A NEW CLASS OF INEQUALITIES FOR POLYNOMIALS

RICHARD FOURNIER

ABSTRACT. We extend a recent inequality due to Fournier, Letac and Ruscheweyh to a class of inequalities involving a bound-preserving operator as a parameter.

1. Introduction. Let **D** be the unit disc in the complex plane **C**. \mathcal{P}_n denotes the set of complex polynomials of degree at most n and $|p|_{\mathbf{D}}$ stands for the uniform norm of $p \in \mathcal{P}_n$. The following result has been obtained recently [4]:

Theorem A. For $p \in \mathcal{P}_n$ and $n \geq 2$,

(1)
$$|p - p(0)|_{\mathbf{D}} \le n(|p|_{\mathbf{D}} - |p(0)|).$$

The constant n is the best possible and equality holds only for constant polynomials $p \equiv p(0)$.

Ruscheweyh and Woloszkiewicz [8] have extended (1) by determining the "best" function M_n such that

(2)
$$\frac{1}{n} \le M_n \left(\frac{|p(0)|}{|p - p(0)|_{\mathbf{D}}} \right) \le \frac{|p|_{\mathbf{D}} - |p(0)|}{|p - p(0)|_{\mathbf{D}}}, \quad p \in \mathcal{P}_n.$$

They also studied some cases of equality for (2).

Of course, one may think of (1) and (2) as generalizations of the classical triangle inequality to a special finite-dimensional vector space. In the present note, we shall further extend (1) from the point of view of bound-preserving operators over \mathcal{P}_n . A polynomial $P \in \mathcal{P}_n$ is called a bound-preserving operator over \mathcal{P}_n if

$$|P \star p|_{\mathbf{D}} \le |p|_{\mathbf{D}}$$
, for all $p \in \mathcal{P}_n$.

²⁰¹⁰ AMS Mathematics subject classification. Primary 30E10, 41A17, 42A05. Keywords and phrases. Polynomial inequalities, bound-preserving operators. Received by the editors on March 27, 2012.

Here \star denotes the convolution (sometimes called Hadamard product) of two functions in $\mathcal{H}(\mathbf{D})$, the class of functions analytic in \mathbf{D} . We refer the reader to [7, Chapter 4] and [9, Chapter 4] concerning the class of bound-preserving operators; we shall be interested here in the subclass \mathcal{B}_n of those operators Q such that Q(0) = 1.

It is well known that

$$Q \in \mathcal{B}_n \iff Q(z) + o(z^n) \in \mathfrak{P}_{1/2}$$

where $\mathfrak{P}_{1/2} = \{ f \in \mathcal{H}(\mathbf{D}) \mid f(0) = 1 \text{ and } \operatorname{Re} f(z) > 1/2, z \in \mathbf{D} \}$. We associate to each $Q(z) := 1 + \sum_{k=1}^{n} A_k z^k \in \mathcal{B}_n$ a sequence of Toeplitz matrices T_k , $1 \leq k \leq n$, whose first row is $(1, A_1, A_2, \ldots, A_k)$. Crucial classical information due to Carathéodory, Fejér and Toeplitz is available in the following:

Lemma 1.1. If $Q \in \mathcal{P}_n$ and $\det T_k(Q) > 0$ for all $1 \le k \le n$, then $Q \in \mathcal{B}_n$. Conversely, for each $Q \in \mathcal{B}_n$, we have $\det T_k(Q) > 0$ for all $1 \le k \le n$ or else there exists a smallest positive integer K, $1 \le K \le n$, such that $\det T_k = 0$ if $K \le k \le n$. In that case,

$$Q(z) = \sum_{j=1}^{K} \frac{\ell_{j}}{1 - \zeta_{j}z} + o(z^{n}),$$

where $0 < \ell_j$ and $\{\zeta_j\}_{j=1}^K$ is a set of distinct nodes in $\partial \mathbf{D}$.

A good reference concerning Lemma 1.1 is the book of Tsuji [10, pages 153–159].

