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ON TRANSLATIVE COVERINGS
OF CONVEX BODIES

MAREK LASSAK, HORST MARTINI AND MARGARITA SPIROVA

ABSTRACT. We introduce and study t-coverings in En,
i.e., arrangements of proper translates of a convex body
K ⊂ En sufficient to cover K. First, we investigate relations
between t-coverings of the whole of K and t-coverings of its
boundary only. Refining the notion of t-covering in several
ways, we then derive, particularly for centrally symmetric
convex bodies and n = 2, theorems which are interesting
for the geometry of normed planes. These statements are
related to respective generalizations of Tiţeica’s and Miquel’s
theorem as well as to notions like Voronoi regions. We
also compare t-coverings with coverings in the spirit of
Hadwiger, using smaller homothetical copies of K instead
of proper translates. This is done via a slight modification of
Boltyanski’s and Hadwiger’s notion of illumination. Finally,
we give upper bounds on the cardinalities of t-coverings.

1. Introduction. There is a large variety of covering problems in
the spirit of discrete and combinatorial geometry interesting also for
applied disciplines. One of the most famous and still unsettled covering
problems of such a type was posed by Hadwiger: how many smaller
homothetical copies of a convex body K ⊂ En are needed to cover K?
There are many papers and partial results about this problem (see the
survey in [5, Chapter VI]). It is surprising that only a few results are
known on the following related covering problem: How many proper
translates of K are sufficient to cover K itself? Such a covering of K
by proper translates of it is called a translative covering or, in short,
t-covering of K. We should mention that the notion of translative
covering already occurs in the literature but with different motivations
and meanings; see, e.g., [7, 10].
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This notion yields, as we will show, interesting research problems and
variations of problems from the mathematical literature. For example,
refinements of such coverings have applications in the geometry of
normed planes, and the strongly related Boltyanski-Hadwiger notion
of illumination (see [3, 14]) is used in [3, 4, 15] and in many other
papers as a method of attacking Hadwiger’s covering problem; for a
survey, again see [5, Chapter VI].

First we study the relation between t-coverings of a convex body
K ⊂ En and the coverings of its only boundary by proper translates
of K. For n = 2 and K being centrally symmetric, these relations
lead us in a natural way to new results on special, in a sense optimal
t-coverings of discs and circles in normed planes, which correspond to
basic theorems on circle arrangements (namely, to generalizations of
Tiţeica’s and Miquel’s theorem) and to notions like Voronoi regions for
such planes. Here the case of strictly convex normed planes plays an
essential role. Introducing the notion of t-illumination and comparing it
with the Boltyanski-Hadwiger notion of h-illumination, we also clarify
how t-coverings are related to “h-coverings,” i.e., to coverings by smaller
homothetical copies in the sense of Hadwiger. (Note that, seemingly
closer to t-coverings, Levi [18] investigated coverings of convex bodies
by the interiors of proper translates. However, it turns out that
Levi’s coverings are equivalent to h-coverings.) As we will see, already
the comparison of h- and t-coverings yields interesting problems and
results. Finally, we give upper bounds on t-covering numbers by
completely clarifying the planar situation, using partial results on h-
covering numbers in higher dimensions, and also showing how various
notions from discrete geometry (like antipodality) are related to this
framework.

Let K ⊂ En denote a convex body, i.e., a compact, convex set with
non-empty interior in En. We write bdK and intK for the boundary
and interior of K, respectively. In addition, we use aff, conv, int and
relint for affine hull, convex hull, interior and relative interior, and o
denotes the origin. We write h(K) for the h-covering number of K,
i.e., the minimal number of smaller homothetical copies of K sufficient
to cover K. Sharp upper bounds on h(K) are unknown for n ≥ 3. A
family of proper translates of a convex body K ⊂ En covering K itself
is said to be a t-covering of that body. We also consider coverings of
bdK by proper translates of K. We write t(K) for the smallest number
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of proper translates that are sufficient to cover K, and it is natural to
call t(K) the t-covering number of K. Only a few results on t-coverings
are known; see [1, 11].

A collection {Ki}mi=1 of finitely many convex bodies is called a non-
reducible covering of a setM ifM ⊂

∪m
i=1 Ki and if no proper subfamily

of {Ki}mi=1 exists with the same property.

2. Covering the boundary by proper translates of the body.

Proposition 2.1. If a family of m proper translates of a convex body
K ⊂ En covers the boundary of K, then there exists a family of m
proper translates of K which covers K.

Proof. Assume that bdK is covered by proper translatesK1, . . . ,Km

of K. Of course, Ki = K + vi, where vi is a non-zero vector, for
i = 1, . . . ,m. Let x ∈ intK. Observe that there exists a real λ with
1 ≥ λ > 0 such that every set K ′

i = K + λvi contains x. For every
y ∈ K ∩ Ki, by the convexity of K and by the description of K ′

i, we
conclude that y ∈ K ′

i, which implies that K ∩Ki ⊂ K ′
i.

