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THE SPECTRUM IN R AND R2 OF NONLINEAR
ELLIPTIC EQUATIONS WITH POSITIVE

PARAMETERS

IMELDA TREJO AND RAÚL FELIPE

ABSTRACT. In this paper we study the spectrum in
R and R2 of nonlinear elliptic equations with positive
parameters in their nonlinear part. In order to investigate
the spectrum in these specific cases, we introduce the
monotone method which is an extension of the upper and
lower solution methods. Using the Picard iterative process
we prove some existence theorems for nonlinear elliptic
boundary value problems. We work with both positive and
negative solutions.

1. Introduction. Let Ω be an open, convex and bounded subset
of Rm, m ≥ 2, whose boundary ∂Ω is smooth. Let L be a partial
differential operator of second order which is elliptic, formally self-
adjoint, and its coefficients are β-Hölder continuous in Ω. We study
the following nonlinear parametric problem

(1.1)

{
Lu(x) + λf(x, u(x)) + µg(x, u(x)) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where λ and µ are positive real numbers. The nonlinearity F (x, u(x)) =
λf(x, u(x)) + µg(x, u(x)) is with respect to u. Moreover, F satisfies
the following hypotheses:

(H-0) F is α-Hölder continuous in Ω× R.
(H-1) F is non-decreasing in the second variable.

Throughout the paper we assume that the partial differential operator
L satisfies the following property.
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(H-M) If Lψ ≤ 0 in Ω and ψ ≥ 0 in ∂Ω where ψ ∈ C2(Ω) ∩ C(Ω),
then it implies that ψ ≥ 0 in Ω.

We recall that a function f : A ⊂ Rm → R is α-Hölder continuous
in A where 0 < α ≤ 1, if there is a constant M > 0 such that
|f(x) − f(y)| ≤ M |x − y|α for every x, y ∈ A. When α = 1, it is
customary to say that f is Lipschitz continuous.

It is important to note that there are a lot of partial differential
operators L which satisfy the property (H-M). In fact, from the Hopf
maximum principle it follows that L satisfies the (H-M) property if, for
instance, the coefficient corresponding to the independent term is not
positive [20]. It is well known that the (H-M) property is related to
the location of the first eigenvalue of L [4].

The problem (1.1) arises in a variety of diffusion processes gener-
ated by nonlinear sources, in particular, nonlinear heat generation,
combustion theory, chemical reactor theory, and population dynamics
[3, 5, 13, 17, 21, 24, 25].

The investigation of existence and multiplicity of solutions of (1.1)
under the presence of one parameter has a long history. Amman
and Cohen-Keller were pioneers in the study of this problem at the
end of the 20th century. They used the Picard method and the
upper and lower solutions to prove the existence of solutions [2, 9].
Later, other techniques were adapted to investigate the one parametric
problem such as the bifurcation method, computer-assisted method,
fixed point method and the mountain pass method. Many substantial
and important results have been obtained with these techniques [8,
10, 11, 22]. The problem (1.1) with two parameters has recently been
studied. Some techniques used in the study of (1.1) with one parameter
are being applied in this new context [6, 7, 15, 16, 26]. We would
like to observe that in [12] the fixed point method was extended to
the case with two parameters in order to study the spectrum of (1.1).
Nowadays, upper and lower solutions are still some of the main tools
for investigating the existence of solutions of (1.1).

Most of the authors have concentrated on only positive solutions of
(1.1). The investigation of positive solutions is generally divided into
three cases: the positone problem F (0) > 0, semipositone problem
F (0) < 0 and F (0) = 0 [8, 18, 19]. However, the study of negative
solutions is also an interesting problem because, if there is a positive
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solution u of (1.1), then −u is not necessarily a solution. In [1], the
authors showed the existence of positive and negative solutions of (1.1)
under the presence of one parameter.

In this paper, we extend the upper and lower solution method, and
we study the spectrum of (1.1) for both positive and negative solutions.

This work is organized as follows. In Section 2, we investigate (1.1)
without parameters. For this problem, we introduce the monotone
solutions and the Picard iterative process. Using these tools we prove
some existence results. In Section 3, we study (1.1) for one parameter,
we define the spectrum in R, and we study when F (0) > 0 and
F (0) < 0. In Section 4 we define and study the spectrum in R2. We
define the Picard iterative process of (1.1) for two parameters, and we
prove an existence theorem of solutions with this process.

2. Nonlinear elliptic problem. In this section, we study the
nonlinear problem

(2.1)

{
Lu(x) + f(x, u(x)) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where f satisfies (H-0) and (H-1).

By a solution u of (2.1), we mean a classical solution, it is u ∈
C2(Ω) ∩ C(Ω) and u satisfies the two equations of (2.1).

The Picard iterative process for a real function u0 in Ω is defined as

(2.2)

{
Lun(x) + f(x, un−1(x)) = 0, x ∈ Ω,
un(x) = 0, x ∈ ∂Ω,

for n = 1, 2, 3, . . ..

