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TOPOLOGICAL PROPERTIES OF PATH CONNECTED
COMPONENTS IN SPACES OF WEIGHTED

COMPOSITION OPERATORS INTO L∞

KEI JI IZUCHI, YUKO IZUCHI AND SHÛICHI OHNO

ABSTRACT. This paper demonstrates equivalence amongst
the topological structures of path connected components in
the spaces of weighted composition operators from L∞, H∞

and the disk algebra into L∞ on the unit circle.

1. Introduction. Let D be the open unit disk in the complex plane
and ∂D its boundary. Let S(D) be the set of all analytic self-maps
of D. For an analytic function u on D and φ ∈ S(D), we define the
weighted composition operator MuCφ as the product of multiplication
and composition operators by (MuCφ)f(z) = u(z)f(φ(z)) for analytic
functions f on D and z ∈ D. The properties of (weighted) composition
operators have been extensively studied over the past few decades. See
[6, 23] for an overview of these results.

Some of the most long-standing open questions are related to the
topological structure of the space of (weighted) composition operators
on the Banach space of analytic functions on D endowed with the
operator norm and the essential operator norm, which was originally
considered on the classical Hardy space H2. In 1981, Berkson [2]
first studied the component structure of the space of all composition
operators on H2 in the operator norm topology, and MacCluer [16]
continued. Shapiro and Sundberg [24] further investigated and raised
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the problems on the component structure in the operator and the
essential operator norm topologies.

Then, MacCluer, Zhao and the third author [17] considered these
problems on H∞ (also see [11]), where H∞ is the Banach space of
bounded analytic functions on D with the supremum norm. The first
and third authors together with Hosokawa investigated the component
structure in the space of weighted composition operators on H∞ and
determined path connected components ([10, Theorem 4.1]). Refer to
[1, 3, 4, 7, 18, 19] for results on various analytic function spaces.

On the other hand, by Sarason [22] Cφ can be viewed as an integral
operator acting on ∂D via Poisson extension. Let m be the normalized
Lebesgue measure on ∂D. For f ∈ Lp = Lp(∂D, dm) (1 ≤ p ≤ ∞), let
Pz[f ] be the Poisson extension of f onto D. Then Pz[f ]◦φ is a harmonic
function and has a radial limit (Pz[f ] ◦ φ)∗ almost everywhere on ∂D.
We have (Pz[f ] ◦ φ)∗ ∈ Lp. Hence, we may define the composition
operator Cφ on Lp by

Cφf = (Pz[f ] ◦ φ)∗.

Let L∞ = L∞(∂D) be the Banach space of all bounded measurable
functions f on ∂D with the essential supremum norm ∥f∥∞. For
u ∈ L∞, we may define the weighted composition operator MuCφ on

L∞. For f ∈ L∞, let f# be the function on D that takes the value of
Pz[f ] in D and the value of f on ∂D. ThenMuCφf = u(f#◦φ∗) almost
everywhere on ∂D. The authors have extended the investigation of
(weighted) composition operators on L∞ ([12, 13, 14] and see [20, 25]
also).

Let A = A(D) be the space of continuous functions on D that are
analytic on D. Usually A(D) is called the disk algebra. For each
f ∈ H∞, we identify f with its radial limit function f∗ on ∂D. We
may consider that A(D) ⊂ H∞ ⊂ L∞. We denote by Cw(L∞, L∞) the
space of nonzero weighted composition operators on L∞, that is,

Cw(L∞, L∞) = {MuCφ : u ∈ L∞, u ̸= 0, φ ∈ S(D)}.

For MuCφ ∈ Cw(L∞, L∞), we denote by ∥MuCφ∥(L∞,L∞) its operator

norm. Restricting the operator MuCφ on H∞ and A(D), we may

consider that MuCφ are bounded linear mappings from H∞ and A(D)
into L∞. For these operator norms, we write ∥MuCφ∥(H∞,L∞) and
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∥MuCφ∥(A,L∞), and we have the spaces Cw(H∞, L∞) and Cw(A,L∞).

We note that, as sets,

Cw(L∞, L∞) = Cw(H∞, L∞) = Cw(A,L∞).

Naturally, the question occurs as to whether the topological structures
in Cw(L∞, L∞), Cw(H∞, L∞) and Cw(A,L∞) are the same. The
topologies in these spaces deeply depend on the norms of differences of
the two weighted composition operators on them.

Trivially, we have

∥MuCφ −MvCψ∥(A,L∞) ≤ ∥MuCφ −MvCψ∥(H∞,L∞)

≤ ∥MuCφ −MvCψ∥(L∞,L∞).

However, we note that generally the inequality

∥MuCφ −MvCψ∥(H∞,L∞) ≤ ∥MuCφ −MvCψ∥(L∞,L∞)

is strict. For example, see [12, Theorem 4.1] and [15, Theorem 4.1].
Also refer to [5, page 172] and [17, Proposition 4] in the unweighted
case.

So the main theme of this paper is to consider the question
whether the topological structures of path connected components in
Cw(L∞, L∞), Cw(H∞, L∞) and Cw(A,L∞) are the same. In Section 2,
we shall show that

∥MuCφ −MvCψ∥(A,L∞) = ∥MuCφ −MvCψ∥(H∞,L∞).

So path connected components in Cw(L∞, L∞) are path connected
sets in Cw(H∞, L∞), and the topological structures of path connected
components in Cw(H∞, L∞) and Cw(A,L∞) are the same. Moreover,
we shall also show that if ∥MunCφn − MvCψ∥(H∞,L∞) → 0, then
∥MunCφn−MvCψ∥(L∞,L∞) → 0. This fact shows that the structures of
path connected components in Cw(L∞, L∞) and Cw(H∞, L∞) are the
same as sets. But it is unclear whether the topological properties of
path connected components in Cw(L∞, L∞) and Cw(H∞, L∞) are the
same (is an open and closed path connected component in Cw(L∞, L∞)
open and closed in Cw(H∞, L∞)?).

