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AN EXPLICIT FORMULA FOR BERNOULLI
POLYNOMIALS IN TERMS OF r-STIRLING

NUMBERS OF THE SECOND KIND

BAI-NI GUO, ISTVÁN MEZŐ AND FENG QI

ABSTRACT. In this paper, the authors establish an
explicit formula for computing Bernoulli polynomials at
nonnegative integer points in terms of r-Stirling numbers
of the second kind.

1. Introduction. It is well known that the Bernoulli numbers Bk

for k ≥ 0 can be generated by
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, |t| < 2π,

and that the Bernoulli polynomials Bn(x) for n ≥ 0 and x ∈ R can be
generated by

(1.1)
text
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Bn(x)
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, |t| < 2π.

In combinatorics, Stirling numbers of the second kind S(n, k) are
equal to the number of partitions of the set {1, 2, . . . , n} into k non-
empty disjoint sets. Stirling numbers of the second kind S(n, k) for
n ≥ k ≥ 0 can be computed by

S(n, k) =
1

k!

k∑
ℓ=0

(−1)k−ℓ

(
k

ℓ

)
ℓn.

In [1], Stirling numbers S(n, k) were combinatorially generalized as
r-Stirling numbers of the second kind, denoted by Sr(n, k) here, for
r ∈ N, which can alternatively be defined as the number of partitions
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of the set {1, 2, . . . , n} into k nonempty disjoint subsets such that the
numbers 1, 2, . . . , r are in distinct subsets.

Note that

S(0, 0) = 1, S0(n, k) = S(n, k),

S(n, 0) = 0, S1(n, k) = S(n, k)

for all n ≥ k ≥ 0.

In [4, page 536] and [5, page 560], the simple formula

(1.2) Bn =
n∑

k=0

(−1)k
k!

k + 1
S(n, k), n ∈ N ∪ {0}

for computing the Bernoulli numbers Bn in terms of Stirling numbers
of the second kind S(n, k) was incidentally obtained. Recently, four
alternative proofs for formula (1.2) were supplied in [6, 7, 16]. For
more information on calculation of the Bernoulli numbers Bn, please
refer to [8, 9, 10, 11, 13, 15, 17], especially to [3], and the many
references therein.

The aim of this paper is to generalize formula (1.2). Our main result
can be formulated as the following theorem.

Theorem 1.1. For all integers n, r ≥ 0, the Bernoulli polynomials
Bn(r) can be computed in terms of r-Stirling numbers of the second
kind Sr(n+ r, k + r) by

(1.3) Bn(r) =
n∑

k=0

(−1)k
k!

k + 1
Sr(n+ r, k + r).

In the final section of this paper, several remarks are listed.

2. Proof of Theorem 1.1. We are now in a position to verify our
main result.

For n, r ≥ 0, let

Fn,r(x) =
n∑

k=0

k!Sr(n+ r, k + r)xk.
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By [1, page 250, Theorem 16], we have
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where Sr(n,m) = 0 for m > n, see [1, page 243, equation (10)].
Accordingly, we obtain
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For s ∈ R, integrating with respect to x ∈ [0, s] on both sides of the
above equation yields

(2.1)

∞∑
n=0

[ ∫ s

0

Fn,r(x) dx

]
tn
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= −ert
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.

On the other hand,∫ s

0

Fn,r(x) dx =
n∑
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k!
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Sr(n+ r, k + r)sk+1.

Substituting this into equation (2.1) gives

∞∑
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.

Taking s = −1 in the above equation and using the generating func-
tion (1.1) results in

∞∑
n=0

[
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tn
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,

which implies formula (1.3). The proof of Theorem 1.1 is complete. �
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3. Remarks. Finally, we would like to give several remarks on
Theorem 1.1 and its proof.

Remark 3.1. Since Bn(0) = Bn and S0(n, k) = S(n, k), when r = 0,
formula (1.3) becomes (1.2). Therefore, our Theorem 1.1 generalizes
formula (1.2).

Remark 3.2. It is easy to see that

Fn,0(1) =
n∑

k=0

k!S(n, k),

which are the classical ordered Bell numbers. For more information,
please refer to [2, 14] and the closely related references therein.

Remark 3.3. In [12], the second author defined a variant of the poly-
nomials Fn,r(x). Hence, a simple combinatorial study and interpreta-
tion of the polynomials Fn,r(x) is available therein.
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