We observe that in each step of the iteration we solve a linear
problem of the form

(2.3)

{
Lu(x) + z(x) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

For this classical linear problem we have the next theorem whose proof
can be seen in [20].
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Theorem 2.1. Let z be a function in C(0,α)(Ω) and G(x, y) a Green
function of (2.3). A function u is a solution of (2.3) if and only if

(2.4) u(x) =

∫
Ω

G(x, y)z(y) dy, x ∈ Ω.

In this work, we suppose that there is a Green function for the linear
problem (2.3).

According to Theorem 2.1, if z ∈ C(0,α)(Ω) and u is given by
(2.4), then u ∈ C2(Ω) ∩ C(Ω). By properties of G and the mean
value theorem, it is easy to prove that u ∈ C(0,1)(Ω). Therefore, for
u0 ∈ C(0,1)(Ω), the Picard iterative process generates a sequence of
functions un ∈ C2(Ω)∩C(0,1)(Ω). By (H-M), we note that this sequence
is unique.

Definition 2.2. Let η be a function in C2(Ω) ∩ C(0,1)(Ω) and u1 the
first function obtained from (2.2) with u0 = η. We say that η is a
monotone lower solution of (2.1), if η(x) ≤ u1(x) in Ω. We call η a
monotone upper solution of (2.1), if it satisfies the opposite inequality
with respect to u1.

We consider that a function is a monotone solution if it is a monotone
lower solution or a monotone upper solution. We observe that a solution
of (2.1) is a monotone solution.

Lemma 2.3. Let χ be a function in C2(Ω) ∩ C(0,1)(Ω). If χ satisfies

(2.5)

{
Lχ(x) + f(x, χ(x)) ≥ 0, x ∈ Ω,
χ(x) ≤ 0, x ∈ ∂Ω.

Then χ is a monotone lower solution. If χ satisfies the opposite
inequalities in (2.5), then χ is a monotone upper solution.

Proof. We only prove the first assertion of this lemma. The proof of
the other assertion is similar. Let χ ∈ C2(Ω) ∩ C(0,1)(Ω) be such that
it satisfies (2.5). From (2.2), for n = 1 with u0 = χ and of (2.5), we
obtain L[u1−χ] ≤ 0 in Ω and u1−χ ≥ 0 in ∂Ω. Property (H-M) implies
that u1 ≥ χ in Ω. Therefore, χ is a monotone lower solution. �
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In the literature, a function χ that satisfies (2.5) is called a lower
solution, while if χ satisfies the opposite inequality to (2.5), it is called
an upper solution. Therefore, the set of upper and lower solutions
is a subset of the monotone solution set. This contention is strict
because there are monotone solutions which are neither lower nor upper
solutions of (2.1), as we show in the next example.

We consider the following problem

(2.6)

{
∆u(x) + arctan(u(x)) = 0, x ∈ B,
u(x) = 0, x ∈ ∂B,

where B is the open unit ball in Rm.

We try to construct monotone solutions of (2.6). Let k be a positive
constant, and define ϕ(x) = k and η(x) = −k in Ω. According to the
existence and uniqueness theorem of the linear problem (2.3), see [14,
page 56], we have that v(x) = (1 − |x|2)/2m is the unique solution of
class C2(B) ∩ C(B) for

∆v(x) + 1 = 0, x ∈ B,

v(x) = 0, x ∈ ∂B.

By Theorem 2.1, v(x) satisfies

(2.7)
1

2m
(1− |x|2) =

∫
B

G(x, y) dy, x ∈ B.

Let u1 be the first function obtained from (2.2) for (2.6) starting with
u0(x) = k. By Theorem 2.1, u1(x) satisfies

(2.8) u1(x) = arctan(k)

∫
B

G(x, y) dy, x ∈ B.

Since arctan(k) < k, from (2.7) and (2.8), we obtain

u1(x) =
arctan(k)

2m
(1− |x|2) < k = ϕ(x), x ∈ B.

Thus u1 ≤ ϕ in B. Therefore, ϕ is a monotone upper solution.
However, ϕ is neither a lower nor an upper solution of (2.6) because
∆ϕ+ arctan(ϕ) > 0 in B and ϕ > 0 in ∂B.
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In a similar way for u0(x) = −k and x in Ω, we obtain

u1(x) = arctan(−k)
∫
B

G(x, y) dy = − arctan(k)(1−|x|2) > −k = η(x).

Therefore, u1 ≥ η in B. As ∆η + arctan(η) < 0 in B and η < 0 in
∂B, we conclude that η is a monotone lower solution, and it is neither
a lower nor an upper solution of (2.6).

From this example, we observe that a positive constant can be a
monotone upper solution while a positive constant cannot be an upper
solution of (2.1). This fact can simplify the problem of looking for a
solution of (2.1), as we will see in the Section 3.

We say that a monotone solution is strict if it is not a solution of
(2.1).

2.1. Results of existence by monotone methods. We remind the
reader that a succession {un(x)} is uniformly bounded in Ω if there is
an M > 0 such that |un(x)| ≤M for every x in Ω and n = 0, 1, 2, . . . .