We denote by Cw,0(L∞, L∞) the space of operators in Cw(L∞, L∞)
which are not compact. Similarly we have the spaces Cw,0(H∞, L∞)
and Cw,0(A,L∞). In [13], the authors determined the structures of
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path connected components in Cw(L∞, L∞) and Cw,0(L∞, L∞). In Sec-
tion 2, we shall show that the topological structures of path connected
components in Cw(L∞, L∞) and Cw(H∞, L∞) are the same. We shall
also prove that Cw,0(L∞, L∞) = Cw,0(H∞, L∞) = Cw,0(A,L∞) and
topological properties of path connected components in them are the
same.

Let H = L∞ or H∞ or A(D). We denote by ball (H) the
closed unit ball of H. For a bounded linear operator T from H to
L∞, let ∥T∥(H,L∞,e) = infK ∥T − K∥(H,L∞), where K moves in the
space K(H, L∞) of all compact operators from H into L∞. Usually
∥T |(H,L∞,e) is called the essential operator norm of T . We denote by
Cw,0,e(H, L∞) the space Cw,0(H, L∞) with the essential operator norm.
Since

K(L∞, L∞)|H∞ ⊂ K(H∞, L∞) and K(H∞, L∞)|A ⊂ K(A,L∞),

we have

∥MuCφ −MvCψ∥(A,L∞,e) ≤ ∥MuCφ −MvCψ∥(H∞,L∞,e)(1.1)

≤ ∥MuCφ −MvCψ∥(L∞,L∞,e).

So it is also unclear whether the topological structures of path con-
nected components in Cw,0,e(L∞, L∞), Cw,0,e(H∞, L∞) and Cw,0,e(A,L∞)
are the same. In [14], the authors determined the structure of path
connected components in Cw,0,e(L∞, L∞). In Section 3, we shall
prove that the topological structures of path connected components
in Cw,0,e(L∞, L∞), Cw,0,e(H∞, L∞) and Cw,0,e(A,L∞) are the same.
The authors think that equalities hold in (1.1), but at this moment it
is unclear.

Let

Cw(H∞,H∞) =
{
MuCφ : u ∈ H∞, u ̸= 0, φ ∈ S(D)

}
.

Similarly, we have the spaces Cw,0,e(H∞,H∞) and Cw,0,e(A,H∞). As
sets, we have Cw,0,e(H∞,H∞) = Cw,0,e(A,H∞). SinceK(H∞,H∞)|A ⊂
K(A,H∞), we have

∥MuCφ −MvCψ∥(A,H∞,e) ≤ ∥MuCφ −MvCψ∥(H∞,H∞,e).

The authors determined the structure of path connected components of
Cw,0,e(H∞, H∞) in [14]. In Section 4, we shall prove that the topolog-
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ical structures of path connected components in Cw,0,e(H∞, H∞) and
Cw,0,e(A,H∞) are the same.

2. Path connected components. Let C = C(∂D) be the space of
continuous functions on ∂D. Similarly, we have the space Cw(C,L∞) =
Cw(L∞, L∞)|C and

∥MuCφ −MvCψ∥(C,L∞) ≤ ∥MuCφ −MvCψ∥(L∞,L∞).

Lemma 2.1.

(i) ∥MuCφ −MvCψ∥(A,L∞) = ∥MuCφ −MvCψ∥(H∞,L∞).
(ii) ∥MuCφ −MvCψ∥(C,L∞) = ∥MuCφ −MvCψ∥(L∞,L∞).

Proof. (i) Let α = ∥MuCφ −MvCψ∥(H∞,L∞). For ε > 0, there is
a function f ∈ ball (H∞) such that α − ε < ∥uCφf − vCψf∥∞.
Then there is a function F ∈ ball (L1) such that

α− ε <
∣∣∣ ∫
∂D

(u(f ◦ φ)∗ − v(f ◦ ψ)∗)F dm
∣∣∣.

By Lindelöf’s theorem, we have (f ◦ φ)∗ = f# ◦ φ∗ almost
everywhere on ∂D (see [6, page 31], [12, 21]). For 0 < r < 1
and z ∈ D, let fr(z) = f(rz). Then it is easy to check that
fr ◦ φ∗ → f# ◦ φ∗, fr ◦ ψ∗ → f# ◦ ψ∗ almost everywhere on ∂D
as r → 1. By the Lebesgue dominated convergence theorem,

α− ε <

∣∣∣∣ ∫
∂D

(u(fr ◦ φ∗)− v(fr ◦ ψ∗))F dm

∣∣∣∣
for r sufficiently close to 1. Since fr ∈ ball (A), α − ε <
∥MuCφ −MvCψ∥(A,L∞). Thus, we get (i).

(ii) Let β = ∥MuCφ −MvCψ∥(L∞,L∞). For ε > 0, there is a function
f ∈ ball (L∞) such that β − ε < ∥uCφf − vCψf∥∞. Then there
is a function F ∈ ball (L1) such that

β − ε <

∣∣∣∣ ∫
∂D

(u(f# ◦ φ∗)− v(f# ◦ ψ∗))F dm

∣∣∣∣.
Since Pz[f ]r ◦ φ∗ → f# ◦ φ∗ as r → 1 for almost every eiθ ∈ ∂D.
In the same way as (i), we get (ii).

�
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By Lemma 2.1 (i), we have the following.

Corollary 2.2. The topological structures of path connected compo-
nents in Cw(H∞, L∞) and Cw(A,L∞) are the same.

For (z, w) ∈ D2
, let

ρ(z, w) =


1, (z, w) ∈ D2 \ D2, z ̸= w∣∣∣ z − w

1− wz

∣∣∣, (z, w) ∈ D2, z ̸= w

0, z = w.