Let $\mathcal{B}_n^0 = \{Q \in \mathcal{B}_n \mid \det T_n > 0\}$. Our main result is:

Theorem 1.2. For any $Q \in \mathcal{B}_n^0$, $n \geq 2$, there exists an optimal constant $0 < d_n = d(Q, n) < 1$ such that

(3)
$$|Q \star p|_{\mathbf{D}} + d_n |p - Q \star p|_{\mathbf{D}} \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n.$$

Clearly, this is an extension of Theorem 1 which is the case $Q \equiv 1$ with $d_n = d(1, n) = 1/n$. In the next section we shall prove Theorem 1.2 and establish cases of equality in (3). We shall also discuss Theorem 1.2, assuming that $Q \in \mathcal{B}_n \backslash \mathcal{B}_n^0$. Finally, inspired by an inequality of

Ruscheweyh ([5], [7]) we shall introduce alternate versions of our theorem.

2. Proof of Theorem 1.2. Let $I(z) = \sum_{j=0}^{n} z^{j}$. The inequality (3) is clearly equivalent with

$$\widetilde{Q}(z) := Q(z) + \delta u (I(vz) - Q(vz)) \in \mathcal{B}_n$$

for any $0 \le \delta \le d_n$ and $u, v \in \partial \mathbf{D}$. If $Q(z) := 1 + \sum_{k=1}^n A_k z^k$, the first row of the Toeplitz matrix $T_k(\widetilde{Q})$ is

$$(1, A_1 + \delta u(1 - A)v, \dots, A_k + \delta u(1 - A_k)v^k).$$

We define, for $1 \le k \le n$,

$$d_k = \sup_{\delta > 0} \{ \delta \mid \det T_j(\widetilde{Q}) > 0, j = 1, 2, \dots, k, u, v \in \partial \mathbf{D} \}.$$

The Taylor coefficients of Q are bounded and $\det T_k(Q) > 0$ by hypothesis. This is sufficient to conclude that

$$0 < d_n \le d_{n-1} \le d_{n-2} \cdots \le d_1.$$

By Lemma 1.1, we obtain that $\widetilde{Q} \in \mathcal{B}_n$ when $u, v \in \partial \mathbf{D}$ and $\delta < d_n$. By continuity, this must also hold for $\delta \leq d_n$ and, by definition, there must exist, given $\delta > d_n$, numbers $u, v \in \partial \mathbf{D}$ such that $\det T_n(\widetilde{Q}) < 0$ for the corresponding \widetilde{Q} . It follows that $d_n = d(Q, n) > 0$.

When n=1, it is rather trivial that $d_n=(1-|A_n|)/|1-A_n|$ and, surely, $0 < d_n \le 1$, where equality is possible if A_n is positive. It should be noted that $|A_k| < 1$ for $1 \le k \le n$ when $\det T_n(Q) > 0$. We shall now prove that $d_n < 1$ when $n \ge 2$; assume for now that $d_n = 1$, and let $u \in \partial \mathbf{D}$, $1 \le k \le n/2$ and $v = \overline{u}^{1/k}$. Then, if

$$\widetilde{Q}(z) := Q(z) + u d_n (I(vz) - Q(vz))$$

$$= 1 + \sum_{j=1}^{n} (A_j + d_n u (1 - A_j) v^j) z^j,$$

where $A_k + d_n u(1 - A_k)v^k = A_k + (1 - A_k) = 1$, it follows that $\widetilde{Q}(z) + o(z^n)$ is a support point of $\mathfrak{P}_{1/2}$ (see [6] for details) since it

maximizes Re $f^{(k)}(0)$ within this class, and therefore

$$\widetilde{Q}(z) = \sum_{j=1}^{k} \frac{\ell_j(u)}{1 - w_j z} + o(z^n),$$

where $\ell_j(u) \geq 0$ and $\{w_j\}_{j=1}^k$ is the set of distinct k-roots of unity. We have, in particular,

$$1 = \sum_{j=1}^{k} \ell_j(u) w_j^{2k} = A_{2k} + d_n u (1 - A_{2k}) v^{2k}$$
$$= A_{2k} + \overline{u} (1 - A_{2k}),$$

which is impossible because u is arbitrary in $\partial \mathbf{D}$ and $|A_{2k}| < 1$.

Concerning the cases of equality in (3), we shall rely on two more hypotheses:

$$(4) d_n < d_{n-1} \le d_{n-2} \cdots \le d_1$$

and

(5)
$$d_n < \frac{1 - |A_n|}{|1 - A_n|}.$$

These hypotheses may look artificial, but we remark that they were verified in the case of Theorem 1. We shall also need the following easy consequence of Theorem 1.2:

Corollary 2.1. Let $Q \in \mathcal{B}_n^0$ with $n \geq 2$. Then the constant polynomials are the only polynomials $p \in \mathcal{P}_n$ such that $|Q \star p|_{\mathbf{D}} = |p|_{\mathbf{D}}$.