For every p ∈ K \ {x}, take the intersection point px of bdK with
the ray from x through p. By our assumption, px ∈ K ∩ Ki for an
i ∈ {1, . . . ,m}. Thus, by the conclusion of the preceding paragraph,
px ∈ K ′

i. Since also x ∈ K ′
i, by the convexity of K ′

i, we obtain
that p ∈ K ′

i. We see that K is covered by the translates K ′
1, . . . ,K

′
m

of K. �

The above proof is similar to the consideration from the paper [16,
pages 271–272].

In [1, Remark 7], Asplund and Grünbaum conjectured that, in our
terms, for a centrally symmetric convex body K ⊂ En, the following
implication holds: if bdK is covered by n + 1 proper translates of
K, then K is covered by these translates. (For n = 2, they give a
proof of this in [1]; see below.) The following example shows that
this implication does not hold if the assumption of central symmetry is
deleted.

Example 2.2. The boundary of every non-degenerate n-simplex S ⊂
En may be covered by n+1 proper translates of S which do not cover S.
Since we may apply an affine transformation, consider only the regular
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n-simplex of height 1. As the promised n+1 proper translates we take
translates by (n − 1)/n units in the directions from the centroid of S
to its vertices. Then the boundary of S is covered, but the centroid of
S is not.

As already mentioned, Asplund and Grünbaum proved that if K is
a centrally symmetric convex body in E2 and bdK is covered by three
proper translates of K, then K itself is completely covered by these
three translates; see [1, Theorem 8]. Inspired by this, we investigate
in this section only t-coverings of planar, centrally symmetric convex
bodies in the spirit of the geometry of finite-dimensional Banach spaces,
also called Minkowski geometry. More precisely, if K ⊂ E2 has a center
of symmetry, we interpret it as the unit disc (and its boundary as the
unit circle) of a normed plane and write B instead of K and C instead
of bdK. (For the geometry of normed planes and spaces we refer to
the monograph [26] and to the survey [22].) Further on, speaking in
the sequel about discs and circles, we mean homothetical copies of B
and C, respectively. We say that a normed plane is strictly convex if
C does not contain a non-degenerate line segment.

Remark 2.1. Two circles in a strictly convex normed plane have at
most two points in common; see, e.g., [22, Proposition 14]. Let C1 and
C2 be two intersecting circles of the same radius. If C1∩C2 = {p, q} (it
is possible that p = q), then p, q and the centers x1, x2 of C1 and C2,
respectively, form a Minkowskian rhombus, i.e., a quadrangle whose
sides are of the same lengths. The fact that any Minkowskian rhombus
in a strictly convex normed plane is a parallelogram ([22, Proposition
12]) implies the equality x1 + x2 = p+ q.

We define the multiplicity of the covering of the boundary bdK of
a convex body K by the interiors of convex bodies K1, . . . ,Km as the
largest number k such that every point of bdK belongs to at most
k from amongst the sets intK1, . . . , intKm (see Figures 1 and 2 for
examples of coverings of multiplicity 2 and multiplicity 1, respectively).
A similar notion, the multiplicity of a covering of the space by balls, is
treated in [7, 10].

Let B be a centrally symmetric convex body, and let a family B =
{B1, . . . , Bm} consist of proper translates which cover the boundary C
of B. In what follows, all coverings that we take into account consist
of translates of B.
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FIGURE 1. Covering the boundary of a circular disc

by proper translates whose multiplicity is 2.

If B is strictly convex and B is a covering of C of multiplicity 1, then
any point of C belongs either to the interior of exactly one element of
B or to the boundaries of exactly two elements of B. Indeed, if a point
x ∈ C belongs to bdBi and bdBj and there is a translate Bk with
Bk ∋ x, then, e.g., by [22, Proposition 22], an arc of C with endpoint
x lies in Bk. The strict convexity of B implies that only the endpoints
of this arc belong to bdBk. But a part of this arc also belongs to
the interior of either Bi or Bj , which contradicts the multiplicity 1.
Due to this fact there exist exactly m points p1, . . . , pm such that
pi ∈ bdBi ∩ bdBi+1 for i = 1, . . . ,m, where Bm+1 = B1. We call
these points the skeleton of the covering B. We mention two coverings
of C which have multiplicity 1. For n = 2 and m = 3, the boundaries of
Bi intersect in exactly one point. This statement is known as Tiţeica’s
theorem, and in this form it was proved by Asplund and Grünbaum in
[1] (see also [21]). For the case n = 2 and m = 4, let p1, . . . , p4 be the
skeleton points of B such that pi ∈ bdBi ∩ bdBi+1. Then the second
intersection points of bdBi and bdBi+1 (it is also possible that such a
point coincides with pi) lie on a circle C∗ of radius 1. This is Miquel’s
theorem, in this form also proved in [1] (see also [25]). The disc with
the boundary C∗ is said to be the Miquel disc of the covering B. For
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Tiţeica’s and Miquel’s theorem see Figure 2.