For eiθ ∈ ∂D such that φ∗(eiθ) and ψ∗(eiθ) exist, we define

dA(φ
∗(eiθ), ψ∗(eiθ)) = sup

f∈ball (A)

|f(φ∗(eiθ))− f(ψ∗(eiθ))|

and

dC(φ
∗(eiθ), ψ∗(eiθ)) = sup

f∈ball (C)

|f#(φ∗(eiθ))− f#(ψ∗(eiθ))|.

The following is a known fact (see [5, 17]).

Lemma 2.3. We have that

ρ(φ∗(eiθ), ψ∗(eiθ)) ≤ dA(φ
∗(eiθ), ψ∗(eiθ)) ≤ dC(φ

∗(eiθ), ψ∗(eiθ))

≤ 2ρ(φ∗(eiθ), ψ∗(eiθ))

almost everywhere on ∂D.

Lemma 2.4. If ∥MunCφn −MvCψ∥(H∞,L∞) → 0, then ∥MunCφn −
MvCψ∥(L∞,L∞) → 0.

By Lemma 2.1, ∥MunCφn−MvCψ∥(A,L∞) → 0. Hence, ∥un−v∥∞ →
0 and

∥Mun−vCφn∥(A,L∞) = ∥Mun−vCφn∥(C,L∞) → 0.

Since

∥Mv(Cφn − Cψ)∥(A,L∞) ≤ ∥MunCφn −MvCψ∥(A,L∞)

+ ∥Mun−vCφn∥(A,L∞),
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we have ∥Mv(Cφn − Cψ)∥(A,L∞) → 0. Hence,

∥MunCφn −MvCψ∥(L∞,L∞)

= ∥MunCφn −MvCψ∥(C,L∞) by Lemma 2.1

≤ ∥Mun−vCφn∥(C,L∞) + ∥Mv(Cφn − Cψ)∥(C,L∞)

= ∥Mun−vCφn∥(C,L∞) + ess supeiθ∈∂D|v(eiθ)|dC(φ∗
n(e

iθ), ψ∗(eiθ))

≤ ∥Mun−vCφn∥(C,L∞) + 2ess supeiθ∈∂D|v(eiθ)|dA(φ∗
n(e

iθ), ψ∗(eiθ))

by Lemma 2.3

= ∥Mun−vCφn∥(C,L∞) + 2∥Mv(Cφn − Cψ)∥(A,L∞)

−→ 0 as n→ ∞. �

Corollary 2.5. The structures of path connected components in Cw
(L∞, L∞), Cw(H∞, L∞) and Cw(A,L∞) are the same as sets.

We shall study topological properties of path connected components
in Cw(A,L∞). Let M(H∞) and M(L∞) be the maximal ideal spaces
of H∞ and L∞, respectively. We denote the Gelfand transform of a

function f in H∞ (and L∞) by f̂ . We may think ofM(L∞) ⊂M(H∞)
and M(L∞) is the Shilov boundary of H∞. Then, for the normalized
Lebesgue measure m on ∂D, there exists the probability measure m̂ on
M(L∞) such that ∫

∂D
fdm =

∫
M(L∞)

f̂dm̂

for every f ∈ L∞. Refer to [8, 9] for properties of the maximal ideal
spaces of H∞ and L∞.

Let φ ∈ S(D). For each x ∈ M(H∞), the mapping H∞ ∋ f →
f̂ ◦ φ(x) is a nonzero multiplicative linear functional on H∞. Hence,

there is a point φ̃(x) ∈ M(H∞) such that f̂ ◦ φ(x) = f̂(φ̃(x)) for
every f ∈ H∞. It is easy to show that φ̃ : M(H∞) → M(H∞) is a
continuous map (see [10, page 514]). Considering f(z) = z, we have
φ̂(x) = ẑ(φ̃(x)). Hence, if |φ̂(x)| < 1, then φ̃(x) = φ̂(x) ∈ D. One
easily checks the following.
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Lemma 2.6. For each φ ∈ S(D) and f ∈ A(D), f̂ ◦ φ(x) = f(φ̂(x))
for every x ∈M(L∞).

For φ ∈ S(D), let

E(φ) = {x ∈M(L∞) : |φ̂(x)| = 1}

and Eo(φ) be the interior of E(φ) in M(L∞). By [8, page 18], Eo(φ)
is an open and closed subset of M(L∞). For 0 < r < 1, we write

{|φ̂| > r} = {x ∈M(L∞) : |φ̂(x)| > r}

and
{r < |φ̂| < 1} = {x ∈M(L∞) : r < |φ̂(x)| < 1}.

Lemma 2.7. For u, v ∈ L∞ and φ,ψ ∈ S(D) with φ ̸= ψ, we have

∥MuCφ −MvCψ∥(A,L∞) ≥ max
x∈Eo(φ)

|û(x)|.

Proof. We may assume that Eo(φ) ̸= ∅. We have m̂(Eo(φ)) > 0.

Since φ ̸= ψ, m̂({x ∈M(L∞) : φ̂(x) = ψ̂(x)}) = 0. Hence,

m̂({x ∈ Eo(φ) : φ̂(x) ̸= ψ̂(x)}) = m̂(Eo(φ)).

Let x ∈ Eo(φ) such that φ̂(x) ̸= ψ̂(x). We have |φ̂(x)| = 1. Since
φ̂(x) ∈ ∂D is a peak point for A(D), there is a function g ∈ A(D) such
that ∥g∥∞ = 1, g(φ̂(x)) = 1 and g(ψ̂(x)) = 0. By Lemma 2.6, we have

∥MuCφ −MvCψ∥(A,L∞) ≥ ∥u(g ◦ φ)∗ − v(g ◦ ψ)∗∥∞
≥ |û(x)g(φ̂(x))− v̂(x)g(ψ̂(x))|
= |û(x)|.

