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COEFFICIENT INEQUALITY FOR CERTAIN
p-VALENT ANALYTIC FUNCTIONS

D. VAMSHEE KRISHNA AND T. RAMREDDY

ABSTRACT. The objective of this paper is to obtain an
upper bound to the second Hankel determinant |ap+1ap+3 −
a2p+2| for certain p-valent analytic functions, using Toeplitz

determinants.

1. Introduction. Let Ap (p is a fixed integer ≥ 1) denote the class
of functions f of the form

(1.1) f(z) = zp + ap+1z
p+1 + · · · ,

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, . . .}. Let
S be the subclass of A1 = A, consisting of univalent functions.

The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by
Pommerenke [23, 24] as

(1.2) Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.

This determinant has been considered by several authors in the litera-
ture. For example, Noonan and Thomas [19] studied about the second
Hankel determinant of really mean p-valent functions. Noor [20] deter-
mined the rate of growth of Hq(n) as n → ∞ for the functions in S with
a bounded boundary. Ehrenborg [5] studied the Hankel determinant of
exponential polynomials. The Hankel transform of an integer sequence
and some of its properties were discussed by Layman in [10]. One can
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easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö
then further generalized the estimate |a3 −µa22| with µ real and f ∈ S.
Ali [2] found sharp bounds on the first four coefficients and sharp es-
timate for the Fekete-Szegö functional |γ3 − tγ2

2 |, where t is real, for
the inverse function of f defined as f−1(w) = w+

∑∞
n=2 γnw

n when it
belongs to the class of strongly starlike functions of order α (0 < α ≤ 1)

denoted by S̃T (α). The Hankel determinant for the function f when
q = 2 and n = 2, known as the second Hankel determinant, is given by

(1.3) H2(2) =
a2 a3
a3 a4

= a2a4 − a23.

Janteng, Halim and Darus [9] have considered the functional |a2a4−a23|
and found a sharp upper bound for the function f in the subclass
RT of S, consisting of functions whose derivative has a positive real
part studied by Mac Gregor [13]. In their work, they have shown
that, if f ∈ RT , then |a2a4 − a23| ≤ 4/9. Further, Janteng, Halim
and Darus [8] also obtained the second Hankel determinant and sharp
bounds for the familiar subclasses of S, namely, starlike and convex
functions denoted by ST and CV and have shown that |a2a4 − a23| ≤ 1
and |a2a4 − a23| ≤ 1/8, respectively. Mishra and Gochhayat [15]
obtained the sharp bound to the non-linear functional |a2a4 − a23|
for the class of analytic functions denoted by Rλ(α, ρ) (0 ≤ ρ ≤
1, 0 ≤ λ < 1, |α| < π/2), defined as Re [eiαΩλ

zf(z)/z] > ρ cosα,
using the fractional differential operator denoted by Ωλ

z , defined by
Owa and Srivastava [21] and have shown that, if f ∈ Rλ(α, ρ), then
|a2a4 − a23| ≤ {(1− ρ)2(2− λ)2(3− λ)2 cos2 α/9}.

Similarly, the same coefficient inequality was calculated for certain
subclasses of univalent and multivalent analytic functions by many
authors ([1, 3, 14, 16–18, 25]).

Motivated by the above-mentioned results obtained by different
authors in this direction, in the present paper, we consider the Hankel
determinant in the case of q = 2 and n = p+ 1, denoted by H2(p+ 1),
given by

(1.4) H2(p+ 1) =
ap+1 ap+2

ap+2 ap+3
= ap+1ap+3 − a2p+2.

Further, we seek an upper bound to the functional |ap+1ap+3 − a2p+2|
for the function f belonging to certain subclasses of p-valent analytic
functions, defined as follows.
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Definition 1.1. A function f(z) ∈ Ap is said to be in the class RTb,p,
where b is a non-zero real number with p ∈ N , if it satisfies the condition

(1.5) Re

[
1 +

1

b

(
1

p

f ′(z)

zp−1
− 1

)]
> 0, for all z ∈ E.

It is observed that choosing b = 1, we get RTb,p = RT1,p, a class
consisting of p-valent functions, whose derivative has a positive real
part and for the choice of b = 1 and p = 1, we obtain RTb,p = RT .

