.

Then, for w ∈ A∗ with w ̸= σn(a) for any n, since the SMC is of
constant length, if P (w, v) > 0, then v ̸= σm(a) for any m. Hence, we
have

Pf(w) =
∑
v∈A∗

P (w, v)f(v) =
∑
v∈A∗

P (w, v)k = k = f(w).

Now, in the case w = σn(a) for some n, we have

Pf(w) =
∑

v ̸=σn+1(a)

P (σn(a), v)f(v) + P (σn(a), σn+1(a))f(σn+1(a))

= k(1− P (σn(a), σn+1(a))) + P (σn(a), σn+1(a))f(σn+1(a))

= k + P (σn(a), σn+1(a))(f(σn+1(a))− k)

= k + P (σn(a), σn+1(a))(sn+1 − k)

= f(w).

So, in either case, Pf(w) = f(w); thus, f is harmonic. �

4.2. Martin boundary of Example 3. Let L ⊆ {a, b, c}∗ be the
language (or state space) of the substitution Markov chain Σeg 3. Note
that, for each w ∈ L, |w|a = 1, and each application of the random
substitution adds a b or c immediately to the left or right of the a. We
will take advantage of this fact by treating the symbol a as an “origin.”
For w, v ∈ A∗, let

ds(w, v) = 2−max{n:w1···wn=v1···vn}(4.3)

be the standard word metric. We also denote the reverse of the word
w = w1 · · ·wn by ⃗w = wn · · ·w1.

First, notice that we can calculate the Martin kernel explicitly. Let
z = HaT be a fixed word in L where the lengths of the subwords H
and T are h and t. We think of H and T as being the “head” and
“tail,” respectively, of z. Then, one can easily prove the next lemma.
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Lemma 4.2.

G(z, x) =

{
4−lx−rx

(
lx+rx
rx

)
if x = HLxaRxT, |Lx| = lx; |Rx| = rx,

0 otherwise,

and

K(z, x) =

{
4h+t (h+lx)h(t+rx)t

(h+t+lx+rx)h+t
if x = HLxaRxT ; |Lx|= lx; |Rx|=rx,

0 otherwise.

Here, we use the notation

(n)k = n(n− 1) · · · (n− k + 1).

Proof. By definition, G(HaT, x) > 0 if and only if x = HLxaRxT
for some finite words Lx and Rx of length lx and rx, and

G(HaT, x) = P (n)(HaT, x) =

{
4−lx−rx

(
lx+rx
rx

)
if n = lx + rx,

0 otherwise.

Then, omitting the index x,

K(HaT,HLaRT ) =
G(HaT,HLaRT )

G(a,HLaRT )
=

4−l−r
(
l+r
r

)
4−l−r−h−t

(
l+r+h+t

h+l

)
=4h!+t (l+r)!(h+l) · · · (l+1)l!(t+r) · · · (r+1)r!

l!r!(l + r + h+ t) · · · (l + r + 1)(l + r)!
.�

Let (xn)n≥1 ∈ LN be a Cauchy sequence in the metric θ from
Definition 4.2, called a θ-Cauchy sequence in the sequel. Then, for
z = HaT ∈ L, (K(z, xn))n≥0 is Cauchy in R, whence

lim
n→∞

K(z, xn)

exists and this limit equals zero or

4h+t lim
n→∞

(
lxn

lxn + rxn

)h(
rxn

lxn + rxn

)t

,

in the case that xn = HLxnaRxnT for all n large enough, where
lxn = |Lxn | and rxn = |Rxn |.
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Given two θ-Cauchy sequences (xn)n≥0 and (yn)n≥0, we write

xn = LxnaRxn , yn = LynaRyn

with Lxn , Lyn ∈ {b, c}∗ ∪{ϵ} (where ϵ is the empty word) denoting the
portions of xn and yn to the left of the “origin” a, and similarly for
Rxn , Ryn to the right.

Now, we can define an equivalence relation “∼” on the set of Cauchy
sequences on the state space L. Let (xn)n≥0∼(yn)n≥0 if the following
conditions are satisfied:

(I)

lim
n→∞

|Lxn |
|Lxn |+ |Rxn |

= lim
n→∞

|Lyn |
|Lyn |+ |Ryn |

=: λ.