Hence,

∥MuCφ −MvCψ∥(A,L∞) ≥ sup
x∈Eo(φ);φ̂(x) ̸=ψ̂(x)

|û(x)|.

Since {x ∈ M(L∞) : φ̂(x) ̸= ψ̂(x)} is dense in M(L∞), we get the
assertion. �

Lemma 2.8. Let φ ∈ S(D). Then {MuCφ ∈ Cw(A,L∞) : u ∈ L∞} is
closed in Cw(A,L∞).
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Proof. Let {un}n be a sequence of nonzero functions in L∞ such
that Mun

Cφ → MvCψ ∈ Cw(A,L∞) as n → ∞. Then ∥un − v∥∞ → 0
and ∥unφ∗ − vψ∗∥∞ → 0. Hence, v(φ∗ − ψ∗) = 0, so φ∗ = ψ∗

almost everywhere on {eiθ ∈ ∂D : v(eiθ) ̸= 0}. Since v ̸= 0, by
Jensen’s inequality (see [9, page 51]) we have φ = ψ. Thus, we get the
assertion. �

For φ ∈ S(D), we write {|φ∗| = 1} = {eiθ ∈ ∂D : |φ∗(eiθ)| = 1}.
Similarly, we may define {r < |φ∗|} and {r < |φ∗| < 1} for every
0 < r < 1. The following is given in [13, Theorem 3.6].

Lemma 2.9.

(i) If φ ∈ S(D) and m({|φ∗| = 1}) = 1, then {MuCφ ∈ Cw(L∞, L∞) :
u ∈ L∞} is open and closed, and a path connected component in
Cw(L∞, L∞).

(ii) The set{
MuCψ ∈ Cw(L∞, L∞) : u ∈ L∞, ψ ∈ S(D),m({|ψ∗| = 1}) < 1

}
is open and closed, and a path connected component in Cw(L∞,
L∞).

Theorem 2.10. The topological structures of path connected compo-
nents in Cw(L∞, L∞), Cw(H∞, L∞) and Cw(A,L∞) are the same.

Proof. By Corollary 2.2, the topological structures of path connected
components in Cw(H∞, L∞) and Cw(A,L∞) are the same. As men-
tioned in the introduction, path connected components in Cw(L∞, L∞)
are path connected sets in Cw(A,L∞). To show the assertion, it is suf-
ficient to prove that each path connected component in Cw(L∞, L∞) is
open and closed in Cw(A,Li).

Let φ ∈ S(D) satisfy m({|φ∗| = 1}) = 1. Then E(φ) = Eo(φ) =
M(L∞). Let u ∈ L∞ with u ̸= 0 and MvCψ ∈ Cw(A,L∞) with φ ̸= ψ.
By Lemma 2.7,

∥MuCφ −MvCψ∥(A,L∞) ≥ max
x∈M(L∞)

|û(x)| = ∥u∥∞ > 0.

This shows that {MuCφ ∈ Cw(A,L∞) : u ∈ L∞} is open in Cw(A,L∞).
By Lemma 2.8, {MuCφ ∈ Cw(A,L∞) : u ∈ L∞} is closed in Cw(A,L∞).
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Next, we shall show that

X :=
{
MuCφ ∈ Cw(A,L∞) : u ∈ L∞, φ ∈ S(D),m({|φ∗| = 1}) = 1

}
is open and closed in Cw(A,L∞). By the last paragraph, X is open in
Cw(A,L∞). Let {MunCφn}n be a sequence in X such that MunCφn →
MvCψ ∈ Cw(A,L∞). Then ∥un−v∥∞ → 0. IfMvCψ /∈ X, then φn ̸= ψ
for every n ≥ 1. Hence, by Lemma 2.7, we have ∥un∥∞ → 0, so v = 0.
This is a contradiction. Thus, X is closed in Cw(A,L∞).

By the above facts,{
MuCψ ∈ Cw(A,L∞) : u ∈ L∞, ψ ∈ S(D),m({|ψ∗| = 1}) < 1

}
is open and closed in Cw(A,L∞). By Lemma 2.9, we get the assertion.

�

We shall give the equivalence of the compactness of weighted com-
position operators from L∞,H∞ and A(D) to L∞.

Lemma 2.11. Let u ∈ L∞ with u ̸= 0 and φ ∈ S(D). Then the
following conditions are equivalent.

(i) MuCφ : L∞ → L∞ is compact.
(ii) MuCφ : H∞ → L∞ is compact.
(iii) MuCφ : A→ L∞ is compact.
(iv) ∥uχ{|φ∗|>r}∥∞ → 0 as r → 1.

Proof. It is trivial that (i) implies (ii) and (ii) implies (iii). By
[12, Theorem 3.2], the equivalence of (i) and (iv) holds. To show the
implication (iii) ⇒ (iv), suppose that ∥uχ{|φ∗|>r}∥∞ > δ1 > 0 for every
r with 0 < r < 1.

First, assume that ∥uχ{|φ∗|=1}∥∞ = 0. We have (MuCφ)z
n =

u(φ∗)n → 0 almost everywhere on ∂D as n → ∞. By (iii),
∥u(φ∗)n∥∞ → 0. Hence, there is a positive integer n such that
∥u(φ∗)n∥∞ < δ1/2. Take 1/2 < R < 1. We have

δ1/2 > ∥u(φ∗)n∥∞ ≥ R∥uχ{|φ∗|n>R}∥∞
= R∥uχ{|φ∗|> n√

R}∥∞ > Rδ1.

This is a contradiction.
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Next, assume that ∥uχ{|φ∗|=1}∥∞ > δ2 > 0. Then m({|φ∗| = 1}) >
0, so m̂(E(φ)) > 0. Since φ ∈ H∞, φ̂(E(φ)) is an uncountable set.
Hence, there is a sequence {xn}n in E(φ) such that φ̂(xn) → α ∈ ∂D
as n → ∞, φ̂(xn) ̸= α and |û(xn)| > δ2 for every n ≥ 1. Since
|φ̂(xn)| = 1 and φ̂(xn) is a peak point for A(D), there is a function
fn ∈ A(D) such that ∥fn∥∞ = 1, fn(φ̂(xn)) = 1 and |fn| < |φ̂(xn)−α|
on the set {

eiθ ∈ ∂D : |eiθ − φ̂(xn)| ≥ |φ̂(xn)− α|
}
.