FIGURE 2. Covering the boundary of a centrally symmetric body by 3
translates (Tiţeica’s theorem) and by 4 translates (Miquel’s theorem),

both of multiplicity 1.

Theorem 8 in [1] says that a covering of the boundary C of B consist-
ing of three translates of B is always a covering of B. In Theorem 2.1
we prove that a covering {B1, . . . , Bm} of C with multiplicity 1 does
not cover B for m > 3.

Let p1 and p2 lie on a circle C with center x. These two points
determine two arcs. That one which does not lie in the half plane
bounded by the line through p1 and p2 and containing x is called the
smaller arc of C with endpoints p1 and p2 and denoted by arc (p1, p2; c).

Remark 2.2. Any translate Bi covers the smaller arc of C determined
by pi and pi+1 and does not cover the larger one. This fact follows, e.g.,
from [22, Proposition 22]. It implies that proper translates B1, . . . , Bm

of B form a covering of the boundary of B of multiplicity 1 if and only
if conv {p1, . . . , pm} contains the center of B.

Lemma 2.1. In a strictly convex normed plane with unit circle C
centered at the origin o, let there be given three points p1, p2, p3 on C.
Let C1 be a translate of C passing through p1 and p2, and let C2 be a
translate of C passing through p2 and p3. Let q2 ∈ C1 ∩ C2. Then we
have:

(i) If o /∈ conv {p1, p2, p3} and p2 belong to the half-plane bounded
by the line through p1 and p3 and not containing o, then
∥q2∥ > 1.
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(ii) If o ∈ [p1, p3], then q2 = p2.
(iii) If o ∈ conv {p1, p2, p3}, then ∥q2∥ < 1.

Proof. Let us fix p1 and p2, and let p3 move along the semicircle
A of C with endpoints −p2 and p2 that do not contain p1. Thus,
if p3 belongs to the arc of C with endpoints −p2 and −p1, then the
origin o ∈ conv {p1, p2, p3}, i.e., we have (iii) from Lemma 4.1. If
p3 = −p2, then we have (ii) from above, and when p3 runs from −p1
to p2, we have (i) from above. One can see that, if p3 moves along
A, the locus of the midpoints of the segments [p3, p2] is a semicircle
of the circle C1 with center (1/2)p2 and radius 1/2. More precisely,
the semicircle A1 of C1 that lies in the half plane bounded by the line
through o and p2 does not contain p1. Then the locus of the centroids
of the triangles p1p2p3 is the semicircle A2 of the circle with center
(1/3)(p1 + p2) and of radius 1/3, which is the image of A1 under the
homothety φ with fixed point p1 and ratio 2/3. Note that the endpoints
of A2 are (1/3)p1 and (1/3)p1 + (2/3)p2. Moreover, if p3 = −p1, then
φ((1/2)(p2 + p3)) = (1/3)p2. In other words, if p3 moves from −p2
to −p1, then the centroid (1/3)(p1 + p2 + p3) moves from (1/3)p1 to
(1/3)p2 through the part A′

2 of A2. If p3 moves from −p1 to p2, then
the point (1/3)(p1 + p2 + p3) moves from (1/3)p2 to (1/3)p1 + (2/3)p2.
Thus, again applying [22, Proposition 22], we get that the only part
of A2 which belongs to (1/3)B is A′

2. If yi (i = 1, 2) is the center of Ci,
then y1 = p1 + p2 and y2 = p2 + p3; see Remark 2.1. Hence, again by
Remark 2.1, we obtain q2 = y1+y2−p2 = p1+p2+p3 which completes
the proof. �

Theorem 2.1. Let B ⊂ E2 be a centrally symmetric, strictly convex
body, and let B be a family of proper translates of it. Assume that
B forms a non-reducible covering of bdB whose multiplicity is 1, and
that B is a covering of B. We claim that B consists of exactly three
translates.

Proof. Let p1, . . . , pm be the skeleton of the covering B={B1,. . ., Bm}.
Assume that ∪m

i=1Bi covers B. Due to the strict convexity of B, we
have that m > 2. Consider the pair Bi and Bi+1. Then Ci = bdBi

and Ci+1 = bdBi+1 have two intersection points (it is also possible
that they coincide), and one of them is pi. Denote the second one by
qi. If there exists i ∈ {1, . . . ,m} such that ∥qi∥ ≥ 1, then ∪m

i=1Bi does
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not cover B. Thus we get that, for all i ∈ {1, . . . ,m}, the point qi be-
longs to intB. Then Lemma 4.1 implies that o ∈ int conv {p1, p2, p3}.
But the same lemma also implies that the origin has to belong to
int conv {p1, pm, pm−1}. This is only possible for m = 3. �

Let B be a centrally symmetric convex body. Let B = {B1, . . . , Bm}
be a covering of its boundary by translates of B whose multiplicity is 1.
As our Theorem 2.1 shows, for m ≥ 4, this is not a covering of B. The
set of points from B which do not belong to ∪m

i=1Bi is called the gray
area of B for B. If the points xi, i ∈ {1, . . . ,m}, are the centers of Bi,
then the set of points whose distance to the origin does not exceed the
distance to any point xi is said to be the Voronoi region of B. It is now
our aim to investigate the gray area of a covering of the boundary of
B by translates of B. Note that the notions of gray area and Voronoi
region of the covering were introduced in [2], but only for a covering
of the plane by Euclidean discs.