Let us now assume that $n \geq 2$ and that equality holds for some polynomial $p \in \mathcal{P}_n$ in (3). There must exist $Z, u, v \in \partial \mathbf{D}$ such that

(6)
$$\left| \left(Q(z) + d_n u \left(I(vz) - Q(vz) \right) \right) \star p(z) \right|_{z=Z}$$

$$= |Q \star p(Z)| + d_n |(I - Q) \star p(vZ)|$$

$$= |Q \star p|_{\mathbf{D}} + d_n |p - Q \star p|_{\mathbf{D}}$$

$$= |p|_{\mathbf{D}}.$$

Then, either $\det T_n(Q + d_n u(I(v \cdot) - Q(v \cdot))) > 0$ or else the same determinant vanishes. It follows, in the first case and by Corollary 2.1,

that the polynomial p is constant. In the second case, it shall follow from hypothesis (4) and Lemma 1.1 that

(7)
$$Q(z) + d_n u (I(vz) - Q(vz)) = \sum_{j=1}^n \frac{\ell_j}{1 - \zeta_j z} + o(z^n),$$

where $\ell_j > 0$ and the set of distinct nodes $\{\zeta_j\}_{j=1}^n$ lies in $\partial \mathbf{D}$. We obtain, in particular, from (6) and (7) that

$$\left| \sum_{j=1}^{n} \ell_j p(\zeta_j Z) \right| = |p|_{\mathbf{D}},$$

and there must exist some real number ρ such that

$$p(\zeta_j Z) = |p|_{\mathbf{D}} e^{i\rho}, \quad j = 1, 2, \dots, n.$$

It is known [3] that such polynomials must be of the type $p(z) = \beta + \alpha z^n$ for some $\alpha, \beta \in \mathbf{C}$. We now have from (6) that

$$|\beta + \alpha A_n z^n|_{\mathbf{D}} + d_n |\alpha| |1 - A_n| = |\beta| + |\alpha|,$$

and, with $\alpha \neq 0$, this amounts to

$$d_n = \frac{1 - |A_n|}{|1 - A_n|},$$

which is ruled out by hypothesis (5) We conclude that, for $n \geq 2$ and under (4) and (5), equality holds in Theorem 1.2 if and only if the polynomial p is constant.

It seems at first sight difficult to exhibit functions $Q \in \mathcal{B}_n$ with given A_n and d_n satisfying (5). We remark, however, that any one of the two statements

$$0 \le A_n < 1$$

or

$$\min_{1 \le j \le n} \frac{1 - |A_j|}{|1 - A_j|} < \frac{1 - |A_n|}{|1 - A_n|}$$

admits (5) as a consequence.

3. What about $Q \in \mathcal{B}_n \backslash \mathcal{B}_n^0$? It is a natural question to ask if Theorem 1.2 remains valid for some polynomials $Q \in \mathcal{B}_n$ with

det $T_n(Q) = 0$ since our proof depends heavily on the fact that $Q \in \mathcal{B}_n^0$. We only have partial answers concerning this question.

Let $F(z) = \sum_{j=1}^{k} \ell_j/(1-w_j z) \in \mathfrak{P}_{1/2}$, $\ell_j > 0$, and $\{w_j\}_{j=1}^k$ is the set of distinct k roots of unity with $2 \le k$. There exists [2, Lemma 2.2] a non-constant polynomial $P \in \mathcal{P}_{\lceil k/2 \rceil}$ and 0 < a < 1 such that, if

(8)
$$p(z) = 1 - a(1 - z^k)P(z) \in \mathcal{P}_{k+\lceil k/2 \rceil},$$

then $|p|_{\mathbf{D}} = 1$. We set

$$Q(z) := 1 + \sum_{t=1}^{k + \lceil k/2 \rceil} \left(\sum_{j=1}^{k} \ell_j w_j^t \right) z^t = F(z) + o(z^{k + \lceil k/2 \rceil}).$$

Clearly, $Q \in \mathcal{B}_{k+\lceil k/2 \rceil}$ and, by Lemma 1.1,

$$\det T_i(Q) > 0$$
 if $1 \le j < k$

and

$$\det T_j(Q) = 0$$
 if $k \le j \le k + \left\lceil \frac{k}{2} \right\rceil$.