(II)(a) If λ ∈ (0, 1), then

lim
n→∞

ds(Lxn
, Lyn

) = lim
n→∞

ds( ⃗Rxn
, ⃗Ryn

) = 0.

(II)(b) If λ = 0, then limn→∞ ds( ⃗Rxn ,
⃗Ryn) = 0.

(II)(c) If λ = 1, then limn→∞ ds(Lxn , Lyn) = 0.

We aim to show that LN/ ∼ naturally gives rise to the Martin
boundary M.

We are now in a position to demonstrate the next lemma.

Lemma 4.3. The following two conditions are equivalent for two θ -
Cauchy sequences (xn)n≥0 and (yn)n≥0:

(i) (xn)n≥0 ∼ (yn)n≥0,
(ii) (xn)n≥0 and (yn)n≥0 are equivalent θ-Cauchy sequences.

Proof.

(i) ⇒ (ii). Let (xn)n≥0 ∼ (yn)n≥0 be θ-Cauchy sequences. Write
xn = LxnaRxn and yn = LynaRyn with

Rxn = (Rxn(1), . . . , Rxn(rxn)), Ryn = (Ryn(1), . . . , Ryn(ryn)),

Lxn =(Lxn(1), . . . , Lxn(lxn)) and Lyn =(Lyn(1), . . . , Lyn(lyn)).

Let z = HaT ∈ L with h = |H| and t = |T |. By (II), there exists
n0 ≥ 0 such that, for n ≥ n0 we have the following: in the case of
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(II)(a), that

(Lxn
(1), . . . , Lxn

(h)) = (Lyn
(1), . . . , Lyn

(h))

and

(Rxn(rxn), . . . , Rxn(rxn − t+ 1)) = (Ryn(ryn), . . . , Ryn(ryn − t+ 1)).

In the case of (II)(b), that

(Rxn(rxn), . . . , Rxn(rxn − t+ 1)) = (Ryn(ryn), . . . , Ryn(ryn − t+ 1)).

In the case of (II)(c), that

(Lxn(1), . . . , Lxn(h)) = (Lyn(1), . . . , Lyn(h)).

In case (II)(a), it follows that either G(z, xn) = G(z, yn) = 0 for all
n ≥ n0, or else, by Lemma 4.2,

lim
n→∞

K(z, xn) = lim
n→∞

4h+t

(
|Lxn |

|Lxn
|+ |Rxn

|

)h( |Rxn |
|Lxn

|+ |Rxn
|

)t

+ o(1)

= 4h+tλh(1− λ)t = lim
n→∞

K(z, yn).

In case (II)(b), it follows for h > 0, by the same lemma, that

lim
n→∞

K(z, xn) = 0 = lim
n→∞

K(z, yn).

For h = 0, we either have G(z, xn) = G(z, yn) = 0 for all n ≥ n0, or
else, by Lemma 4.2,

lim
n→∞

K(z, xn) = lim
n→∞

4t
(

|Rxn |
|Lxn |+ |Rxn |

)t

+ o(1)

= 4t(1− λ)t = lim
n→∞

K(z, yn).

Case (II)(c) is shown in the same way.

(ii) ⇒ (i). This is easily shown using similar arguments as in the
first part of the proof. �

Thus, we have shown that the Martin boundary is characterized
by ∼. We use this representation of equivalence classes of θ-Cauchy
sequences to describe the Martin boundary as a metric space.
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Proposition 4.4. The Martin boundary M equipped with the metric

θ(ξ, η) =
∑
z∈L

16 · 4−2|z||K(z, ξ)−K(z, η)|,

where K(z, ξ) = limn→∞ K(z, xn) with ξ being represented by any of
its θ-Cauchy sequences (xn)n≥0, is isometric to the space

B =

(λ,x) :λ∈ [0, 1]; x=


(Lx, Rx)∈{b, c}N×{b, c}N if 0<λ<1

Rx ∈ {b, c}N if λ=0

Lx ∈ {b, c}N if λ= 1

,

with the metric

ρ((λ,x), (µ,y))

=
n∑

h=0

m∑
t=0

4−t−h|λh(1− λ)t − µh(1− µ)t|+ 16

(3 + λ)(4− λ)

×
[(

λ

4

)n+1

+

(
1− λ

4

)m+1

−
(
λ

4

)n+1(
1− λ

4

)m+1]
+

16

(3 + µ)(4− µ)

×
[(

µ

4

)n+1

+

(
1− µ

4

)m+1

−
(
µ

4

)n+1(
1− µ

4

)m+1]
,

where

n = max{k : Rx(k) = Ry(k)} m = min{k : Lx(k) = Ly(k)}.