Then fn(z) → 0 as n → ∞ for every z ∈ D. Hence, fn → 0 weakly in
A(D). By (iii), ∥MuCφfn∥∞ → 0. We have

|M̂uCφfn(xn)| = |û(xn)f̂n ◦ φ(xn)|
= |û(xn)fn(φ̂(xn))| by Lemma 2.6

= |û(xn)| > δ2.

This shows that ∥MuCφfn∥∞ > δ2 for every n ≥ 1. This is a
contradiction. �

By Lemma 2.11, as sets we have

Cw,0(L∞, L∞) = Cw,0(H∞, L∞) = Cw,0(A,L∞).

Let Λ be the set of φ ∈ S(D) satisfying

0 < m({|φ∗| = 1}) = m({|φ∗| > r})

for 0 < r < 1 sufficiently close to 1. Then φ ∈ Λ if and only if
E(φ) = Eo(φ) ̸= ∅. The following is proved in [13, Theorem 3.11].

Lemma 2.12.

(i) If φ ∈ Λ, then
{
MuCφ ∈ Cw,0(L∞, L∞) : u ∈ L∞}

is open and
closed, and a path connected component in Cw,0(L∞, L∞).

(ii) The set{
MuCφ ∈ Cw,0(L∞, L∞) : u ∈ L∞, φ ∈ S(D),

m({|φ∗| = 1}) < m({|φ∗| > r}) for any r, 0 < r < 1
}

is open and closed, and a path connected component in Cw,0(L∞,
L∞).
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Now we shall study the topological structures of path connected
components in Cw,0(H∞, L∞) and Cw,0(A,L∞).

Theorem 2.13. The topological structures of path connected compo-
nents in Cw,0(L∞, L∞), Cw,0(H∞, L∞) and Cw,0(A,L∞) are the same.

Proof. As the proof of Theorem 2.10, path connected components
in Cw,0(L∞, L∞) are path connected sets in Cw,0(H∞, L∞), and the
topological structures of path connected components in Cw,0(H∞, L∞)
and Cw,0(A,L∞) are the same. In Lemma 2.12, path connected
components in Cw,0(L∞, L∞) are given. We shall show that each
path connected component in Cw,0(L∞, L∞) is open and closed in
Cw,0(A,L∞).

Let φ ∈ Λ. Then E(φ) = Eo(φ). Let MuCφ ∈ Cw,0(A,L∞). By
Lemma 2.11, ∥uχ{|φ∗|=1}∥∞ > 0. For MvCψ ∈ Cw,0(A,L∞) with
ψ ̸= φ, by Lemma 2.7, we have

∥MuCφ −MvCψ∥(A,L∞) ≥ max
x∈E(φ)

|û(x)|

= ∥uχ{|φ∗|=1}∥∞ > 0.

This shows that {MuCφ ∈ Cw,0(A,L∞) : u ∈ L∞} is open in
Cw,0(A,L∞). By Lemma 2.8, {MuCφ ∈ Cw,0(A,L∞) : u ∈ L∞} is
closed in Cw,0(A,L∞).

Let
X = {MuCφ ∈ Cw,0(A,L∞) : u ∈ L∞, φ ∈ Λ}.

To prove the rest of the assertion, it is sufficient to show thatX is closed
in Cw,0(A,L∞). Suppose that {MunCφn}n is a sequence in X and
MunCφn → MvCψ ∈ Cw,0(A,L∞) \X. We shall show a contradiction.
Since MunCφn ∈ X, E(φn) = Eo(φn) ̸= ∅. Since φn ̸= ψ for every
n ≥ 1, by Lemma 2.7, we have

(2.1) max
x∈E(φn)

|ûn(x)| −→ 0 as n→ ∞.

We also have

(2.2) ∥un − v∥∞ −→ 0 as n→ ∞,

so ∥MunCφn −MvCφn∥(A,L∞) → 0. Hence,

(2.3) ∥Mv(Cφn − Cψ)∥(A,L∞) −→ 0 as n→ ∞.
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Since MvCψ : A → L∞ is not compact, by Lemma 2.11, there is
a positive number δ such that ∥vχ{|ψ∗|>r}∥∞ > δ for every r with
0 < r < 1. This is equivalent to

sup
x∈{|ψ̂|>r}

|v̂(x)| > δ (0 < r < 1).

By (2.1) and (2.2), we may assume that

(2.4) |v̂| < δ/2 on E(φn) (n ≥ 1).

By (2.3) and Lemma 2.7, we have v̂ = 0 on Eo(ψ). Since MvCψ
does not belong to X, ψ does not belong to Λ. Hence, we have

m̂({r < |ψ̂| < 1}) > 0 for every 0 < r < 1 and

sup
x∈{r<|ψ̂|<1}

|v̂(x)| > δ (0 < r < 1).

Therefore, there is a sequence {xk}k in {0 < |ψ̂| < 1} such that

(2.5) |ψ̂(xk)| −→ 1 as k → ∞

and |v̂(xk)| > δ for every k ≥ 1. By (2.4), we have |φ̂n(xk)| < 1 for
every n, k ≥ 1. Since φn ∈ Λ,

(2.6) σn := sup
k≥1

|φ̂n(xk)| < 1 (n ≥ 1).