Definition 1.2. A function f(z) ∈ Ap is said to be in the class STb,p,
where b ̸= 0 is a real number with p ∈ N , if it satisfies the condition

(1.6) Re

[
1 +

1

b

(
1

p

zf ′(z)

f ′(z)
− 1

)]
> 0, for all z ∈ E.

It is observed that, choosing b = 1, we get STb,p = ST1,p, a
class consisting of p-valent starlike functions, defined and studied by
Goodman [6] and, for the choice of b = 1 and p = 1, we obtain
STb,p = ST .

Definition 1.3. A function f(z) ∈ Ap is said to be in the class CVb,p,
where b is a non-zero real number with p ∈ N , if it satisfies the condition

(1.7) Re

[
1− 1

b
+

1

bp

(
1 +

zf ′′(z)

f ′(z)

)]
> 0, for all z ∈ E.

It is observed that, for the choice of b = 1, we get CVb,p = CV1,p,
a class consisting of p-valent convex functions and for choosing b = 1
and p = 1, we obtain CVb,p = CV .

Some preliminary lemmas required for proving our results are as
follows.

2. Preliminary results. Let P denote the class of functions

p(z) = (1 + c1z + c2z
2 + c3z

3 + . . .) =

[
1 +

∞∑
n=1

cnz
n

]
,(2.1)

for all z ∈ E,
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which are regular in E and satisfy Re {p(z)} > 0 for any z ∈ E. Here
p(z) is called as Carathéodory function [4].

Lemma 2.1. [22, 26] If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function (1 + z)/(1− z).

Lemma 2.2. [7] The power series for p given in (2.1) converges in the
unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3 . . .

and c−k = ck, are all non-negative. These are strictly positive except
for p(z) =

∑m
k=1 ρkp0(exp(itk)z), ρk > 0, tk real and tk ̸= tj, for k ̸= j;

in this case, Dn > 0 for n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [7] is due to
Caratheodory and Toeplitz. We may assume without restriction that
c1 > 0. On using Lemma 2.2, for n = 2 and n = 3, respectively, we get

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re [c21c2]− 2|c2|2 − 4|c1|2] ≥ 0,

it is equivalent to

(2.2) 2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1.

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

(2.3) |(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2|

≤ 2(4− c21)
2 − 2|(2c2 − c21)|2.
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From the relations (2.2) and (2.3), after simplifying, we get

(2.4) 4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z}

for some z, with |z| ≤ 1.

To obtain our results, we refer to the classical method initiated by Lib-
era and Zlotkiewicz [11, 12], used by several authors in the literature.

3. Main results.

Theorem 3.1. If f(z) ∈ RTb,p (b ̸= 0 is a real number) with p ∈ N ,
then

|ap+1ap+3 − a2p+2| ≤
[

2bp

(p+ 2)

]2
and the inequality is sharp.

Proof. Since f(z) = zp+
∑∞

n=p+1 anz
n ∈ RTb,p, from Definition 1.1,

there exists an analytic function p ∈ P in the unit disc E with p(0) = 1
and Re [p(z)] > 0 such that

(3.1)

[
1 +

1

b

(
1

p

f ′(z)

zp−1
− 1

)]
= p(z)

⇐⇒
{
(b− 1)pzp−1 + f ′(z)

}
= bp×

{
zp−1p(z)

}
.

Replacing f ′(z) and p(z) with their equivalent series expressions in
(3.1), we have[

(b− 1)pzp−1 +

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}]

= bp×
[
zp−1

{
1 +

∞∑
n=1

cnz
n

}]
.

Upon simplification, we obtain

(3.2) [(p+ 1)ap+1z
p + (p+ 2)ap+2z

p+1 + (p+ 3)ap+3z
p+2 + · · · ]

= bp[c1z
p + c2z

p+1 + c3z
p+2 + · · · ].
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Equating the coefficients of like powers of zp, zp+1 and zp+2 respectively
in (3.2), we get

(3.3) ap+1 =
bpc1

(p+ 1)
; ap+2 =

bpc2
(p+ 2)

; ap+3 =
bpc3

(p+ 3)
.