Proof. Let ξ be an equivalence class of θ-Cauchy sequences. By
Lemma 4.3, such a sequence is uniquely characterized by a map F :
M → B defined by any representative xn = LnaRn from ξ via

F (ξ) = (λ,x),

with

λ = lim
n→∞

|Ln|
|Ln|+ |Rn|

and x = (limn→∞ Ln, limn→∞ Rn) in the case of 0 < λ < 1, x =
limn→∞ Rn in the case of λ = 0, and x = limn→∞ Ln in the case of
λ = 1.
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Thus, it is sufficient to calculate the distance between ξ and η using
their representations and to express it in terms of F (ξ) and F (η).

Let ξ and η be two equivalence classes of θ-Cauchy sequences
represented by F (ξ) = (λ,x) and F (η) = (µ,y). First, assume that
λ, µ ∈ (0, 1). Write

x = (Lx(1), Lx(2), . . . ;Rx(1), Rx(2), . . .)

and

y = (Ly(1), Ly(2), . . . ;Ry(1), Ry(2), . . .).

Let n and m be as in the statement of Proposition 4.4. For each
h, t ≥ 0, there is exactly one zx(h, t) = z = HaT with |H| = h, |T | = t
and 0 < K(z, ξ) = 4h+tλh(1 − λ)t, and likewise for η. For all h ≤ n,
t ≤ m, zx(h, t) = zy(h, t). Hence, counting z’s in terms of h and t,

θ(ξ, η) =
∞∑
h=0

∞∑
t=0

4−2t−2h{|K(zx(h, t), ξ)−K(zx(h, t), η)|

+ Izx(h,t)̸=zy(h,t)|K(zy(h, t), ξ)−K(zy(h, t), η)|}

=

n∑
h=0

m∑
t=0

4−t−h|λh(1− λ)t − µh(1− µ)t|

+
∞∑

h=n+1

∞∑
t=0

4−t−hλh(1− λ)t +
n∑

h=0

∞∑
t=m+1

4−t−hλh(1− λ)t

+
∞∑

h=n+1

∞∑
t=0

4−t−hµh(1− µ)t +
n∑

h=0

∞∑
t=m+1

4−t−hµh(1− µ)t

=

n∑
h=0

m∑
t=0

4−t−h|λh(1− λ)t − µh(1− µ)t|

+
16

(3+λ)(4−λ)

[(
λ

4

)n+1

+

(
1−λ

4

)m+1

−
(
λ

4

)n+1(
1−λ

4

)m+1]
+

16

(3+µ)(4−µ)

[(
µ

4

)n+1

+

(
1−µ

4

)m+1

−
(
µ

4

)n+1(
1−µ

4

)m+1]
. �

Recall that the Cantor space is defined by

C = {0, 1}N = {(ui)i≥1 : ui ∈ {0, 1}},
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equipped with the metric drs for any r > 0 where ds is defined in
equation (4.3).

We are now in the position to demonstrate the following theorem.

Theorem 4.5. The Martin boundary of the SMC Σeg 3 equipped with
the Martin metric is homeomorphic to the product space of the unit
interval with the Cantor space, equipped with the metric

d((λ, u), (µ, v)) = |λ− µ|+ ds(u, v).

The homeomorphism can be chosen so that its inverse is a Lipschitz
continuous map. Moreover, both spaces are not Lipschitz equivalent for
any of the metrics |λ− µ|+ drs(u, v) where r > 0.

Proof. First, we define a map:

Φ : B −→ [0, 1]× C.

To this end, let λ ∈ [0, 1/2], and define

pk−1 = ⌊−k log2(λ/4)⌋, k ∈ {1, 2, 3, . . .}.