Then, for each fixed n, we have

∥Mv(Cφn − Cψ)∥(A,L∞) = sup
g∈ball (A)

∥v((g ◦ φn)∗ − (g ◦ ψ)∗)∥∞

≥ sup
g∈ball (A)

|v̂(xk)(g(φ̂n(xk))− g(ψ̂(xk)))|

≥ δ sup
g∈ball (A)

|g(φ̂n(xk))− g(ψ̂(xk))|

−→ 2δ as k → ∞ by (2.5) and (2.6).

This contradicts with (2.3). Thus, X is open and closed in Cw,0(A,L∞).
�

3. The essential operator norm topology. To study the topo-
logical properties of path connected components in the essential oper-
ator norm topology, we need the following lemma.
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Lemma 3.1. For MuCφ, MvCψ ∈ Cw,0(A,L∞) with φ ̸= ψ, we have

∥MuCφ −MvCψ∥(A,L∞,e) ≥ max
x∈Eo(φ)

|û(x)|.

Proof. We may assume that m̂(Eo(φ)) > 0. Since m̂({φ̂ = λ}) = 0
for every λ ∈ ∂D, there is a sequence {xn}n in Eo(φ) such that
φ̂(xn) → α ∈ ∂D and φ̂(xn) ̸= α for every n ≥ 1. Since φ ̸= ψ,

we may assume that φ̂(xn) ̸= ψ̂(xn) for every n ≥ 1. Moreover, we
may assume that

|û(xn)| −→ max
x∈Eo(φ)

|û(x)|.

Since φ̂(xn) is a peak point for A(D), there is a sequence {gn}n in A(D)
such that ∥gn∥∞ = 1, gn(φ̂(xn)) = 1, gn(ψ̂(xn)) = 0 and

|gn(eiθ)| ≤ |φ̂(xn)− α|

for any eiθ ∈ ∂D with |eiθ − φ̂(xn)| ≥ |φ̂(xn) − α| and n ≥ 1. Then
gn → 0 weakly in A(D).

Let ε > 0. Then there is a compact operator K : A→ L∞ such that

∥MuCφ −MvCψ∥(A,L∞,e) + ε ≥ ∥MuCφ −MvCψ −K∥(A,L∞).

It is well known that ∥Kgn∥∞ → 0 as n→ ∞. Hence,

∥MuCφ −MvCψ∥(A,L∞,e) + ε

≥ lim sup
n→∞

∥MuCφgn −MvCψgn∥∞

≥ lim sup
n→∞

|û(xn)gn(φ̂(xn))− v̂(xn)gn(ψ̂(xn))|

= lim sup
n→∞

|û(xn)|

= max
x∈Eo(φ)

|û(x)|.

Thus, we get the assertion. �

The following is given in [14, Theorem 3.11].

Lemma 3.2.

(i) Let φ ∈ Λ. Then {MuCφ ∈ Cw,0(L∞, L∞) : u ∈ L∞(∂D)} is open
and closed, and a path connected component in Cw,0,e(L∞, L∞).
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(ii) The set
{
MuCφ ∈ Cw,0(L∞, L∞) : u ∈ L∞, φ ∈ Λ

}
is open and

closed in Cw,0,e(L∞, L∞).
(iii) The set{

MuCφ ∈ Cw,0(L∞, L∞) : u ∈ L∞, φ ∈ S(D),

m({|φ∗| = 1}) < m({|φ∗| > r}) for any r, 0 < r < 1
}

is open and closed, and a path connected component in Cw,0,e(L∞,
L∞).

Theorem 3.3. The topological structures of path connected compo-
nents in Cw,0,e(L∞, L∞), Cw,0,e(H∞, L∞) and Cw,0,e(A,L∞) are the
same.

Proof. As mentioned in the introduction, we have

∥MuCφ −MvCψ∥(A,L∞,e) ≤ ∥MuCφ −MvCψ∥(H∞,L∞,e)

≤ ∥MuCφ −MvCψ∥(L∞,L∞,e).

Hence, path connected components in Cw,0,e(L∞, L∞) are path con-
nected sets in Cw,0,e(H∞, L∞), and also path connected components in
Cw,0,e(H∞, L∞) are path connected sets in Cw,0,e(A,L∞). In Lemma
3.2, path connected components in Cw,0,e(L∞, L∞) are given. We shall
show that each path connected component in Cw,0,e(H∞, L∞) is open
and closed in Cw,0,e(A,L∞).

Let φ ∈ Λ. By Lemmas 2.11 and 3.1, for φ ̸= ψ, we have

∥MuCφ −MvCψ∥(A,L∞,e) ≥ sup
x∈E(φ)

|û(x)|

= ∥uχ{|φ∗|=1}∥∞ > 0.

This shows that {MuCφ ∈ Cw,0(A,L∞) : u ∈ L∞} is open in
Cw,0,e(A,L∞). To prove the closedness, let {MunCφ}n be a sequence
in Cw,0(A,L∞) such that ∥MunCφ − MvCψ∥(A,L∞,e) → 0 for some
MvCψ ∈ Cw,0,e(A,L∞). Suppose that ψ ̸= φ. By Lemma 3.1,
∥unχ{|φ∗|=1}∥∞ → 0. Let

pn(e
iθ) =

{
0, eiθ ∈ {|φ∗| = 1}
un(e

iθ), eiθ /∈ {|φ∗| = 1}.
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Then pn ∈ L∞. Since φ ∈ Λ, by Lemma 2.11 MpnCφ : A → L∞ is
compact, so

∥M(un−pn)Cφ −MvCψ∥(A,L∞,e) −→ 0.

Since ∥un − pn∥∞ → 0, we have ∥M(un−pn)Cφ∥(A,L∞,e) → 0. Then
∥MvCψ∥(A,L∞,e) = 0. Hence, MvCψ : A → L∞ is compact, and
this contradicts the fact that MvCψ ∈ Cw,0(A,L∞). Thus, {MuCφ ∈
Cw,0(A,L∞) : u ∈ L∞} is closed in Cw,0,e(A,L∞).