Theorem 2.2. Let B ⊂ E2 be a centrally symmetric strictly convex
body, and let B be a family of proper translates of B. Assume that
B forms a covering of bdB whose multiplicity is 1. Then we have
G ⊂ V ⊂ B, where G and V denote the gray area and the Voronoi
region of B for B, respectively. Moreover, if m = 4, then G is contained
in the Miquel disc of the covering B.

Proof. Let β(x, y) be the bisector of different points x and y, i.e.,
β(x, y) := {p : ∥x − p∥ = ∥y − p∥}. Remember that, for strictly
convex norms, any bisector is an unbounded curve without points of
self-intersection. Note also that, if z ∈ β(x, y), then β(x, y) belongs
to the double cone spanned by x and y with apex z; see, e.g., [22,
Proposition 17]. Let p1, . . . , pm be the skeleton of B, and let xi be the
center of Bi. Denote by βi the part of β(0, xi) between pi and pi+1.
Since o ∈ conv {p1, . . . , pm}, the statement cited above implies that
all βi form a curvilinear polygon with vertices p1, . . . , pm (the sides
of the polygon intersect only in their endpoints). Then this polygon
is the boundary of the Voronoi region V of B. For any three non-
collinear points x, y, z and a point u ∈ conv {x, y, z}, the inequality
∥x− z∥+ ∥z − y∥ > ∥x− u∥+ ∥u− y∥ holds; see, e.g., [22, Corollary
28]. Therefore βi ∈ B ∩ Bi, yielding G ⊂ V ⊂ B. For the rest of the
proof, denote the second intersection points of bdBi and bdBi+1 by qi
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(the first one is pi). Then qi lies on the boundary of the Miquel disc of
the covering B. According to Lemma 4.1, exactly two of the points qi,
i = 1, . . . , 4, belong to the interior of B, say q1 and q2. Then the gray
area (it can be connected or disconnected) is determined by the arcs
arc (q1, q2;x1), arc (q2, p3;x2), arc (p3, p4;x3) and arc (p4, q1;x4). Since
the arcs arc (q1, q2;x1), arc (q2, q3;x2), arc (q2, q3;x3) and arc (q3, q4;x4)
belong to M , it follows that G ⊂ M . �

Corollary 2.1. If B = {B1, . . . , B4} is a 1-multiplicity t-covering of
the boundary of a centrally symmetric, strictly convex body B in the
plane, and M is the Miquel disc of B, then ∪4

i=1Bi ∪M is a covering
of B.

3. On translative coverings in terms of illumination. A suit-
able notion of illumination, introduced in [3, 14], permits the expres-
sion of the h-covering problem of Hadwiger in terms of illumination. Be-
low we introduce an illumination type somehow related to t-coverings.
Based on this, it is easy to observe new results which are certainly
stimulating for further research on t-coverings.

We say that a boundary point x of a convex body K ⊂ En is t-
illuminated by a direction δ if there exists a different point y ∈ K such
that the vector x⃗y has direction δ. And we note that this definition
still makes sense if the word “boundary” is omitted. The related
illumination of the boundary ofK ⊂ En introduced in [3, 14], referring
to Hadwiger’s covering problem, and the number h(K) are defined as
follows: A boundary point x of K is h-illuminated by a direction δ
if there is some interior point y of K such that the vector x⃗y has
direction δ. The comparison of both definitions shows that differences
in the illumination of boundary parts of K occur only in one situation,
namely, when K has non-degenerate segments in its boundary which
are parallel to the illumination direction. More precisely, if the direction
δ is parallel to a non-degenerate segment I ⊂ bdK, say, then all
x ∈ I are not h-illuminated, but all of them, except for one of the
two endpoints of I, are t-illuminated. For all other boundary points
of K, both illumination (or covering) types are equivalent. Various
further types of illumination and visibility, discussed in the expository
paper [20], might also be compared with t-illumination.
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For the following theorem, we denote by i(K) the smallest number
of directions sufficient to t-illuminate the whole of bdK.

Theorem 3.1. For every convex body K ⊂ En we have i(K) ≤ t(K).