Let us define $n = k + \lceil k/2 \rceil$; clearly, $Q \in \mathcal{B}_n \backslash \mathcal{B}_n^o$, and we claim that Theorem 1.2 is not valid for Q and that choice of n; otherwise, there would exist a constant d > 0 such that

(9)
$$|Q \star p|_{\mathbf{D}} + d|p - Q \star p|_{\mathbf{D}} \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n,$$

and, for p defined by (8), we obtain

$$\begin{split} 1 &= |p|_{\mathbf{D}} = |Q \star p(1)| \\ &\leq |Q \star p|_{\mathbf{D}} + d|p - Q \star p|_{\mathbf{D}} \leq |p|_{\mathbf{D}} = 1, \end{split}$$

i.e., $p(z) \equiv Q \star p(z)$ and $p(z) \equiv \sum_{j=1}^{k} \ell_j p(w_j z)$. Since p is non-constant, one of its Taylor coefficients (say $a_t(p)$ with $0 < t \le \lceil k/2 \rceil$) does not vanish with

$$a_t(p) = \left(\sum_{j=1}^k \ell_j w_j^t\right) a_t(p),$$

i.e., $1 = \sum_{j=1}^{k} \ell_j w_j^t = w_\ell^t$ for $1 \le \ell \le k$, and there would exist k distinct t-roots of unity with $0 < t \le \lceil k/2 \rceil < k$. We are, however, unable to decide if we can choose $k \le n < k + \lceil k/2 \rceil$.

We may also consider $F(z)=\sum_{j=1}^k\ell_j/(1-e^{i\theta_j}z)$ where $\ell_j>0$ and the k+1 nodes $\{e^{i\theta_j}\}_{j=1}^{k+1}$ satisfy

$$0 \le \theta_1 < \theta_2 \cdots < \theta_k < \theta_{k+1} < 2\pi,$$

but are otherwise arbitrary. Also let $0 < \psi < \varphi < 2\pi$; according to a result of Clunie, Hallenbeck and MacGregor [1] there exists, for each n, a polynomial p_n univalent in \mathbf{D} such that

$$p_n(e^{i\theta_j}) = e^{i(\psi - (1/jn))}, \quad 1 \le j \le k, \text{ and } p_n(e^{i\theta_{k+1}}) = e^{i\varphi},$$

and $|p_n|_{\mathbf{D}} = 1$ where, for each $n, p_n \in \mathcal{P}_M$ where M depends only on $k, \{\theta_j\}_{j=1}^{k+1}, \psi$ and φ but does not depend on n.

Due to the finiteness of M, the family $\{p_n\}$ has a subsequence $\{p_{n_j}\}$ converging uniformly over $\overline{\mathbf{D}}$ to a polynomial p which is univalent since $p(e^{i\theta_1}) = e^{i\psi} \neq e^{i\varphi} = p(e^{i\theta_{k+1}})$. We now let

(10)
$$Q(z) = 1 + \sum_{t=1}^{M} \left(\sum_{j=1}^{k} \ell_j e^{it\theta_j} \right) z^t = F(z) + o(z^M).$$

We may assume k < M and $Q \in \mathcal{B}_M \setminus \mathcal{B}_M^0$. If there exists a constant d > 0 such that (9) holds with n = M, then for p as above,

$$1 = |Q \star p(1)| \le |Q \star p|_{\mathbf{D}} + d|p - Q \star p|_{\mathbf{D}} \le 1$$

and again $p \equiv Q \star p$. Since p is univalent, we have $p'(0) \neq 0$ and, by (10),

$$\sum_{j=1}^{k} \ell_j e^{i\theta_j} = 1,$$

which is impossible for k > 1 since, for any j, $\ell_j > 0$ and $\{e^{i\theta_j}\}_{j=1}^k$ contains k different nodes!