Substituting the values of ap+1, ap+2 and ap+3 from (3.3) in the func-
tional |ap+1ap+3 − a2p+2| for the function f ∈ RTb,p, after simplifying,
we get

(3.4) |ap+1ap+3 − a2p+2| =
b2p2

(p+ 1)(p+ 2)2(p+ 3)
×∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22

∣∣ .
Substituting the values of c2 and c3 from (2.2) and (2.4), respectively,
from Lemma 2.2 on the right-hand side of (3.4), we have

∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22
∣∣

=
∣∣∣(p+ 2)2c1 ×

1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x

2

+ 2(4− c21)(1− |x|2)z} − (p+ 1)(p+ 3)

× 1

4

{
c21 + x(4− c21)

}2
∣∣∣.

Using the facts |z| < 1 and |xa+ yb| ≤ |x||a|+ |y||b|, where x, y, a and
b are real numbers, after simplifying, we get

(3.5) 4
∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22

∣∣ ≤ |c41 + 2(p+ 2)2c1(4− c21)

+ 2c21(4− c21)|x|
−
{
c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
(4− c21)|x|2|.
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Consider{
c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
=

[{
c1 + (p+ 2)2

}2 − (p+ 2)4 + 4(p+ 1)(p+ 3)
]

=

[{
c1 + (p+ 2)2

}2 −
(√

p4 + 8p3 + 20p2 + 16p+ 4
)2

]
=

[
c1 +

{
(p+ 2)2 +

(√
p4 + 8p3 + 20p2 + 16p+ 4

)}]
×[

c1 +
{
(p+ 2)2 −

(√
p4 + 8p3 + 20p2 + 16p+ 4

)}]
.

Since c1 ∈ [0, 2], using the result (c1+a)(c1+b) ≥ (c1−a)(c1−b), where
a, b ≥ 0, on the right-hand side of the above expression, on simplifying,
we get

(3.6) −
{
c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
≤ −

{
c21 − 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
From expressions (3.5) and (3.6), we obtain

4
∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22

∣∣ ≤ |c41 + 2(p+ 2)2c1(4− c21)

+ 2c21(4− c21)|x| −
{
c21 − 2(p+ 2)2c1

+4(p+ 1)(p+ 3)} (4− c21)|x|2|.

Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x|
by µ on the right-hand side of the above inequality, we get

(3.7) 4
∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22

∣∣ ≤ [
c4 + 2(p+ 2)2c(4− c2)+

2c2(4− c2)µ+
{
c2 − 2(p+ 2)2c+ 4(p+ 1)(p+ 3)

}
(4− c2)µ2

]
.

= F (c, µ), 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2,

where

(3.8) F (c, µ) =
[
c4 + 2(p+ 2)2c(4− c2) + 2c2(4− c2)µ+{

c2 − 2(p+ 2)2c+ 4(p+ 1)(p+ 3)
}
(4− c2)µ2

]
.

We next maximize the function F (c, µ) on the closed region [0, 2]×[0, 1].
Differentiating F (c, µ) given in (3.8) partially with respect to µ, we
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obtain

(3.9)
∂F

∂µ
=

[
2c2 + 2

{
c2 − 2(p+ 2)2c+ 4(p+ 1)(p+ 3)

}
µ
]
× (4−c2).

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.9), we observe
that ∂F/∂µ > 0. Therefore, F (c, µ) becomes an increasing function
of µ, and hence it cannot have a maximum value at any point in the
interior of the closed region [0, 2]×[0, 1]. Moreover, for a fixed c ∈ [0, 2],
we have

(3.10) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

(3.11) G(c) = −2c4 − 4p(p+ 4)c2 + 16(p+ 1)(p+ 3).

(3.12) G′(c) = −8c
{
c2 + p(p+ 4)

}
.

From (3.12), we observe that G′(c) ≤ 0, for every c ∈ [0, 2] with p ∈ N .
Therefore, G(c) is a decreasing function of c in the interval [0, 2], whose
maximum value occurs at c = 0. From (3.11), we obtain G-maximum
at c = 0, given by

(3.13) Gmax = G(0) = 16(p+ 1)(p+ 3).

From relations (3.7) and (3.13), after simplifying, we get

(3.14)
∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22

∣∣ ≤ 4(p+ 1)(p+ 3).

Simplifying the relations (3.4) and (3.14), we obtain

(3.15) |ap+1ap+3 − a2p+2| ≤
[

2bp

(p+ 2)

]2
.