We say that {un(x)} is the Picard sequence of (2.1) starting with
a given function u0 ∈ C(0,1)(Ω), if it is the sequence obtained by the
Picard iterative process given by (2.2) with u0. The next theorem is
a generalization of a theorem proved by Cohen-Keller in [9]. They
assumed f is positive in Ω×R and {un} is the Picard sequence of (2.1)
for u0 = 0.

Theorem 2.4. Let f be such that it satisfies (H-0) and (H-1). Let
{un} be the Picard sequence of (2.1) starting with u0 ∈ C(0,1)(Ω). If
{un} is uniformly bounded in Ω and it converges to u pointwise in Ω,
then u is a solution of (2.1).

Proof. By Theorem 2.1 and the fact that G = 0 in ∂Ω we obtain

un(x) =

∫
Ω

G(x, y)f(y, un−1(y)) dy, x ∈ Ω

for each n = 1, 2, 3, . . . . Since {un} converges to u pointwise in Ω, then
for each x in Ω, we have

u(x) = lim
n→∞

∫
Ω

G(x, y)f(y, un−1(y)) dy.
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Thus, we would like to interchange the limit with the integral sign to
prove that u has an integral representation. We use the dominated
convergence theorem.

Since f is continuous in Ω × R, the sequence of functions hn(y) =
G(x, y) f(y, un(y)) converges to h(y) = G(x, y)f(y, u(y)) (almost ev-
erywhere) in Ω. As {un} is bounded in Ω and un = 0 in ∂Ω, there
exists M > 0 such that |un| ≤M in Ω. From the fact that G(x, y) ≥ 0
in Ω− {x} and from (H-1), we obtain

G(x, y)f(y,−M) ≤ G(x, y)f(y, un(y)) ≤ G(x, y)f(y,M), y ∈ Ω−{x}.

Now, we define g(y) = max{|G(x, y)f(y,−M)|, |G(x, y)f(y,M)|}.
Since G and f are continuous in Ω − {x}, then g ∈ L1(Ω) and
|hn(y)| ≤ g(y) in Ω− {x}. Therefore, the dominated convergence the-
orem implies

u(x) =

∫
Ω

G(x, y)f(y, u(y)) dy, x ∈ Ω.

Thus, u(x) =
∫
Ω
G(x, y)f(y, u(y)) dy in Ω and u = 0 in ∂Ω. Since

G and its first partial derivatives are continuous, then u is Lipschitz
continuous in Ω. As f is α-Hölder continuous in Ω×R and u is Lipschitz
continuous in Ω, we have that f(x, u(x)) is Lipschitz continuous in Ω.
By Theorem 2.1, we conclude that u is a solution of (2.1). �

Next, we prove some results which show that, if the Picard sequence
{un} for a monotone solution is uniformly bounded, then it converges
uniformly to a solution of (2.1).

Proposition 2.5. Let {un} be the Picard sequence of (2.1) starting
with η ∈ C(0,1)(Ω). If η(x) is a monotone lower solution, then
η(x) ≤ u1(x) ≤ u2(x) ≤ · · · in Ω.

Proof. We proceed by induction. Since η is a monotone solution, we
have η ≤ u1 in Ω. Assume that uk−1 ≤ uk in Ω. From (2.2) for n = k
and n = k+1, we obtain L[uk+1−uk] = −[f(x, uk)− f(x, uk−1)] in Ω.
From induction hypothesis and from (H-1) we have L[uk+1 − uk] ≤ 0
in Ω and uk+1 − uk = 0 in ∂Ω. Then, the (H-M) property implies that
uk ≤ uk+1 in Ω. Therefore, un ≤ un+1 in Ω for n = 0, 1, 2, . . . . �
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Proposition 2.6. Let {un} be the Picard sequence of (2.1) starting
with ϕ ∈ C(0,1)(Ω). If ϕ is a monotone upper solution, then ϕ(x) ≥
u1(x) ≥ u2(x) ≥ · · · in Ω.

Proof. The proof is similar to the proof of Proposition 2.5. �

Proposition 2.7. Let χ, ψ be two functions in C(0,1)(Ω), and let
{un(x)} and {vn(x)} be the Picard sequence of (2.1) starting with χ
and ψ, respectively. If χ ≤ ψ in Ω, then un(x) ≤ vn(x) in Ω and
n = 0, 1, 2, . . . .

Proof. The proof is similar to the proof of Proposition 2.5. �

We denote by uu0(x) the solution of (2.1) obtained by the Picard
iterative process starting with u0.

Corollary 2.8. Let χ and ψ be two functions in C(0,1)(Ω) such that
χ ≤ ψ in Ω. If there exist uχ and uψ, then uχ(x) ≤ uψ(x) in Ω.

Proof. It is a consequence of Proposition 2.7. �

We remind the reader that a sequence {un(x)} is bounded above
if there exists a constant M such that un(x) ≤ M in Ω for n =
0, 1, 2, . . . . The sequence {un} is bounded below if it satisfies the
opposite inequality for some M .