4. Another extension of (1). Given $Q \in \mathcal{B}_n^0$, we may look for a slightly different extension of (1), namely, statements of the type

$$|Q \star p(z)| + c|p(z) - Q \star p(z)| \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n, \ |z| \le 1,$$

where c > 0. As in the proof of Theorem 1.2, we define, for $\delta \geq 0$, |u| = 1,

$$\widetilde{Q}(z) := Q(z) + \delta u \big(I(z) - Q(z) \big)$$

and $T_k(\widetilde{Q})$ the Toeplitz matrix whose first row equals $1 \leq k \leq n$,

$$(1, A_1 + \delta u(1 - A_1), A_2 + \delta u(1 - A_2), \dots, A_k + \delta u(1 - A_k)).$$

Also, as in Theorem 1.2, we set

$$c_k = \sup_{\delta > 0} \left\{ \delta \mid \det T_j(\widetilde{Q}) > 0, \ j = 1, 2, \dots, k, u \in \partial \mathbf{D} \right\}.$$

We obtain the following result (the omitted proof runs as the proof of Theorem 1.2):

Theorem 4.1. For each $Q \in \mathcal{B}_n^0$, we have

$$0 < c_n \le c_{n-1} \le \dots \le c_1$$

and

(11)
$$|Q \star p(z)| + c_n |p(z) - Q \star p(z)| \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n, \ z \in \overline{\mathbf{D}}.$$

The constant c_n is the best possible. Further, if $n \geq 2$ and $c_n < \min(c_{n-1}, (1-|A_n|)/|1-A_n|)$, equality holds in (11) only for constant polynomials.

There are, however, striking differences between the inequalities (3) and (11). It is clear that $d_n \leq c_n \leq 1$. The polynomial $Q_n(z) := \sum_{k=0}^n (1-k/n)z^k$ belongs to $\mathcal{P}_{n-1} \cap \mathfrak{P}_{1/2} \subset \mathcal{B}_n^0$ and, in that context, the inequality (11) is nothing but the classical

(12)
$$|p(z) - \frac{zp'(z)}{n}| + \left|\frac{zp'(z)}{n}\right| \le |p|_{\mathbf{D}}, \quad z \in \mathbf{D}, \ p \in \mathcal{P}_n,$$

for which we have $c_j = c_n = (1 - |A_n|)/|1 - A_n| = 1$, for any $1 \le j \le n$. Indeed, the cases of inequality in (12) are numerous, and they were studied in [3]; we also can prove (unpublished) that in (11) we may have $c_n = 1$ if and only if $Q(z) = \sum_{k=0}^{n} (1 - tk/n) z^k$ for some t in [0, 1].

The inequality (11) is reminiscent of a result of Ruscheweyh (see [5] or [7, Chapter 4]), claiming that

(13)
$$|q \star p(z)| + |q^s \star p(z)| \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n, \ z \in \overline{\mathbf{D}},$$

for any $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1/2}$ and $q^s(z) := z^n \overline{q}(1/\overline{z})$. It is easily seen that both of (11) and (13) reduce to (12) when both q and Q equal Q_n .

We remark, however, that this is their only point of "intersection" by showing that, for $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1/2}$,

$$I - q \equiv q^s \iff q \equiv Q_n$$
.

As a matter of fact, it was shown in [3] that, for $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1/2}$ and θ real,

(14)
$$q(z) + e^{i\theta} q^{s}(z) \equiv \sum_{j=0}^{n-1} \frac{\ell_{j}}{1 - w_{j} e^{i\theta/n} z} + o(z^{n}),$$

where $\{w_j\}_{j=0}^{n-1}$ is the set of *n*th roots of unity and $\ell_j = (2/n)(\operatorname{Re} q)(\overline{w}_j e^{-i\theta/n}) - 1/2$. In particular, if $q(z) = 1 + \sum_{k=1}^{n-1} a_k z^k$, we obtain

$$|a_k + e^{i\theta}a_{n-k}| < 1, \quad 1 < k < n-1,$$

and, because θ is arbitrary, it follows that

$$|a_k| + |a_{n-k}| \le 1, \quad 1 \le k \le n - 1.$$

Assume now that $q + q^s \equiv I$. Then, for $1 \le k \le n - 1$,

$$1 = |a_k + \overline{a}_{n-k}| \le |a_k| + |a_{n-k}| = 1,$$

i.e. $\overline{a}_{n-k} = t_k a_k$ with $t_k \ge 0$ and

(15)
$$a_k = \frac{1}{1+t_k}, \quad 1 \le k \le n-1.$$

The condition $q + q^s \equiv I$ is equivalent with $q(z) + q^s(z) = 1/(1-z) + o(z^n)$, and a comparison with (14) yields

(16)
$$\operatorname{Re} q(e^{-2ij\pi/n}) = \begin{cases} \frac{1}{2} & \text{if } 1 \le j \le n-1\\ \frac{n+1}{2} & \text{if } j = 0. \end{cases}$$

By (15), the Taylor coefficients of q are real, and therefore

Re
$$q(e^{i\theta}) = 1 + \sum_{k=1}^{n-1} a_k \cos(k\theta) = 1 + \sum_{k=1}^{n-1} a_k T_k(\cos\theta),$$

where T_k is the kth Chebyshev polynomial. There exists at most one polynomial of this form satisfying the interpolation conditions (16), and it is now a routine calculation to show that $q \equiv Q_n$.