Proof. Let K1, . . . ,Km be proper translates of K satisfying K ⊂
∪m
i=1intKi ⊂ ∪m

i=1Ki, and denote by vi ̸= o the translation vector
defined by K + vi = Ki, i = 1, . . . ,m. (By (2) below in Section 4, m
is finite.) For x ∈ intKi ∩ bdK, we have x+ vi ∈ intK, and therefore
x ∈ bdK is t-illuminated by −vi. Thus, the whole of intKi∩bdK is t-
illuminated by −vi, and the vector system {−v1, . . . ,−vm} illuminates
the whole of bdK = ∪m

i=1(intKi ∩ bdK) = ∪m
i=1(Ki ∩ bdK). Hence,

i(K) ≤ t(K). �

The proof of the next theorem is done by modifying the proof of
Theorem 34.3 in [5].

Theorem 3.2. Let K ∈ En be a convex body, and let δ1, . . . , δm be
directions such that the subsets of bdK t-illuminated by them are open
in bdK and that the union of these subsets is bdK. Then there exist
non-zero vectors w1, . . . , wm opposite to δ1, . . . , δm, respectively, for
which K is covered by the translates {K + wi}, i = 1, . . . ,m.

Proof. Denote by Wi the set of boundary points of K t-illuminated
by δi, i = 1, . . . ,m. We will show the existence of open sets
Vi, . . . , Vm ⊂ bdK satisfying

(1) clVi ⊂ Wi (i = 1, . . . ,m) and
m∪
i=1

Vi = bdK,

using induction over k ∈ {1, . . . ,m}. Assume that, for any such k,
we have sets V1, . . . , Vk−1 with clVi ⊂ Wi (i = 1, . . . , k − 1) and
V1 ∪ · · · ∪ Vk−1 ∪Wk ∪ · · · ∪Wm = bdK (the case k = 1 is trivial). In
order to construct Vk, we consider the sets

Fk = bdK \ (V1 ∪ · · · ∪ Vk−1 ∪Wk+1 ∪ · · · ∪Wm),

and Hk = bdK \ Wk. Since Fk and Hk are closed and disjoint, we
may consider their distance hk = min{∥x − y∥ : x ∈ Fk, y ∈ Hk}
and choose some positive ε < hk with setting Vk = Uε(Fk) ∩ bdK,
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where Uε denotes the ε-environment. Then, Vk is open in bdK with
clVk ∩Hk = ∅. Thus,

clVk ⊂ Wk; V1 ∪ · · · ∪ Vk ∪Wk ∪ · · · ∪Wm = bdK,

confirming the existence of sets V1, . . . , Vm which satisfy (1).

For each x ∈ Wi, let li(x) be the ray with starting point x in direction
δi. Since x is t-illuminated by −δi, li(x) \ {x} ∩K ̸= ∅, and the point
of this set having largest distance to x is denoted by yi ̸= x. Thus, the
segment [x, yi] has length fi(x) > 0, yielding a positive function on Wi,
also continuous by the convexity of K. The compactness of clVi ⊂ Wi

implies that there is some qi > 0 such that, for all x ∈ clVi, the
relation fi(x) > qi holds. Thus, denoting the translation via −δi, with
∥vi∥ = qi, by πi, we have πi(clVi) ⊂ K and also Ki := π−1

i (K) ⊃ clVi

for i = 1, . . . ,m. Now let y0 be an arbitrary interior point ofK. Then qi
from above can be chosen sufficiently small such that y0 ∈ π−1

i (K) = Ki

for all i ∈ {1, . . . ,m}. Thus, the closed set clVi ∪ {y0} is contained in
Ki. To show K ⊂ ∪m

i=1Ki, we choose for any z ∈ K a boundary
point x of K such that z belongs to the segment [x, y0]. We choose
some i ∈ {1, . . . ,m} such that x ∈ clVi (note that ∪m

i=1Vi = bdK),
and since y0 and x ∈ clVi lie in the convex set Ki = π−1

i (K), we get
[x, y0] ⊂ Ki, yielding z ∈ ∪m

i=1Ki, i.e., K ⊂ ∪m
i=1Ki. �

Corollary 3.1. Let K ⊂ En be a convex body, and assume that a
system of a minimum number of directions that t-illuminates bdK has
the property that the subsets of bdK t-illuminated by them are open in
bdK. Then t(K) = i(K).

Corollary 3.2. Let K ⊂ En be a strictly convex body. Then i(K) =
t(K).

In the planar situation, we get even more.

Corollary 3.3. Let K ⊂ E2 be a convex body. Then i(K) = t(K).

Proof. We have t(K) = 2 if and only if bdK contains two parallel
segments (see Proposition 5.2 below), and it is obvious that only in this
case also i(K) = 2. By Proposition 4.3 below, we have h(K) = t(K)
if and only if bdK does not contain parallel segments. We also have
h(K) ≥ 3 (see [5]) and, obviously, h(K) ≥ t(K) ≥ i(K) as well as
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4 > h(K) for all non-parallelograms (which satisfy t(K) = 2). Thus,
t(K) = i(K) = 3 for all convex bodies K ⊂ E2 without parallel
boundary segments. �

Unfortunately, for n ≥ 3, in general the equality i(K) = t(K) does
not hold. We wish to thank Christian Richter (FSU Jena) for bringing
the following counterexample to our attention.