Theorem 2.9. Let η be a monotone lower solution of (2.1), and let
{un(x)} be the Picard sequence of (2.1) starting with η. If {un(x)} is
bounded above, then it converges uniformly to a solution of (2.1).

Proof. By hypothesis, there is an M such that un(x) ≤ M in Ω.
According to Proposition 2.5, we have η(x) ≤ u1(x) ≤ u2(x) ≤ · · · ≤M
in Ω. Since un(x) = 0 in ∂Ω, for n ≥ 1, and η(x) is a continuous
function in Ω. Then {un(x)} is a bounded monotone increasing
sequence in Ω. Therefore, {un(x)} converges pointwise to a function
u(x) in Ω. Theorem 2.4 implies that u is a solution of (2.1).

To prove uniform convergence, we observe that {un(x)} is a con-
tinuous sequence in Ω, and it converges monotonously to a continuous
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function u in Ω. Thus, Dini’s theorem implies that the convergence is
uniform. �

Theorem 2.10. Let ϕ be a monotone upper solution of (2.1), and let
{un(x)} be the Picard sequence of (2.1) starting with ϕ. If {un(x)} is
bounded below, then it converges uniformly to a solution of (2.1).

Proof. The proof is similar to the proof of Theorem 2.9. �

Corollary 2.11. Let f satisfy (H-0), (H-1), and f is bounded in Ω×R.
If u0 exists as a monotone solution of (2.1), then the Picard sequence
for u0 converges uniformly to a solution of (2.1).

Proof. From (2.4), we can see easily that the Picard sequence
{un(x)} starting with u0 is uniformly bounded because f is bounded in
Ω×R. Therefore, by Theorems 2.9 and 2.10 we conclude the statement
of this corollary. �

The next theorem is the main result of this section.

Theorem 2.12. Let η(x) be a monotone lower solution and ϕ(x) a
monotone upper solution of (2.1). If η(x) ≤ ϕ(x) in Ω, then there exist
uη(x) and uϕ(x) solutions of (2.1) such that η(x) ≤ uη(x) ≤ uϕ(x) ≤
ϕ(x) in Ω.

Proof. Let {un(x)} be the Picard sequence for η and {vn(x)} the
Picard sequence for ϕ. According to Propositions 2.5 and 2.6, we have
η(x) ≤ un(x) and vn(x) ≤ ϕ(x) in Ω for n = 1, 2, 3, . . . . As η ≤ ϕ in Ω,
Proposition 2.7 implies that un(x) ≤ vn(x) in Ω. Therefore,

(2.9) η(x) ≤ un(x) ≤ vn(x) ≤ ϕ(x), x ∈ Ω.

Since η and ϕ are continuous in Ω, we have that un(x) is bounded above
and vn(x) is bounded below in Ω. By Theorems 2.9 and 2.10, there
exist uη(x) and uϕ(x) solutions of (2.1). Finally, taking the limit in
(2.9) when n tends to infinity, we obtain η(x) ≤ uη(x) ≤ uϕ(x) ≤ ϕ(x)
in Ω. �

Theorem 2.12 was also proved by Amman for upper and lower
solutions using the fixed point revisited [2].
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2.2. Positive and negative solutions. When f > 0 in Ω×R, η = 0
is a strict monotone lower solution. This is because η = 0 satisfies
(2.5) and it is not a solution of (2.1). Moreover, if u is a solution, then
Lu = −f(x, u) < 0 in Ω and u = 0 in ∂Ω. Property (H-M) implies
that u is positive in Ω. Therefore, all the solutions of (2.1) are positive.
From these observations, we have the following result.

Corollary 2.13. Let f satisfy (H-0), (H-1) and f > 0 in Ω× R. The
problem (2.1) has a solution if and only if the Picard sequence {un(x)}
for u0 = 0 is bounded above. Furthermore, if this sequence is bounded
above, then it converges uniformly to a solution.

Proof. If u(x) is a solution of (2.1) then u is positive. According to
Proposition 2.7 and taking χ = 0 and ψ = u we conclude that {un(x)}
is bounded above by the maximum of u in Ω. The other statements of
this corollary are consequences of Theorem 2.9 with η = 0. �

Corollary 2.13 also was proved by Cohen-Keller in [9]. We note by
Corollary 2.13 if f is positive and there exists a solution u of (2.1), then
there is the solution umin(x) = uu0(x) with u0 = 0 of (2.1). We also
observe that umin ≤ u in Ω for every solution u of (2.1). Therefore,
by Theorem 2.12, if there is a monotone lower solution η such that
η ≤ umin in Ω, then uη = umin in Ω. This implies that negative
monotone lower solutions do not generate another solution different
from umin.

When f < 0 in Ω × R, we observe that ϕ = 0 is a strict monotone
upper solution of (2.1) and all the solutions of (2.1) are negative.