Let X = {MuCφ ∈ Cw,0(A,L∞) : u ∈ L∞, φ ∈ Λ}. To prove the
assertion, it is sufficient to show that X is closed in Cw,0,e(A,L∞). Let
{MunCφn}n be a sequence inX such that ∥MunCφn−MvCψ∥(A,L∞,e) →
0 for some MvCψ ∈ Cw,0(A,L∞). Suppose that MvCψ /∈ X. Then
ψ ̸= φn for every n ≥ 1. By Lemma 3.1, we have ∥unχ{|φ∗

n|=1}∥∞ → 0.
Let

qn(e
iθ) =

{
0, eiθ ∈ {|φ∗

n| = 1}
un(e

iθ), eiθ /∈ {|φ∗
n| = 1}.

Then qn ∈ L∞. Since φn ∈ Λ, by Lemma 2.11, MqnCφn : A → L∞ is
compact. Hence, we have

∥MunCφn −MvCψ∥(A,L∞,e) ≥ ∥MvCψ∥(A,L∞,e) − ∥M(un−qn)Cφn∥(A,L∞,e)

≥ ∥MvCψ∥(A,L∞,e) − ∥un − qn∥∞
= ∥MvCψ∥(A,L∞,e) − ∥unχ{|φ∗

n|=1}∥∞.

Letting n→ ∞, we have ∥MvCψ∥(A,L∞,e) = 0, but this contradicts the
fact that MvCψ ∈ Cw,0(A,L∞). Thus, X is closed in Cw,0,e(A,L∞).
This completes the proof. �

4. Spaces of analytic functions. By Lemma 2.11, we have the
following.

Lemma 4.1. Let u ∈ H∞ with u ̸= 0 and φ ∈ S(D). Then the
following conditions are equivalent.

(i) MuCφ : H∞ → H∞ is compact.
(ii) MuCφ : A→ H∞ is compact.
(iii) ∥uχ{|φ∗|>r}∥∞ → 0 as r → 1.
(iv) max

x∈{|φ̂|>r}
|û(x)| → 0 as r → 1.
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By this lemma, we have Cw,0(H
∞,H∞) = Cw,0(A,H

∞) as sets. By
Lemma 2.1, we have

∥MuCφ −MvCψ∥(A,H∞) = ∥MuCφ −MvCψ∥(H∞,H∞).

Hence, the topological structures of path connected components in
Cw,0(H∞,H∞) and Cw,0(A,H∞) are the same. In the same way as
the proof of Lemma 3.1, we have the following.

Lemma 4.2. For MuCφ, MvCψ ∈ Cw,0(A,H∞) with φ ̸= ψ, we have

∥MuCφ −MvCψ∥(A,H∞,e) ≥ max
x∈Eo(φ)

|û(x)|.

Recall that Λ is the set of φ ∈ S(D) satisfying

0 < m({|φ∗| = 1}) = m({|φ∗| > r})

for 0 < r < 1 sufficiently close to 1. In [14, Theorem 4.9], the authors
proved the following.

Lemma 4.3.

(i) Let φ ∈ Λ. Then {MuCφ ∈ Cw,0(H∞,H∞) : u ∈ H∞} is open
and closed, and a path connected component in Cw,0,e(H∞,H∞).

(ii) The set
{
MuCφ ∈ Cw,0(H∞,H∞) : u ∈ H∞, φ ∈ Λ

}
is open and

closed in Cw,0,e(H∞,H∞).
(iii) The set{

MuCφ ∈ Cw,0(H∞,H∞) : u ∈ H∞, φ ∈ S(D),
m({|φ∗| = 1}) < m({|φ∗| > r}) for any r, 0 < r < 1

}
is open and closed, and a path connected component in Cw,0,e(H∞,
H∞).

Theorem 4.4. The topological structures of path connected compo-
nents in Cw,0,e(H∞,H∞) and Cw,0,e(A,H∞) are the same.

Proof. Since

∥MuCφ −MvCψ∥(A,H∞,e) ≤ ∥MuCφ −MvCψ∥(H∞,H∞,e),
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path connected components in Cw,0,e(H∞,H∞) are path connected
sets in Cw,0,e(A,H∞). In Lemma 4.3, path connected components in
Cw,0,e(H∞, H∞) are given.

Let φ ∈ Λ. We shall show that {MuCφ ∈ Cw,0(A,H∞) : u ∈ H∞} is
open and closed in Cw,0,e(A,H∞). We have m̂(Eo(φ)) > 0. By Lemma
4.2, for φ ̸= ψ we have

∥MuCφ −MvCψ∥(A,H∞,e) ≥ max
x∈Eo(φ)

|û(x)| > 0.

This shows that {MuCφ ∈ Cw,0(A,H∞) : u ∈ H∞} is open in
Cw,0,e(A,H∞).

To prove the closedness, let {MunCφ}n be a sequence in Cw,0(A,H∞)
such that ∥MunCφ−MvCψ∥(A,H∞,e) → 0 for someMvCψ ∈ Cw,0(A,H∞).
To show ψ = φ, suppose that ψ ̸= φ. By Lemma 4.2,

max
x∈Eo(ψ)

|v̂(x)| = 0.