Let K = conv (S ∪ (0, . . . , 0, 1) ∪ (0, . . . , 0,−1)) with S = {(x1, . . . ,
xn−1, 0) : x

2
1+· · ·+x2

n−1 = 1} be a compact double cone over an (n−1)-
sphere S in En, n ≥ 3. Then bdK is t-illuminated by n+1 directions,
namely: the vector (1, 0, . . . , 0, 1) t-illuminates (also) all x ∈ bdK with
xn < 0 as well as (−1, 0, . . . , 0) (the upper apex lies beyond it), and
the vector (−1, 0, . . . , 0,−1) t-illuminates analogously all x ∈ bdK with
xn > 0 as well as (1, 0, . . . , 0).

For the t-illumination of S \{(1, 0, . . . , 0), (−1, 0, . . . , 0)} we consider
a regular simplex with centroid (0, . . . , 0) and vertices v1, . . . , vn−1

which is embedded in the equatorial (n − 2)-plane x1 = xn = 0. The
vectors v1, . . . , vn−1 t-illuminate the equator and therefore S, except
for the poles (1, 0, . . . , 0), (−1, 0, . . . , 0) which are already t-illuminated.
Thus, we get i(K) ≤ 2 + (n− 1) = n+ 1.

For t-covering (0, . . . , 0, 1) we need a translate K + v, where the nth
coordinate vn of v is positive and the slope angle between v and aff S
is ≥ 45◦. Then (K + v) ∩ aff S is an (n − 1)-ball of radius 1 − vn < 1
(degenerate for vn ≥ 1), which is completely contained in convS. This
(n − 1)-ball intersects S in at most one point, i.e., K + v covers at
most one point from S. Analogously, a second translate of K is needed
to cover (0, . . . , 0, 1), and this intersects S again in at most one point.
The remaining needed translates of K have to cover S, except for two
points of S. Since they are closed, they cover S completely even. If we
would have only ≤ n− 1 translate of K for this, then it would have to
cover a pair of diametrical points of S (Borsuk-Ulam theorem). This
is only possible with the translation vector (0, . . . , 0), a contradiction.
Thus, at least n translates are needed for covering S, and therefore
t(K) ≥ n+ 2.

One can easily prove various further theorems on t-illumination.
Here is an example. If x denotes a non-extreme boundary point of
a convex body K ⊂ En which is not strictly convex, then x is from the
relative interior of some boundary segment yz with z as extreme point
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of C. If z is t-illuminated by some direction v, then there is some point
z + λv ∈ K,λ > 0. Since then also the triangle with vertices y, z, λv is
contained in K, there is some x+ νv, 0 < ν < λ, also belonging to K,
and so x is also t-illuminated by v. Therefore, we have

Proposition 3.1. The boundary of a convex body K ⊂ En is com-
pletely t-illuminated by a system V of directions if and only if the set
of extreme points of K is t-illuminated by V .

4. Comparison of two covering numbers and some conse-
quences. Since any smaller homothetical copy of a convex body K is
contained in a translate of K, we obviously have:

(2) t(K) ≤ h(K) for every convex body K ⊂ En.

Lemma 4.1. Let K ⊂ En be a convex body, let v be a vector and let
0 ≤ λ ≤ 1. We have K ∩ (K + v) ⊂ K + λv. Moreover, if K is strictly
convex and 0 < λ < 1, then K ∩ (K + v) ⊂ int (K + λv).

Proof. Take any x ∈ K ∩ (K + v). Since x ∈ (K + v), there exists a
point z ∈ K such that x = z + v. By the convexity of K, the segment
zx = z(z + v) is contained in K. Put y = z + λv. From z ∈ K, we
obtain y ∈ (K+λv). Since z(z+v) ⊂ K, we have y(y+v) ⊂ (K+λv).
This and x ∈ y(y + v), which follows from y = z + λv, x = z + v and
y + v = z + v + λv, imply x ∈ (K + λv).

If, in addition, K is strictly convex and 0 < λ < 1, then the chosen
point x ∈ K ∩ (K + v) hast to be an interior point of K + λv. �

Proposition 4.1. For every strictly convex body K ⊂ En, we have
h(K) = t(K).

Proof. Assume that K is covered by proper translates K + vk for
k = 1, . . . ,m, where every vk is a non-zero vector. Then K is covered
by proper translates K + (1/2)vk for k = 1, . . . ,m. By Lemma 4.1
the set Pk = K ∩ (K + vk) is contained in the interior of K + (1/2)vk.
Hence, every Pk is covered by a homothetical copy ofK+(1/2)vk with a
positive ratio smaller than 1. Thus, it is also covered by a homothetical
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copy of K with a positive ratio smaller than 1. We conclude that
h(K) ≤ t(K). This together with (2) finishes the proof. �

As a stronger statement, we even have the following:

Proposition 4.2. If a convex body K ⊂ En does not have parallel
boundary segments, then h(K) = t(K).