Corollary 2.14. Let f satisfy (H-0), (H-1) and f < 0 in Ω× R. The
problem (2.1) has a solution if and only if the Picard sequence {un(x)}
for u0 = 0 is bounded below. Furthermore, if this sequence is bounded
below, then it converges uniformly to a solution.

Proof. The proof of this corollary is similar to the proof of Corollary
2.13. �

We observe from Corollary 2.14 that if f is negative and there is
a solution u of (2.1), then there exists the solution umax(x) = uu0(x)
with u0 = 0. We also note that, for every solution u of (2.1), we have
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u ≤ umax in Ω. Therefore, by Theorem 2.12, if there are umax and a
monotone upper solution ϕ such that umax ≤ ϕ in Ω, then uϕ = umax in
Ω. This implies that positive monotone upper solutions do not generate
a different solution from umax.

We conclude this section with the following corollary.

Corollary 2.15. Let f satisfy (H-0), (H-1) and f is bounded in Ω×R.
If f > 0 or f < 0 in Ω× R, then (2.1) has a solution.

Proof. If f > 0 in Ω × R, then η = 0 is a monotone lower solution
of (2.1). If f < 0 in Ω × R, then ϕ = 0 is a monotone upper solution
of (2.1). Corollary 2.11 implies that there exists a solution of (2.1) in
both cases. �

3. The spectrum in R. In this section, we study the nonlinear
problem

(3.1)

{
Lu+ λf(x, u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω

for λ > 0, and f satisfies (H-0), (H-1), and f(0) ̸= 0.

A function u is a solution of (3.1) if u ∈ C2(Ω)∩C(Ω), and it satisfies
the two equations of (3.1) for λ > 0. We denote by u(x;λ) a solution
of (3.1) for a given λ.

Definition 3.1. The spectrum S1 of (3.1) is the set of λ > 0 for which
there exists at least a solution of (3.1) for this λ.

Generally, S1 is defined as the set of λ > 0 for which there exists
at least a positive solution of (3.1). In our definition, we observe if
λ ∈ S1. Then u(x;λ) is not necessarily positive. Since f(0) ̸= 0, we do
not consider the zero function as a solution of (3.1).

We note that, for each λ > 0, (3.1) has the form of (2.1) if we define
F (x, r) = λf(x, r) for x ∈ Ω and r ∈ R. Thus, the Picard iterative
process of (3.1) for u0 and λ is defined as

(3.2)

{
Lun(x) + λf(x, un−1(x)) = 0, x ∈ Ω,
un(x) = 0, x ∈ ∂Ω,
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for n = 1, 2, 3, . . . . Let η ∈ C2(Ω) ∩C(0,1)(Ω) and λ > 0. The function
η is a monotone lower solution of (3.1) for λ if η(x) ≤ u1(x) in Ω, η is
a monotone upper solution of (3.1) for λ if η(x) ≥ u1(x) in Ω, where
u1 is the first function obtained from (3.2) for λ and u0 = η.

Corollary 3.2. Let η(x) be a monotone lower solution and ϕ(x) a
monotone upper solution of (3.1) for a given λ. If η(x) ≤ ϕ(x) in Ω,
then there exists at least a solution of (3.1) for this λ.

Proof. It is an immediate consequence of Theorem 2.12 observing
that η and ϕ are monotone lower and upper solutions, respectively, of
the following problem

Lu+ F (x, u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where F (x, r) = λf(x, r) for x ∈ Ω and r ∈ R. �

Proposition 3.3. Let f be a function that satisfies (H-0), (H-1) and
f > 0 in Ω× R. If λ1 ∈ S1, then (0, λ1] ⊂ S1.

Proof. Let u(x;λ1) be a solution of (3.1), and let λ be such that
0 < λ < λ1. Since f > 0 in Ω and λ > 0, we observe that η = 0 is
a monotone lower solution of (3.1) and u(x;λ1) is a positive monotone
upper solution of (3.1) for this λ. Corollary 3.2 implies that there is a
solution of (3.1) for λ. Thus, λ ∈ S1, and then (0, l1] ⊂ S1. �

Proposition 3.4. Let f be a function that satisfies (H-0), (H-1) and
f < 0 in Ω× R. If λ1 ∈ S1, then (0, λ1] ⊂ S1.

Proof. The proof is similar to the proof of Proposition 3.3. �

Corollary 3.5. Let f be a function that satisfies (H-0), (H-1) and
f > 0 or f < 0 in Ω× R. If S1 ̸= ∅, then S1 = (0, λ∗) or S1 = (0, λ∗],
where λ∗ is the supremum of S1.

Proof. It is a consequence of Propositions 3.3 and 3.4. �
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Proposition 3.6. For the nonlinear problem

(3.3)

{
Lu(x) + λf(u) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

If f satisfies (H-0), (H-1) and f(0) > 0, then there exists λ′ > 0 such
that (0, λ′) ⊂ S1.

Proof. We observe that η = 0 is a monotone lower solution of (3.3)
for every λ > 0 because f(0) > 0. We now construct a positive
monotone upper solution of (3.3) for some λ > 0.