For λ = 0, this means that no sequence pk is chosen. Then for λ ̸= 0,
define

Φ(λ, (l1, l2, . . . ; r1, r2, . . .)) = (λ, (uk)k≥0)

upk = Irk=c and (ui)i ̸∈{pk:k≥0} = (Il1=c, Il2=c, . . .). For λ = 0,

Φ(0, (r1, r2, . . .)) = (0, (Ir1=c, Ir2=c, . . .)).

In case λ ∈ (1/2, 1], define Φ in the same way, replacing λ by 1 − λ,
and switching ri with li.

We want to show that Φ−1 is Lipschitz continuous with respect to
the metric ρ on B and d on [0, 1]×C. Then Φ is also continuous, since
the domain and the image of Φ are compact.

To demonstrate this part of the theorem, we show that there is a
constant κ > 0 such that, for all (λ,x), (µ,y) ∈ B,

ρ ((λ,x), (µ,y)) ≤ κd (Φ((λ,x)),Φ((µ,y))).

We consider the case λ, µ ≤ 1/2 only since the other cases are similar.
Use m and n as in Proposition 4.4. Now, note that the derivative of
xh(1 − x)t is bounded by h + t on the unit interval. Hence, by the
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mean value theorem and finiteness of the expectation of a geometric
distribution, we find a constant κ1 such that

n∑
h=0

m∑
t=0

4−(h+t)|λh(1− λ)t − µh(1− µ)t| ≤ κ1|λ− µ|.

By definition of the map Φ, for Φ((λ,x)) = (λ, (ui)i≥0) and Φ((µ,y)) =
(µ, (vi)i≥0), we have that ui ̸= vi for the first index i if and only if
i = pn+1 or for i = m+k+1 (or for i = m+k+2) where pk ≤ m < pk+1

for some k ≤ n. Then,(
λ

4

)n+1

= 2(n+1) log2(λ/4) ≤ 2 · 2−pn+1 ,

and, since k ≤ m,(
1− λ

4

)m+1

= 2(m+1) log2((1−λ)/4)

= 2 · 2−(m+k+2) · 2(m+1)(1+log2((1−λ)/4))+k

≤ 2 · 2−(m+k+2) · 2(m+1)(2+log2((1−λ)/4))

Since 2 + log2((1− λ)/4) ≤ 0, the last expression is O(2−(m+k+1)).
Hence, there exists a constant κ2 such that

16

(3 + λ)(4− λ)

[(
λ

4

)n+1

+

(
1− λ

4

)m+1]
≤ κ2ds((u

i)i≥0, (v
i)i≥0).

Putting this and similar estimates for the other cases together shows
the claim.

It is left to show that there cannot be a bi-Lipschitz map between
both metric spaces. First, note that [0, 1]×C equipped with any metric
|λ − µ| + drs(u, v) has the property that, for any non-empty open set,
the Hausdorff dimension of this set equals the Hausdorff dimension of
the space [0, 1]× C. The Hausdorff dimension of the sets

U(λ, η) = {(µ,x) ∈ B : λ− η < µ < λ+ η}

is not constant and varies with λ for small η > 0. If Φ is a bi-Lipschitz
continuous homeomorphism its image Φ(U(λ, η)) is open and has the
same Hausdorff dimension as U(λ, η), which is a contradiction. �
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Theorem 4.6. The Martin boundary of example Σeg 3 is bi-Lipschitz
equivalent to the space

D =

{(
λ,

∞∑
k=1

xk

(
λ

4

)k

,

∞∑
k=1

yk

(
1− λ

4

)k)
: 0 ≤ λ ≤ 1,

xk, yk ∈ {1, 3} for k ≥ 1

}
,

equipped with the Euclidean metric.

Proof. We use the Euclidean metric ∥ · − · ∥2 in R3 and the map
Ψ : B → D

(λ, (xk), (yk)) 7−→
(
λ,

∞∑
k=1

(1 + 2Ixk=c)

(
λ

4

)k

,

∞∑
k=1

(1 + 2Iyk=c)

(
1− λ

4

)k)
.

Let
(λ, (xk), (yk)), (µ, (uk), (vk)) ∈ B.