By setting c1 = c = 0 and selecting x = −1 in expressions (2.2) and
(2.4), we find that c2 = −2 and c3 = 0, respectively. Using these values
in (3.14), we observe that equality is attained, which shows that our
result is sharp. This completes the proof of Theorem 3.1. �

Remark 3.2. Choosing b = 1, we get RTb,p = RT1,p. From (3.15), we
have

|ap+1ap+3 − a2p+2| ≤
[

2p

(p+ 2)

]2
.
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Remark 3.3. For the choice of b = 1 and p = 1, we get RTb,p = RT .
From (3.15), we obtain |a2a4 − a23| ≤ 4/9. This inequality is sharp and
the result coincides with that of Janteng, Halim and Darus [9].

Theorem 3.4. If f(z) ∈ STb,p(b ≥ 1/(2p)) with p ∈ N , then

|ap+1ap+3 − a2p+2| ≤ [bp]
2
,

and the inequality is sharp.

Proof. Let f(z) = zp+
∑∞

n=p+1 anz
n be in the class STb,p, and, from

Definition 1.2, there exists an analytic function p ∈ P in the unit disc
E with p(0) = 1 and Re [p(z)] > 0 such that

(3.16)

[
1 +

1

b

(
1

p

zf ′(z)

f(z)
− 1

)]
= p(z)

=⇒ {(b− 1)pf(z) + zf ′(z)} = bp× {f(z)× p(z)} .

Replacing f(z), f ′(z) and p(z) with their equivalent series expressions
in (3.16), we have[

(b− 1)p

{
zp +

∞∑
n=p+1

anz
n

}
+ z

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}]

= bp×
[{

zp +
∞∑

n=p+1

anz
n

}
×
{
1 +

∞∑
n=1

cnz
n

}]
.

After simplifying, we get

(3.17) [ap+1z
p + 2ap+2z

p+1 + 3ap+3z
p+2 + · · · ]

= bp×[c1z
p+(c2 + c1ap+1) z

p+1+(c3 + c2ap+1 + c1ap+2) z
p+2+· · · ].

Equating the coefficients of like powers of zp, zp+1 and zp+2, respec-
tively, on both sides of (3.17), upon simplification, we obtain

ap+1 = bpc1; ap+2 =
bp

2

{
c2 + bpc21

}
;(3.18)

ap+3 =
bp

6

{
2c3 + 3bpc1c2 + b2p2c31

}
.

Considering the second Hankel functional |ap+1ap+3 − a2p+2| for the
function f ∈ STb,p and substituting the values of ap+1, ap+2 and ap+3
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from the relation (3.18), after simplifying, we get

(3.19) |ap+1ap+3 − a2p+2| =
b2p2

12

∣∣4c1c3 − 3c22 − p2b2c41
∣∣ .

Substituting the values of c2 and c3 from (2.2) and (2.4), respectively,
from Lemma 2.2 on the right-hand side of (3.19), applying the same
procedure as described in Theorem 3.1, upon simplification, we obtain

(3.20)

4
∣∣4c1c3 − 3c22 − p2b2c41

∣∣ ≤ |
(
1− 4b2p2

)
c41+8c1(4−c21)+2c21(4−c21)|x|

− (c1 + 2)(c1 + 6)(4− c21)|x|2|.

Choosing c1 = c ∈ [0, 2], applying the same procedure as described in
Theorem 3.1 and replacing |x| by µ on the right-hand side of (3.20), we
obtain

(3.21)

4
∣∣4c1c3 − 3c22 − p2b2c41

∣∣ ≤ [
(
4b2p2 − 1

)
c4 + 8c(4− c2) + 2c2(4− c2)µ

+ (c− 2)(c− 6)(4− c2)µ2] = F (c, µ), for 0 ≤ µ = |x| ≤ 1,

where

(3.22) F (c, µ) = [
(
4b2p2 − 1

)
c4 + 8c(4− c2) + 2c2(4− c2)µ

+ (c− 2)(c− 6)(4− c2)µ2].

Applying the same procedure as described in Theorem 3.1, differenti-
ating F (c, µ) in (3.22) partially with respect to µ, for 0 < µ < 1 and
for fixed c with 0 < c < 2, we observe that

(3.23)
∂F

∂µ
=

{
2c2 + 2(c− 2)(c− 6)µ

}
× (4− c2) > 0.