Let k be a positive constant, and let e(x) be the solution of the
following problem

(3.4)

{
Lv(x) + 1 = 0, x ∈ Ω,
v(x) = 0, x ∈ ∂Ω.

Since e(x) is a solution of (3.4), then e(x) is bounded in Ω and, by (H-
M), e(x) is positive in Ω. Thus, there existsM > 0 such that e(x) ≤M
in Ω. Also, Theorem 2.1 implies that

(3.5) e(x) =

∫
Ω

G(x, y) dy, x ∈ Ω.

Let u1 be the first function obtained from the Picard iterative process
for (3.3) with u0 = k and λ > 0. Theorem 2.1 and (3.5) imply

(3.6) u1(x) = λf(k)

∫
Ω

G(x, y) dy = λf(k)e(x), x ∈ Ω.

Since f(0) > 0 and k is positive, (H-1) implies that f(k) > 0. Now,
we define λ′ = k/f(k)M , where M is a positive upper bound of e(x).
Let λ be such that 0 ≤ λ < λ′. From (3.6), the fact that e(x) ≤ M
in Ω and λ < λ′, we conclude u1(x) ≤ k for x in Ω. Thus, η = 0 is
a monotone lower solution and ϕ = k is a monotone upper solution of
(3.3) for λ. Corollary 3.2 implies that there is a solution of (3.3) for
this λ. Therefore, λ ∈ S1 and then (0, λ′) ⊂ S1. �

Proposition 3.7. Let S1 be the spectrum of (3.3). If f satisfies (H-0),
(H-1) and f(0) < 0. Then there exists λ′ > 0 such that (0, λ′) ⊂ S1.

Proof. The proof is similar to the proof of Proposition 3.6. �
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In the following we prove that the solutions of (3.1) obtained by the
Picard iterative process are monotonous with respect to λ and with
respect to the initial function.

For λ ∈ S1, we denote with uu0(x;λ) the solution of (3.1) which is
obtained from the Picard iterative process starting with u0 and λ. We
observe if f > 0 in Ω × R and λ ∈ S1. Then, by Theorem 3.2, the
solution u0(x;λ) always exists.

Proposition 3.8. Let f be such that it satisfies (H-0), (H-1) and
f > 0 in Ω × R. Let λ1, λ2 ∈ S1, and let χ and ψ be such that
there exist uχ(x;λ1) and uψ(x;λ2). If λ1 ≤ λ2 and χ ≤ ψ in Ω, then
uχ(x;λ1) ≤ uψ(x;λ2) in Ω.

Proof. Let {un(x)} be the sequence generated by (3.2) with u0 = χ
and λ1, and let {vn(x)} be the sequence generated by (3.2) with u0 = ψ
and λ2. By induction, we can prove that

(3.7) un(x) ≤ vn(x), x ∈ Ω.

The case n = 0 is trivial. Assume that (3.7) is true for n = k. From
(3.2) for n = k + 1, χ and ψ, respectively, we obtain

L[vk+1(x)− uk+1(x)] = −λ2f(x, vk(x)) + λ1f(x, uk(x)), x ∈ Ω

and vk+1−uk+1 = 0 in ∂Ω. Since f > 0 and λ2 ≥ λ1 > 0, by induction
hypothesis and (H-1), we have L[vk+1 − uk+1] ≤ 0 in Ω. Therefore,
(H-M) property implies that vk+1 ≤ uk+1 in Ω. Thus, (3.7) is true for
n = 0, 1, 2, . . . . Taking limits in (3.7) when n converges to infinity, we
conclude the proof of this proposition. �

Corollary 3.9. Let f be such that it satisfies (H-0), (H-1) and f < 0
in Ω × R. Let χ(x) and ψ(x) be such that uχ(x;λ), uψ(x;λ) and
χ(x) ≤ ψ(x) in Ω exist. Then uχ(x;λ) ≤ uψ(x;λ) for every x in
Ω.

Proof. Fixing λ, the proof is similar to the proof of Corollary 2.8. �

Corollary 3.10. Let f be a function that satisfies (H-0), (H-1), f < 0
in Ω× R and λ1, λ2 ∈ S1. If λ1 ≤ λ2, then u0(x;λ2) ≤ u0(x;λ1) in Ω.
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Proof. Let un(x) and vn(x) be the sequences generated for (3.2) with
u0 = 0, λ1 and λ2, respectively. Since λ1 ∈ S1, there is a solution u of
(3.1) for λ1. By Corollary 3.2, taking η = u and ϕ = 0 implies that the
solution u0(x;λ1) exists. Analogously, since λ2 ∈ S2, then the solution
u0(x;λ2) exists.

By induction, we can prove that un(x) ≤ vn(x) for every x in Ω and
n = 0, 1, 2, . . . . The case n = 0 is trivial. Suppose that vk(x) ≥ uk(x).
From (3.2), (H-1), f < 0, and λ1 ≤ λ2, we obtain

L[vk+1(x)− uk+1(x)] = −λ1f(x, vk(x)) + λ2f(x, uk(x))

≤ −λ2[f(x, vk(x))− f(x, uk(x))]

≤ 0.

