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APPROXIMATION BY HÖLDER CONTINUOUS
FUNCTIONS IN A SOBOLEV SPACE

DAVID SWANSON

ABSTRACT. We prove that a function u ∈ W 1,1(Rn)
may be simultaneously approximated by a Hölder continuous
function both pointwise and in the Sobolev norm.

1. Introduction. Given an open set Ω ⊂ Rn we denote byW 1,p(Ω),
p ≥ 1, the Sobolev space consisting of all functions u ∈ Lp(Ω) whose
first order distributional partial derivatives also belong to Lp(Ω). The
space W 1,p(Ω) is a Banach space with respect to the norm

∥u∥1,p;Ω = ∥u∥p + ∥Du∥p.

A fundamental property of functions u ∈W 1,p(Rn) is quasicontinuity:
any function u ∈ W 1,p(Rn) has a representative (also denoted by
u) with the property that, for any ε > 0 there exists a continuous
function v defined on Rn with the property that the set {u ̸= v} has
small p-capacity (see e.g., [1]). This is a strengthening of the classical
Lusin theorem regarding the approximation of measurable functions
continuous functions. Functions u ∈ W 1,p(Rn) are identified up to a
set with zero p-capacity with their quasicontinuous representatives.

Malý [8] observed that when p > 1, if the condition on the capacity is
relaxed somewhat, then the approximator v may be chosen to be Hölder
continuous, a property now commonly called Hölder quasicontinuity.
In addition, Malý showed that the approximator v may be chosen in
the space W 1,p(Rn) with norm arbitrarily close to u. Haj lasz and
Kinnunen [5], working with Hausdorff content in place of capacity,
extended Malý’s result to the Sobolev space M1,p(X) of functions
defined on a metric measure space X, and recently the result has been
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further extended to variable-exponent Sobolev spaces with exponent
1 < p(x) < n by Harjulehto, Kinnunen and Tuhkanen [6].

Although the results mentioned above omit the case p = 1, Kinnunen
and Tuominen [7] have extended the result in [5] to the Sobolev
space M1,1(X). Since M1,1(Rn) ̸= W 1,1(Rn) this leaves a small
gap concerning the Euclidean case. The purpose of this note is to
supplement the above-mentioned results and obtain approximation by
Hölder continuous functions in the space W 1,1(Rn) as well.

It was proved in [9] that if u ∈ W 1,1(Rn), then for any ε > 0 the
continuous approximator satisfying v may be chosen so that ∥u−v∥1,1 <
ε in addition to the set {u ̸= v} having 1-capacity less than ε. We
adapt the methods developed in [5] and [9] to obtain the following
main result.

Theorem 1.1. Let u ∈ W 1,1(Rn), and let 0 < λ < 1. Then, for any
ε > 0, there exists a Hölder continuous function v ∈ W 1,1(Rn) with
exponent λ with the property that

(1) Hn−1+λ
∞ ({x : u(x) ̸= v(x)}) < ε, and

(2) ∥u− v∥1,1 < ε,

where u is the precise representative of u.

2. Preliminaries. Throughout the paper Ca,b,c,... will denote a
constant whose precise value depends only on the parameters a, b, c, . . .
but may change between occurrences.

Definition 2.1. Let α ≥ 0. The α-dimensional Hausdorff content of a
set E ⊂ Rn is the quantity

Hα
∞(E) = inf

{ ∞∑
k=1

(diamEk)α, E ⊂
∪∞

k=1Ek

}
.

In light of the elementary inequality,

∞∑
k=1

aqk ≤
( ∞∑

k=1

ak

)q
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whenever ak ≥ 0 and q ≥ 1, we have

(2.1) Hα2
∞ (E)α1 ≤ Hα1

∞ (E)α2 ,

whenever 0 ≤ α1 ≤ α2. In particular, there is a constant cn with the
property that the Lebesgue outer measure satisfies |E| ≤ cHα

∞(E)n/α

whenever 0 ≤ α ≤ n.

Definition 2.2. Let u ∈ L1
loc(Rn) and let x ∈ Rn. For r > 0, we

define

ur(x) =

∫
B(x,r)

u(y) dy.

The precise representative of u is defined by

u(x) = lim
r→0+

ur(x)

at all points x ∈ Rn where this limit exists.