Further, for fixed c ∈ [0, 2], we have

(3.24) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

From equations (3.22) and (3.24), after simplifying, we get

(3.25) G(c) = 4
(
b2p2 − 1

)
c4 + 48,

(3.26) G′(c) = 16
(
b2p2 − 1

)
c3.
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From expression (3.26), we observe that G′(c) ≤ 0, for every c ∈ [0, 2]
and, for fixed b, where (b ≥ 1/(2p)) with p ∈ N , which shows that
G(c) is a monotonically decreasing function of c in the interval [0, 2]
and hence its maximum value occurs at c = 0 only. From expression
(3.25), we obtain

(3.27) max
0≤c≤2

G(c) = G(0) = 48.

From (3.21) and (3.27), after simplifying, we get

(3.28)
∣∣4c1c3 − 3c22 − p2b2c41

∣∣ ≤ 12.

Upon simplifying expressions (3.19) and (3.28), we obtain

(3.29) |ap+1ap+3 − a2p+2| ≤ [bp]
2
.

By setting c1 = c = 0 and selecting x = 1 in expressions (2.2) and
(2.4), we find that c2 = 2 and c3 = 0, respectively. Using these values
in (3.28), we observe that equality is attained, which shows that our
result is sharp. This completes the proof of Theorem 3.4. �

Remark 3.5. Choosing b = 1, we get STb,p = ST1,p, for which, from
(3.29), we obtain

|ap+1ap+3 − a2p+2| ≤ p2.

Remark 3.6. For the choice of b = 1 and p = 1, we get STb,p = ST .
From (3.29), we obtain |a2a4 − a23| ≤ 1. This inequality is sharp, and
the result coincides with that of Janteng, Halim and Darus [8].

Theorem 3.7. If f(z) ∈ CVb,p (b ≥ 1/(2p)) with p ∈ N , then

|ap+1ap+3 − a2p+2|

≤
[
b2p4[6(bp+1)2+(p+1)(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}]

(p+1)(p+2)2(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}

]
.

Proof. Let f(z) ∈ zp +
∑∞

n=p+1 anz
n ∈ CVb,p. From Definition 1.3,

there exists an analytic function p ∈ P in the unit disc E with p(0) = 1
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and Re {p(z)} > 0 such that

(3.30) Re

[
1− 1

b
+

1

bp

(
1 +

zf ′′(z)

f ′(z)

)]
= p(z)

=⇒ [{(b− 1)p+ 1} f ′(z) + zf ′′(z)] = bp× [f ′(z)× p(z)] .

Substituting the equivalent expressions for f ′(z), f ′′(z) and p(z) in
series in the expression (3.30), we have

[
{(b− 1)p+ 1}

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}

+ z

{
p(p− 1)zp−2 +

∞∑
n=p+1

n(n− 1)anz
n−2

}]

=

[
bp

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}
×
{
1 +

∞∑
n=1

cnz
n

}]
.

Upon simplification, we obtain

(3.31) [(p+ 1)ap+1z
p−1 + 2(p+ 2)ap+2z

p + 3(p+ 3)ap+3z
p+1 + · · · ]

= bp× [pc1z
p−1 + {pc2 + (p+ 1)c1ap+1} zp

+ {pc3 + (p+ 1)c2ap+1 + (p+ 2)c1ap+2} zp+1 + · · · ].

Equating the coefficients of like powers of zp−1, zp and zp+1, respec-
tively, on both sides of (3.31), after simplifying, we get

ap+1 =
bp2

(p+ 1)
c1;

ap+2 =
bp2

2(p+ 2)

{
c2 + bpc21

}
;(3.32)

ap+3 =
bp2

6(p+ 3)

{
2c3 + 3bpc1c2 + b2p2c31

}
.

Substituting the values of ap+1, ap+2 and ap+3 from (3.32) in the func-
tional |ap+1ap+3−a2p+2| for the function f ∈ CVb,p, upon simplification,
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we obtain

|ap+1ap+3 − a2p+2| =
b2p4

12(p+1)(p+2)2(p+3)

∣∣4(p+2)2c1c3+6bpc21c2

−3(p+ 1)(p+ 3)c22 − (p2 + 4p+ 1)b2p2c41
∣∣ .