Proof. Look at the proof of Proposition 4.1. Now it may happen
that Pk is not contained in the interior of K + (1/2)vk (but still
Pk ⊂ K + (1/2)vk). Observe that there exists a non-zero vector wk

such that Pk is contained in the interior of K + (1/2)vk − wk. Such a
vector wk should be well chosen: if vk is parallel to a boundary segment
S ofK, then we may take as wk a sufficiently short vector with its initial
point in S, directed to an interior point of K (we apply here the fact
that the boundary of K does not contain a segment parallel to S). In
the opposite case, instead of wk, take the zero vector. �

Thus, we get the following problem.

Problem 4.1. Characterize the class of convex bodies K ⊂ En for
which h(K) = t(K).

For n = 2, this is solved by

Proposition 4.3. Let K ⊂ E2 be a convex body. We have h(K) =
t(K) if and only if the boundary of K does not contain parallel seg-
ments.

Proof. By Proposition 4.2, we have h(K) = t(K) provided C does
not have a pair of boundary segments. If, on the other hand, the
boundary of K contains a pair of parallel segments, by Proposition 5.2
below, we have t(K) = 2. On the other hand, h(K) ≥ 3 (see, e.g., [5]).
Consequently, h(K) ̸= t(K) for this case. �

The statement of Proposition 4.3 does not hold true for n ≥ 3. This
follows from the example of the double cone D ⊂ En whose base is an
(n−1)-dimensional ball. It is easy to see that h(D) = n+2 = t(D). On
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the other hand, the boundary of D contains a pair of parallel segments
(in fact, infinitely many such pairs).

5. Bounds on translative covering numbers. In this section we
give some upper bounds on minimum cardinalities of t-coverings.

Proposition 5.1. For every strictly convex body K ⊂ En, where
n ≥ 2, we have

t(K) ≤ nn − (n− 2)n.

Proof. Let P1 be a parallelotope of maximum volume contained in
K. Then a parallelotope P2, being a homothetic copy of P1 with ratio
n, contains K (see [17]).

A particular case of Corollary 2 from [16] (when we take p1 =
· · · = pn = n − 1 there) says the following. Assume that an n-
dimensional parallelotope P is dissected into nn equal, n-times smaller
parallelotopes (being homothetical copies of P with ratio 1/n) by n
families of hyperplanes, each consisting of n−1 hyperplanes parallel to
a successive pair of opposite facets of P . Then, for an arbitrary convex
body K ⊂ P , there exists a family F of at most nn − (n − 2)n of the
obtained n-times smaller parallelotopes which covers the boundary of
K.

Taking into account both of these facts, where P2 = P , we conclude
that bdK is covered by a family F of at most nn − (n− 2)n translates
of P1.

If P1 /∈ F , then F consists only of proper translates of P1.

If P1 ∈ F , then we may omit P1, and the remaining translates of P1

from F still cover bdK. Let us explain why. Observe that the strict
convexity of K and P1 ⊂ K ⊂ P2 imply that P1 has empty intersection
with the boundary of P2 and that bdP1 ∩ bdK does not contain
boundary points of P besides some vertices of P1. Consequently, again
from the strict convexity of K and since the union of parallelotopes
from F covers bdK, we conclude that each of these vertices is in at
least one parallelotope from F different to P1. So parallelotopes from
F different to P1 cover bdK.

We see that bdK is always covered by at most nn− (n− 2)n proper
translates of P1. Since P1 ⊂ K, we conclude that bdK is covered by
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at most nn − (n − 2)n proper translates of K. By Proposition 2.1, K
is also covered by some nn − (n− 2)n proper translates of K. �

Remark 5.1. The estimate given in this proposition is only slightly
better than the estimate (n + 1)n − (n − 1)n (concerning Hadwiger’s
number h(K) for any convex body K) in [16, line 7, page 272], and also
better than the estimate (n+ 1)nn−1 − (n− 1)(n− 2)n−1 in Corollary
4 there. From Proposition 5.1 and Proposition 4.1, we immediately
deduce also that h(K) ≤ nn − (n− 2)n for every strictly convex body
K ⊂ En.

Remark 5.2. Another upper bound on h(K) which is interesting for
our purpose is presented in [6, Theorem 9.15.1]; see also [5, Section
34]. It implies that, for an arbitrary convex body K ⊂ Rn, n ≥ 2, we
have t(K) ≤ 5n 4n lnn. Our bound in Proposition 5.1 is better only for
n ≤ 8.

Proposition 5.2. Let K ⊂ En be a convex body. We have t(K) = 2
if and only if there is a direction u such that the intersection of the
boundary of K and any supporting line of K parallel to u is a segment of
length at least ε, where ε > 0 (or, equivalently, K has a non-degenerate
segment summand in the sense of Minkowski addition).

Proof. Assume that bdK contains parallel segments of lengths at
least ε, where ε > 0. Observe that K is covered by K + (1/2)(K + vε)
andK−(1/2)(K+vε), where vε is one of the two vectors whose starting
and end-points are on a segment of length εmeant as in the assumption.
Hence, t(K) = 2.