To be more precise, (λ,x) ∈ B with Lx = xk and Ry = yk and similarly
with (µ,u). Let

x̃k = 1 + 2Ixk=c, ỹk = 1 + 2Iyk=c,

ũk = 1 + 2Iuk=c, ṽk = 1 + 2Ivk=c,

and let m and n be as in Proposition 4.4.

Using the mean value theorem, for some constants C1 and C2, we
obtain∣∣∣∣ ∞∑

k=1

(
x̃k

(
λ

4

)k

− ũk

(
µ

4

)k)∣∣∣∣
≤ 3

∞∑
k=n+1

(
λ

4

)k

+

(
µ

4

)k

+

∣∣∣∣ n∑
k=1

x̃k4
−k(λk − µk)

∣∣∣∣
≤ C1

[(
λ

4

)n+1

+

(
µ

4

)n+1]
+ 3|λ− µ|

n∑
k=1

4−k

∣∣∣∣λk − µk

λ− µ

∣∣∣∣
≤ C2ρ((λ, (xk), (yk)), (µ, (uk), (vk))).
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It follows from this and the similar estimate replacing λ by 1 − λ and
µ by 1− µ that there is a constant C such that∥∥∥∥(λ, ∞∑

k=1

x̃k

(
λ

4

)k

,

∞∑
k=1

ỹk

(
1− λ

4

)k)

−
(
µ,

∞∑
k=1

ũk

(
µ

4

)k

,

∞∑
k=1

ṽk

(
1− µ

4

)k)∥∥∥∥
2

≤ Cρ((λ, (xk), (yk)), (µ, (uk), (vk))).

A lower bound is obtained as follows. In the case that

|λ− µ| ≥ 1

2
max

{(
λ

4

)n+1

,

(
µ

4

)n+1

,

(
1− λ

4

)m+1

,

(
1− µ

4

)m+1}
,

we have∥∥∥∥(λ, ∞∑
k=1

x̃k

(
λ

4

)k

,
∞∑
k=1

ỹk

(
1− λ

4

)k)

−
(
µ,

∞∑
k=1

ũk

(
µ

4

)k

,
∞∑
k=1

ṽk

(
1− µ

4

)k)∥∥∥∥
2

≥ |λ− µ| ≥ C3ρ((λ, (xk), (yk)), (µ, (uk), (vk))),

for some constant C3 > 0.

In the case of(
λ

4

)n+1

≥ max

{(
µ

4

)n+1

,

(
1− λ

4

)m+1

,

(
1− µ

4

)m+1

, 2|λ− µ|
}
,

for some constant C4 > 0, we obtain∥∥∥∥(λ, ∞∑
k=1

x̃k

(
λ

4

)k

,
∞∑
k=1

ỹk

(
1−λ

4

)k)
−
(
µ,

∞∑
k=1

ũk

(
µ

4

)k

,
∞∑
k=1

ṽk

(
1−µ

4

)k))∥∥∥∥
2

≥
∣∣∣∣ ∞∑
k=1

4−k(x̃kλ
k − ũkµ

k)

∣∣∣∣
=

∣∣∣(x̃n+1−ũn+1)4
−n−1λn+1+

∞∑
k=n+2

(x̃k−ũk)4
−kλk+

∞∑
k=1

ũk4
−k(λk−µk)

∣∣∣
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≥ 2

(
λ

4

)n+1

− 8
4−n−2λn+2

4− λ
− 3|λ− µ|

∞∑
k=1

k 4−k

=

(
λ

4

)n+1(
2− 2λ

4− λ

)
− 4

3
|λ− µ|

≥ 4

3

(
λ

4

)n+1

− 4

3
|λ− µ|

≥ C4ρ((λ, (xk), (yk)), (µ, (uk), (vk))).

The other three cases are treated similarly. This ends the proof. �

Included in Figure 2 is an approximation of the space D defined in
Theorem 4.6.
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Figure 2. An approximate representation of the space D.
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10. , Substitutions aléatoires itérées, Theor. Nombr. Bordeaux 17 (1981),
1–9.

11. , Frequence des motifs dans les suites doubles invariantes par une
subsitution, Ann. Math. Quebec 11 (1987), 133–138.
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