Thus, L[vk+1 − uk+1] ≤ 0 in Ω and vk+1 − uk+1 = 0 in ∂Ω. From
(H-M), we have vk+1 ≤ uk+1 in Ω. Therefore,

un(x) ≤ vn(x), x ∈ Ω and n = 0, 1, 2, . . . .

Taking limits in the last inequality when n converges to infinity, we
obtain u0(x;λ1) ≤ u0(x;λ2). �

4. The spectrum in R2. In this section we study the nonlinear
problem

(4.1)

 Lu+ λf(x, u) + µg(x, u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,
λ, µ > 0,

where f and g satisfy (H-0), (H-1), and f, g are two positive functions
in Ω× R.

Definition 4.1. The spectrum S2 of (4.1) is the set of (λ, µ) such that
exist at least a solution of (4.1) for this pair of positive numbers.

We prove that S2 is either a rectangle of R2 or the empty set.

Proposition 4.2. Let f and g be such that they satisfy (H-0), (H-1),
f > 0 and g > 0 in Ω×R. If (λ1, µ1) ∈ S2, then (0, λ1]× (0, µ1] ⊂ S2.
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Proof. Let λ, µ be such that 0 < λ ≤ λ1 and 0 < µ ≤ µ1. Since
(λ1, µ1) ∈ S2, there is a solution u of (4.1) for λ1 and µ1. For
F (x, r) = λf(x, r)+µg(x, r) in Ω×R, we define the nonlinear problem

(4.2)

{
Lv + F (x, v) = 0, x ∈ Ω,
v = 0, x ∈ ∂Ω.

From the fact that λ, µ > 0 and by the hypotheses of f and g, we have
that F satisfies (H-0), (H-1) and F > 0 in Ω × R. Thus, η = 0 is a
monotone lower solution of (4.2), and u is a positive monotone upper
solution of (4.2). By Theorem 2.12, there is a solution v of (4.2). So v
is a solution of (4.1) for λ and µ. Therefore, (λ, µ) ∈ S2, and it implies
that (0, λ1]× (0, µ1] ⊂ S2. �

We denote by (λ∗, µ∗) the supremum of S2. If we assume that
(λ∗, µ∗) is not in S2, we have the following result.

Corollary 4.3. Let f and g be two positive functions in Ω × R that
satisfy (H-0) and (H-1). S2 is either the rectangle (0, λ∗) × (0, µ∗) or
the empty set.

Proof. If S2 ̸= ∅, it is easy to prove S2 ⊂ (0, λ∗) × (0, µ∗), and the
opposite contention is an immediate consequence of Proposition 4.2.

�

Corollary 4.4. Let f and g be two functions which satisfy (H-0),
(H-1), f > 0, f + g > 0, and g < 0 in Ω × R. For λ1 > 0, if v is
a solution of the problem

(4.3)

{
Lv + λ1f(x, v) = 0, x ∈ Ω,
v = 0, x ∈ ∂Ω,

then (λ, µ) ∈ S2 for every 0 < µ ≤ λ ≤ λ1.

Proof. Let v be a solution of (4.3) for λ1, and let λ, µ be as in
the statement of the corollary. For these λ, µ we define the nonlinear
problem

(4.4)

{
Lu+ F (x, u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,
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where F (x, r) = λf(x, r) + µg(x, r) in Ω × R. Since λ, µ > 0 and f, g
satisfy (H-0) and (H-1), F also satisfies these properties. From the fact
that λ ≥ µ > 0, f + g > 0 and g < 0 in Ω× R, we have

L0 + F (x, 0) = λ(f + g)(x, 0) + (µ− λ)g(x, 0) ≥ 0, x ∈ Ω.

Therefore, η = 0 is a monotone upper solution of (4.4). Since f > 0
and g < 0 in Ω× R, λ ≤ λ1, and µ > 0 we obtain

Lv + F (x, v) ≤ Lv + λf(x, v) ≤ Lv + λ1f(x, v) = 0, x ∈ Ω.

and v = 0 in ∂Ω. Thus, v is a monotone upper solution of (4.4). By
Theorem 2.12, there is a solution u of (4.4). Therefore, u is a solution
of (4.1) for λ and µ, so (λ, µ) ∈ S2. �

Corollary 4.5. Let f and g be two functions such that f and g satisfy
(H-0), f and f + g satisfy (H-1), f > 0 and g > 0 in Ω × R. If
(λ1, µ1) ∈ S2 and µ1 ≤ λ1, then (λ, µ) ∈ S2 for every 0 < µ ≤ λ ≤ λ1
and µ ≤ µ1.

Proof. The proof is similar to that of Proposition 4.2 observing that
F (x, r) = λf(x, r)+µg(x, r) satisfy (H-0) and (H-1) in Ω×R for every
µ ≤ λ. �

4.1. Picard method revisited. In this subsection, we introduce
the Picard iterative processes for (4.1) in order to prove an existence
theorem of this problem. We do not assume that f and g are positive
in Ω× R.