Since v ∈ H∞ and v ̸= 0, this shows that Eo(ψ) = ∅. Since
MvCψ ∈ Cw,0(A,H∞), we have

m̂({r < |ψ̂| < 1}) = m̂({r < |ψ̂| ≤ 1}) ̸= 0

for every r with 0 < r < 1. By Lemma 4.1, there is a positive constant
δ such that

δ < sup
x∈{r<|ψ̂|<1}

|v̂(x)|

for every r with 0 < r < 1. Then there is a sequence {xk}k in M(L∞)

such that 0 < |ψ̂(xk)| < 1 and |v̂(xk)| > δ for every k ≥ 1, and

|ψ̂(xk)| → 1 as k → ∞. We may assume that ψ̂(xk) → α ∈ ∂D.
One may show that there is a sequence {gk}k in ball (A) such that

gk → 0 weakly in A(D) and gk(ψ̂(xk)) → 1 as k → ∞ (see [14, Lemma
4.8]). Since φ ∈ Λ, there exists a constant R, 0 < R < 1, such that
0 < m̂({|φ̂| = 1}) = m({|φ̂| > R}). Hence, we may assume that either
|φ̂(xk)| = 1 for every k ≥ 1 or |φ̂(xk)| ≤ R for every k ≥ 1. For each
n, we have

∥Mun
Cφ −MvCψ∥(A,H∞,e) ≥ lim sup

k→∞

∥∥un(gk ◦ φ)∗ − v(gk ◦ ψ)∗
∥∥
∞.
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First, we assume that |φ̂(xk)| = 1 for every k ≥ 1. Then we have

∥MunCφ −MvCψ∥(A,H∞,e)

≥ lim sup
k→∞

∣∣ûn(xk)gk(φ̂(xk))− v̂(xk)gk(ψ̂(xk))
∣∣

≥ lim sup
k→∞

|v̂(xk)gk(ψ̂(xk))| − |ûn(xk)gk(φ̂(xk))|

≥ δ − sup
x∈E(φ)

|ûn(x)|.

Since φ ∈ Λ, Eo(φ) = E(φ). By Lemma 4.2, we have

sup
x∈E(φ)

|ûn(x)| → 0 as n→ ∞.

Therefore, we get

0 = lim
n→∞

∥MunCφ −MvCψ∥(A,H∞,e) ≥ δ.

This is a contradiction.

Next, we assume that |φ̂(xk)| ≤ R for every k ≥ 1. We also have

∥MunCφ −MvCψ∥(A,H∞,e) ≥ δ − ∥un∥∞ sup
|z|≤R

|gk(z)|.

Since gk → 0 weakly in A(D), letting k → ∞, we have

∥MunCφ −MvCψ∥(A,H∞,e) ≥ δ.

This also leads to a contradiction. Thus, we get ψ = φ. Therefore,
{MuCφ ∈ Cw,0(A,H∞) : u ∈ H∞} is open and closed in Cw,0,e(A,H∞).

Let
X =

{
MuCφ ∈ Cw,0(A,H∞) : u ∈ H∞, φ ∈ Λ

}
.

We shall prove that X is open and closed in Cw,0,e(A,H∞). We have
already proved that X is open. We shall show that X is closed
in Cw,0,e(A,H∞). Let {MunCφn}n be a sequence in X such that
∥MunCφn − MvCψ∥(A,H∞,e) → 0 as n → ∞ for some MvCψ ∈
Cw,0(A,H∞). We assume that MvCψ /∈ X. Hence, φn ̸= ψ for every
n ≥ 1. By Lemma 4.2, we have

(4.1) max
x∈E(φn)

|ûn(x)| −→ 0 as n→ ∞
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and

(4.2) max
x∈Eo(ψ)

|v̂(x)| = 0.

Since ψ /∈ Λ, {r < |ψ̂| < 1} ̸= ∅ for every r with 0 < r < 1. Since
MvCψ ∈ Cw,0(A,H∞), by (4.2) and Lemma 4.1 there is a positive
constant δ such that

δ < sup
x∈{r<|ψ̂|<1}

|v̂(x)|

for every r with 0 < r < 1. Then there is a sequence {xk}k in M(L∞)

such that 0 < |ψ̂(xk)| < 1, |v̂(xk)| > δ for every k ≥ 1 and |ψ̂(xk)| → 1

as k → ∞. We may assume that ψ̂(xk) → α ∈ ∂D. One may take
a sequence {gk}k in ball (A) such that gk → 0 weakly in A(D) and

gk(ψ̂(xk)) → 1 as k → ∞ (see [14, Lemma 4.8]).

For each fixed positive integer n, since φn ∈ Λ there exists a constant
Rn, 0 < Rn < 1, such that 0 < m̂({|φ̂n| = 1}) = m̂({|φ̂n| > Rn}).
Hence, there is a subsequence {xkn,j}j of {xk}k satisfying that either
|φ̂n(xkn,j )| = 1 for every j ≥ 1 or |φ̂n(xkn,j )| ≤ Rn for every j ≥ 1. We
have

∥MunCφn−MvCψ∥(A,H∞,e) ≥ lim sup
j→∞

∥∥un(gkn,j ◦φn)∗−v(gkn,j ◦ψ)∗
∥∥
∞.

First, we assume that |φ̂n(xkn,j )| = 1 for every j ≥ 1. Then we have

∥MunCφn −MvCψ∥(A,H∞,e)

≥ lim sup
j→∞

|v̂(xkn,j )gkn,j (ψ̂(xkn,j ))| − |ûn(xkn,j )gkn,j (φ̂n(xkn,j ))|.

Since |v̂(xkn,j )| ≥ δ, by (4.1) we have

lim
n→∞

∥MunCφn −MvCψ∥(A,H∞,e) ≥ lim
n→∞

(
δ − sup

x∈E(φn)

|ûn(x)|
)
= δ.

This contradicts the fact that ∥MunCφn −MvCψ∥(A,H∞,e) → 0.

Next, assume that |φ̂n(xkn,j )| ≤ Rn for every j ≥ 1. We also have

∥MunCφn −MvCψ∥(A,H∞,e) ≥ lim sup
j→∞

(
δ − ∥un∥∞ sup

|z|≤Rn

|gkn,j (z)|
)
.
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Since gkn,j → 0 weakly in A(D) as j → ∞, we have

∥MunCφn −MvCψ∥(A,H∞,e) ≥ δ.

This contradicts the fact that ∥MunCφn −MvCψ∥(A,H∞,e) → 0. Hence,
X is closed in Cw,0,e(A,H∞). This completes the proof. �
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