We finally obtain an analogue of Theorem 1.2 for Ruscheweyh's inequality (13):

Theorem 4.2. Let $q \in \mathcal{P}_{n-1} \cap \mathfrak{P}_{1/2}$ be non-constant. There shall exist an optimal constant $b_n \in (0,1)$ such that

$$|q \star p|_{\mathbf{D}} + b_n |q^s \star p|_{\mathbf{D}} \le |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n.$$

Cases of equality could be discussed as above. We omit the details.

5. Conclusion. We shall end this paper with the following problem.

Problem 5.1. Let $1 \le k \le n$ and $\{z_j\}_{j=1}^k \subset \partial \mathbf{D}$ be a set of distinct nodes. What are the polynomials $p \in \mathcal{P}_n$ such that

$$p(z_j) = |p|_{\mathbf{D}}, \quad j = 1, 2, \dots, k$$
?

Problem 5.1 is trivial when k=1 and relatively easy when k=n, (see [3]). Not much seems to be known about the existence of such polynomials when 1 < k < n; as an example, we remark [3] that, for $|b| \le 1$, $b \ne -1$ and 0 < a, the polynomial $p(z) := 1 - a[(1-z^n)/(1-z)](1+bz)$ always satisfies $|p|_{\mathbf{D}} > 1 = p(e^{2ij\pi/n})$, $j = 1, 2, \ldots, n-1$.

Such polynomials are related to problems considered in the present paper; if

$$F(z) = \sum_{j=1}^{k} \frac{\ell_j}{1 - z_j z}, \quad \ell_j > 0,$$

the solutions to the extremal problem

$$|F \star p|_{\mathbf{D}} = |p|_{\mathbf{D}}, \quad p \in \mathcal{P}_n$$

are precisely, up to a multiplicative constant of modulus 1, the polynomials $p \in \mathcal{P}_n$ such that $p(z_j Z) = |p|_{\mathbf{D}}$ for some $Z \in \partial \mathbf{D}$. Further, in the case where such non-constant polynomials do exist, there cannot be d > 0 such that

$$|F \star q|_{\mathbf{D}} + d|q - F \star q|_{\mathbf{D}} \le |q|_{\mathbf{D}}$$

for all $q \in \mathcal{P}_n$.

REFERENCES

- 1. J. Clunie, D. Hallenbeck and T. MacGregor, A peaking and interpolation problem for univalent functions, J. Math. Anal. Appl. 111 (1985), 559–570.
- 2. D. Dryanov and R. Fournier, Refinement of an inequality of P.L. Chebyshev, Acta Math. Hung. 122 (2009), 59–69.
- **3**. R. Fournier, Cases of equality for a class of bound-preserving operators over P_n , Comp. Meth. Funct. Theor. **4** (2004), 183–188.
- 4. R. Fournier, G. Letac and St. Ruscheweyh, *Estimates for the uniform norm of complex polynomials in the unit disk*, Math. Nachr. **283** (2010), 193–199.
- 5. C. Frappier, Q.I. Rahman and St. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985), 69–99.
- **6.** D. Hallenbeck and T. MacGregor, *Linear problems and convexity techniques in geometric function theory*, Pitman, Boston, 1984.
- 7. St. Ruscheweyh, Convolutions in geometric function theory, Press. Univ. Montr., Montreal, 1983.
- 8. St. Ruscheweyh and M. Woloszkiewicz, Estimates for polynomials in the unit disk with varying constant terms, Ann. Univ. M.-Curie Sklod. 65 (2011), 169–178.
- **9**. T. Sheil-Small, *Complex polynomials*, Cambridge University Press, Cambridge, 2002.
- 10. M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975.

DÉPARTEMENT DE MATHÉMATIQUES ET CENTRE DE RECHERCHES MATHÉMATIQUES, UNIVERSITÉ DE MONTRÉAL, C.P. 6128, SUCC. CENTRE-VILLE, MONTRÉAL, H3C 3J7 CANADA

Email address: fournier@dms.umontreal.ca