The above expression is equivalent to

(3.33) |ap+1ap+3 − a2p+2| =
b2p4

12(p+ 1)(p+ 2)2(p+ 3)
×∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1

∣∣ ,
where

d1 = 4(p+ 2)2; d2 = 6bp; d3 = −3(p+ 1)(p+ 3);(3.34)

d4 = −(p2 + 4p+ 1)b2p2.

Substituting the values of c2 and c3 from (2.2) and (2.4), respectively,
from Lemma 2.2 on the right-hand side of (3.33), we have

|d1c1c3+d2c
2
1c2+d3c

2
2+d4c

4
1| = |d1c1×

1

4
{c31+2c1(4−c21)x−c1(4−c21)x

2

+ 2(4− c21)(1− |x|2)z}+ d2c
2
1 ×

1

2
{c21 + x(4− c21)}

+ d3 ×
1

4
{c21 + x(4− c21)}2 + d4c

4
1|.

Using the facts |z| < 1 and |xa+ yb| ≤ |x||a|+ |y||b|, where x, y, a and
b are real numbers, after simplifying, we get

(3.35)

4|d1c1c3+d2c
2
1c2+d3c

2
2+d4c

4
1| ≤ |(d1+2d2+d3+4d4)c

4
1+2d1c1(4−c21)

+ 2(d1 + d2 + d3)c
2
1(4− c21)|x|

−
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
(4− c21)|x|2|.

Using the values of d1, d2, d3 and d4 from (3.34), upon simplification,
we obtain

(3.36)

(d1+2d2+d3+4d4) =
{
−4b2p2(p2 + 4p+ 1) + 12bp+ (p2 + 4p+ 7)

}
;

d1 = 4(p+ 2)2; (d1 + d2 + d3) =
{
p2 + (6b+ 4)p+ 7

}
.
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(3.37)
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
=

{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
.

Considering the expression on the right-hand side of (3.37), we have{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)×

[
c21 +

8(p+ 2)2

(p2 + 4p+ 7)
c1 +

12(p+ 1)(p+ 3)

(p2 + 4p+ 7)

]
.

= (p2 + 4p+ 7)×[{
c1 +

4(p+ 2)2

(p2 + 4p+ 7)

}2

− 16(p+ 2)4

(p2 + 4p+ 7)2
+

12(p+ 1)(p+ 3)

(p2 + 4p+ 7)

]
.

Upon simplification, the above expression can also be expressed as{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)

×
[{

c1 +
4(p+ 2)2

(p2 + 4p+ 7)

}2

−
{
2
√
p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}2]
.

(3.38)
{
(p2 + 4p+ 1)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)×[

c1 +

{
4(p+ 2)2

(p2 + 4p+ 7)
+

2
√
p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}]
×
[
c1 +

{
4(p+ 2)2

(p2 + 4p+ 7)
− 2

√
p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}]
.

Applying the same procedure as described in Theorem 3.1, from ex-
pressions (3.37) and (3.38), we obtain

(3.39) −
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
≤ −

{
(p2 + 4p+ 1)c21 − 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
.

Substituting the calculated values from (3.36) and (3.39) on the right-
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hand side of the relation (3.35), we have

(3.40) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

≤ |
{
−4b2p2(p2 + 4p+ 1) + 12bp+ (p2 + 4p+ 7)

}
c41

+ 8(p+ 2)2c1(4− c21) + 2
{
p2 + (6b+ 4)p+ 7

}
c21(4− c21)|x|

−
{
(p2 + 4p+ 1)c21 − 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
(4− c21)|x|2|.

Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x|
by µ on the right-hand side of (3.40), we obtain

(3.41) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

≤ [
{
−4b2p2(p2 + 4p+ 1) + 12bp+ (p2 + 4p+ 7)

}
c4

+ 8(p+ 2)2c(4− c2) + 2
{
p2 + (6b+ 4)p+ 7

}
c2(4− c2)µ

+
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
(4− c2)µ2],

= F (c, µ), for 0 ≤ µ = |x| ≤ 1,

where

(3.42) F (c, µ) =
[{
−4b2p2(p2 + 4p+ 1) + 12bp+ (p2 + 4p+ 7)

}
c4

+ 8(p+ 2)2c(4− c2) + 2
{
p2 + (6b+ 4)p+ 7

}
c2(4− c2)µ

+
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
(4− c2)µ2

]
.