Assume that t(K) = 2. This means that K can be covered by
two proper translates K + v1 and K + v2. Here v1 and v2 are some
oppositely directed vectors. Assume that this is not true. Then the
union of K + v1 and K + v2 does not contain the point of support of
K by a hyperplane with the property that the inner products ⟨v1, v⟩
and ⟨v2, v⟩ both are positive, where v denotes a normal vector of this
hyperplane. This contradicts t(K) = 2. We see that v1 and v2 are
oppositely directed vectors. Hence, bdK contains parallel segments of
lengths at least ε, where ε is the sum of lengths of v1 and v2. �

Together with (1) (see also Proposition 4.3), this proposition implies:
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Corollary 5.1. Let K ⊂ E2 be a convex body. We have 2 ≤ t(K) ≤ 3
with t(K) = 2 if and only if K is as described in Proposition 5.2.

According to (1) every upper bound of h(K) is also an upper bound
on t(K). But not all known upper bounds on h(K) are interesting in
view of t(K), as is the case for zonotopes, i.e., vector sums of finitely
many line segments. Namely, the best known upper bound on h(Z)
for Z being an arbitrary n-dimensional zonotope is (5/8) · 2n−3, and
for a few types of zonotopes even larger, as in the case h(Z) = 2n for
Z the affine n-cube; see [4]. But since any zonotope Z has segment
summands, in view of Proposition 5.2, we clearly have t(Z) = 2 for
any zonotope. Thus, only a certain selection of bounds on h(K) is
interesting for estimation also of t(K). In the following (see also the
survey in [5]) we give a list of such selected results in terms of t(K).

For every centrally symmetric convex body K ⊂ En, we have
h(K) ≤ 5n2n lnn (see [6, Theorem 9.15.1]); this estimate also holds
for t(K). If K ⊂ E3 is a convex body, then analogously the esti-
mate t(K) ≤ 16 holds (see [23]). If K ⊂ E3 is an arbitrary centrally
symmetric convex body, then the estimate h(K) ≤ 8 (see [15]) anal-
ogously implies t(K) ≤ 8. If K is a smooth convex body in En, then
2 ≤ t(K) ≤ n + 1 (whereas h(K) = n + 1), and if, in particular, K is
smooth and strictly convex, then clearly t(K) = n + 1. We have also
2 ≤ t(K) ≤ n + 1 if K ⊂ En has at most n non-regular boundary
points, and for n = 3 even four non-regular boundary points still yield
2 ≤ t(K) ≤ 4. On the other hand, t(K) ≤ n + 1 still holds if K has
arbitrarily many non-regular boundary points which, however, have to
be “not too acute,” or if K has at least one shadow boundary consist-
ing only of regular boundary points; see [5, pages 271–272]. All the
bounds on h(K) hold for bodies of constant width or for convex bodies
with certain symmetry properties (see again [5, pages 271–272]) and
also yield upper bounds on t(K) for such bodies.

Now we turn to lower bounds for the unknown upper bounds on t(K)
for n ≥ 3, i.e., we ask for realizations of convex bodies K ⊂ En with
t(K) being as large as possible. It turns out that strictly antipodal
sets in En yield such lower bounds. A pair of points x, y in a set
X ⊂ En is called strictly antipodal if X lies in the slab between
the parallel hyperplanes Hx ∋ x and Hy ∋ y with X ∩ Hx = {x},
X ∩Hy = {y}. By this definition, it is clear that no proper translate
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of convX can cover x and y simultaneously. Now denote by an the
maximum cardinality of a finite set X ⊂ En with the property that any
two points of X are strictly antipodal. Thus, we have with Proposition
3.1, that an = t(convX). Danzer and Grünbaum [8] introduced the
notion of strictly antipodal points in finite sets X ⊂ En, and they
posed the question on the upper bound for an. Grünbaum [12] proved
that a3 = 5, and in [8], a set of 2n − 1 points in En is constructed,
any two of these points being strictly antipodal. For a long time it
was believed that an = 2n − 1, but Erdős and Füredi [9] showed that

an ≥ ⌊(2/
√
3)n/2⌋. Thus, there are convex polytopes P ⊂ En satisfying

t(P ) ≥ ⌊(2/
√
3)n/2⌋. The exact values for an, n ≥ 4, are still unknown,

and the best known lower bound is 3n/3, due to Talata; see [6, Section
9.11].

If an(Xm) denotes the number of strictly antipodal pairs in a set
Xm ⊂ En of cardinality m, and an(m) stands for the maximum of
an(Xm) taken over all sets Xm, then these numbers are also inter-
esting for our purpose, since obviously 2an(Xm) = t(convXm), and
2an(m) denotes maximum over all numbers t(convXm), for all sets
Xm of cardinality m. Results on the numbers an(Xm) and an(m) are
summarized in [19, Section 4].
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