For two given real numbers λ and µ, two fixed functions η and ϕ in
C(0,1)(Ω), and u1 ∈ C2(Ω) such that u1 satisfies

(4.5)

{
Lu1 + λf(x, η) + µg(x, ϕ) ≥ 0, x ∈ Ω,
u1 ≤ 0, x ∈ ∂Ω.

We define the Picard iterative process of (4.1) as

(4.6)

{
Lun + λf(x, un−1) + µg(x, un−2) = 0, x ∈ Ω,
un = 0, x ∈ ∂Ω,

with u0 = ϕ and n ≥ 2.

Proposition 4.6. Let η, ϕ and u1 be such that (4.5) holds. If η ≤ u1
and ϕ ≤ u1 in Ω, then η(x) ≤ u1(x) ≤ u2(x) ≤ · · · .
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Proof. We prove the inequalities for n = 1, 2, 3. For n ≥ 3, it follows
immediately by induction. By hypothesis, η(x) ≤ u1(x) in Ω. From
(4.5), (4.6), λ > 0 and (H-1), we obtain

L[u2(x)− u1(x)] ≤ −λ[f(x, u1(x))− f(x, η(x))] ≤ 0, x ∈ Ω

and u2 − u1 ≥ 0 in Ω. The (H-M) property implies that u2 ≥ u1 in Ω.
Proceeding as before for n = 3 and observing that λ, µ > 0, u1 ≤ u2,
and ϕ ≤ u1 in Ω, we have

L[u3(x)− u2(x)] ≤ −λ[f(x, u2(x))− f(x, u1(x))]

− µ[g(x, u1(x))− g(x, ϕ(x))]

≤ 0,

for every x in Ω and u3 − u2 = 0 in ∂Ω. Using the (H-M) property we
conclude that u3 ≥ u2 in Ω. �

Corollary 4.7. Let λ, µ be positive. Let f and g be such that they
satisfy (H-0), (H-1) and g > 0 in Ω× R. Let η be a lower solution of

(4.7)

{
Lv + λf(x, v) = 0, x ∈ Ω,
v = 0, x ∈ ∂Ω.

Let u1 be the first function obtained by the Picard iterative process of
(4.7) with u0 = η, and let ϕ ∈ C2(Ω). If ϕ(x) ≤ η(x) in Ω, then
{un} obtained from (4.6) with this function is a monotone increasing
sequence.

Proof. Since η is a monotone lower solution of (4.7) by Proposi-
tion 2.5 we have η ≤ u1 in Ω. As ϕ ≤ η in Ω, then ϕ ≤ u1 in Ω. From
the fact that µ > 0, g > 0 in Ω, and from the definitions of u1 and η,
we obtain Lu1 + λf(x, η) + µg(x, ϕ) ≥ µg(x, ϕ) > 0 in Ω and u1 ≤ 0
in ∂Ω. Therefore, χ ≤ u1, ϕ ≤ u1 in Ω, and u1 satisfies (4.5). By
Proposition 4.6, we conclude the proof of this corollary. �

Theorem 4.8. Let {un} be the sequence generated by (4.6) for η, ϕ
and u1. If {un} is uniformly bounded and it converges to u pointwise
in Ω, then u is a solution of (4.1).

Proof. The proof is similar to the proof of Theorem 2.9 beginning
with n = 2. �
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Corollary 4.9. Let {un} be the sequence obtained from (4.6) for
η, ϕ, u1. If {un} is a monotone increasing sequence and it is bounded
above, then {un} converges uniformly to a solution of (4.1).

Proof. The proof is a consequence of Theorem 4.8 and Dini’s theo-
rem. �

5. Conclusions.

• In this work, we prove a general existence theorem for nonlin-
ear elliptic boundary value problems, Theorem 2.4. The im-
portance of this result is that we can construct a solution of
(1.1) without using monotone solutions.

• If there exist η a monotone lower solution and ϕ a monotone
upper solution of (2.1) such that η ≤ ϕ in Ω, then there exists
at least a solution u of this problem such that η ≤ u ≤ ϕ in Ω.

• We give a definition of S1, the spectrum in R of (3.1), which
involves not only positive solutions. When f > 0 or f < 0 in
Ω, we prove that S1 is an interval or it is empty. This result
is also observed when the spectrum is defined only for positive
solutions and f(0) > 0 [9].

• We define S2, the spectrum in R2 of (4.1), for both positive
and negative solutions. We prove that S2 is a rectangle or it is
empty. We also define the Picard iterative process of (4.1) to
prove an existence theorem for this problem.

Open questions.

• If F satisfies (H-0), (H-1), F (0) ̸= 0 and there exist x, y ∈ Ω
such that F (x) < 0 < F (y), are S1 and S2 of problem (1.1) a
connected set?

• If there exists a negative solution of (1.1) when F changes
sign, is there at least a positive solution of this problem? We
would like to note that this question is true when the coefficient
corresponding to the independent term of L is zero and F is an
odd function.
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