The function F (c, µ) is maximized on the closed region [0, 1] × [0, 2].
Differentiating F (c, µ) in (3.42) partially with respect to µ, we obtain

(3.43)
∂F

∂µ
= [2

{
p2 + (6b+ 4)p+ 7

}
c2

+ 2
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
µ]× (4− c2).

For every c ∈ [0, 2] and for fixed b, where (b ≥ 1/(2p)) with p ∈ N ,
from (3.43), we observe that ∂F/∂µ > 0. Consequently, F (c, µ) is an
increasing function of µ, and hence, it cannot have a maximum value
at any point in the interior of the closed region [0, 1]× [0, 2]. Moreover,
for fixed c ∈ [0, 2], we have

(3.44) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).
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Therefore, replacing µ by 1 in (3.42), upon simplification, we obtain

(3.45) G(c) = 2[−
{
2b2p4 + 8b2p3 + (1 + 2b2)p2 + 4p+ 7)

}
c4

+ 24(bp+ 1)c2 + 24(p+ 1)(p+ 3)],

(3.46) G′(c) = 2[−4
{
2b2p4 + 8b2p3 + (1 + 2b2)p2 + 4p+ 7)

}
c3

+ 48(bp+ 1)c],

(3.47) G′′(c) = 2[−12
{
2b2p4 + 8b2p3 + (1 + 2b2)p2 + 4p+ 7)

}
c2

+ 48(bp+ 1)].

To obtain the optimum value of G(c), consider G′(c) = 0. From (3.46),
we get
(3.48)

−8c[
{
2b2p4 + 8b2p3 + (1 + 2b2)p2 + 4p+ 7

}
c2 − 12(bp+ 1)] = 0.

We now discuss the following cases.

Case 1. If c = 0, then, from the expression (3.47), we obtain

G′′(c) = 96(bp+ 1) > 0, for

(
b ≥ 1

2p

)
, where p ∈ N.

Therefore, by the second derivative test, G(c) has minimum value at
c = 0, which is ruled out.

Case 2. If c ̸= 0, then, from (3.48), we obtain

c2 =

{
12(bp+ 1)

2b2p4 + 8b2p3 + (1 + 2b2)p2 + 4p+ 7

}
> 0,(3.49)

for

(
b ≥ 1

2p

)
, with p ∈ N.

Using the value of c2 given in (3.49) in (3.47), after simplifying, we get

G′′(c) = −192(bp+ 1) < 0, for

(
b ≥ 1

2p

)
, where p ∈ N.
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From the second derivative test, G(c) has maximum value at c2.
Substituting c2 value in (3.45), the maximum value of G(c), given by
(3.50)

Gmax = 48×
[
6(bp+1)2+(p+1)(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}

{2b2p4+8b2p3+(1+2b2)p2+4p+7}

]
.

We consider only the maximum value of G(c) at c, where c2 is given
by (3.49). From the expressions (3.41) and (3.50), after simplifying, we
get

(3.51) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ 12

×
[
6(bp+1)2+(p+1)(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}

{2b2p4+8b2p3+(1+2b2)p2+4p+7}

]
.

From expressions (3.33) and (3.51), upon simplification, we obtain

(3.52) |ap+1ap+3 − a2p+2| ≤[
b2p4[6(bp+1)2+(p+1)(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}]

(p+1)(p+2)2(p+3){2b2p4+8b2p3+(1+2b2)p2+4p+7}

]
.

This completes the proof of Theorem 3.7. �

Remark 3.8. For b = 1, we get CVb,p = CV1,p and, from (3.52), we
obtain

|ap+1ap+3 − a2p+2| ≤
[
p4{6(p+1)+(p+3)(2p4+8p3+3p2+4p+7)}

(p+2)2(p+3)(2p4+8p3+3p2+4p+7)

]
.

Remark 3.9. For the choice of b = 1 and p = 1, we get CV1,1 = CV ,
for which, from (3.52), we obtain |a2a4 − a23| ≤ 1/8. This inequality is
sharp, and the result coincides with that of Janteng, Halim and Darus
[8].
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