It is well known that, if u ∈ W 1,1(Rn), then u(x) exists for all
x outside a set N with Hn−1

∞ (N) = 0 and u(x) is quasicontinuous.
Moreover, we have the following uniform behavior (see, e.g., [4, pages
160–162]):

Proposition 2.3. If u ∈W 1,1(Rn), then for every ε > 0, there exists
an open set U with Hn−1

∞ (U) < ε such that

lim
r→0+

∫
B(x,r)

|u(y) − u(x)| dy = 0

uniformly for x ∈ Rn \ U .

Definition 2.4. Let u ∈ L1
loc(Rn), and let λ ≥ 0. The fractional

maximal function Mλu is defined by

sup
r>0

rλ
∫
B(x,r)

|u(y)| dy.

The following weak-type estimate is well known.
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Proposition 2.5. If u ∈ L1(Rn) and t > 0, then the set {x :
Mλu(x) > t} is open and

Hn−λ
∞ ({x : Mλu(x) > t}) ≤ Cn,λ

t
∥u∥1.

Proposition 2.5 is straightforward to prove using a covering argument
and the observation that, for any point x with Mλu(x) > t, there is a
number r = rx satisfying

rn−λ < t−1

∫
B(x,r)

|u(y)| dt.

The fractional maximal function is used in the following inequalities
which may be proved as corollaries of the Bojarski-Haj lasz inequality
[5, Theorem 2].

Proposition 2.6. Suppose that u ∈W 1,1(Rn). Then

|u(x) − u(y)| ≤ Cn,λ|x− y|λ
(
M1−λ|Du|(x) +M1−λ|Du|(y)

)
and ∫

B(x,r)

|u(y) − u(x)| dy ≤ Cn,λr
λM1−λ|Du|(x)

at all points x where u(x) is defined.

We denote by W 1,1
0 (Ω) the closure of C∞

0 (Ω) in the W 1,1(Ω) norm.

The following characterization of W 1,1
0 (Ω) was obtained in [9]:

Proposition 2.7. Let Ω ⊂ Rn be an arbitrary open set, and let
u ∈W 1,1(Ω). Then u ∈W 1,1

0 (Ω) if and only if

lim
r→0+

r−n

∫
B(x,r)∩Ω

|f(y)| dy = 0

for Hn−1
∞ -almost every x ∈ ∂Ω.

Given a function u : Ω → R, denote by u∗ its zero extension off Ω:

(2.2) u∗(x) =

{
u(x) x ∈ Ω,
0 x /∈ Ω.
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We make the trivial observation that u ∈ W 1,1
0 (Ω) implies u∗ ∈

W 1,1(Rn).

3. Proof of Theorem 1. Let u ∈W 1,1(Rn), 0 < λ < 1, and ε > 0
be given. Let θ > 0 be a quantity whose precise value will be specified
later. Since

Hn+1−λ
∞ ({x : M1−λ|Du|(x) > T}) <

Cλ,n

T
∥Du∥1,

we may take T sufficiently large and refer to Proposition 2.3 and
equation (2.1) to find an open set U with Hn−1+λ(U) < θ such that
u(x) is defined and M1−λ|Du(x)| ≤ T for all x ∈ Rn \ U . Define
K = Rn \ U . Then K is closed, and by Proposition 2.6, we have

(3.1) |u(x) − u(y)| ≤ Cn,λT |x− y|λ

for all x, y ∈ K and

(3.2)

∫
B(x,r)

|u(y) − u(x)| dy ≤ Cn,λTr
λ

for all x ∈ K. Since |U | ≤ Cnθ
(n−1+λ)/n, we may assume without loss

of generality that |U | < 1. The definition of the approximator v will
rely on a smoothing procedure introduced in [3].

Proposition 3.1. [3, Lemma 3.2] There exists a function δ ∈ C∞(U)
with the property that

(3.3) Cndist (x, ∂U) ≤ δ(x) ≤ dist (x, ∂U)

for all x ∈ U and

(3.4) sup
x∈U

|Dδ(x)| ≤ Cn.

At this point, we fix a regularizing kernel ϕ ∈ C∞
0 (B(0, 1)) and

a function δ ∈ C∞(U) as in Proposition 3.1. For each ε > 0 write
ϕε(x) = ε−nϕ(x/ε). For each z ∈ U , define ψz(x) = ϕδ(z)/2(x− z). We
define a smoothing Su of u on U by

(3.5) Su(z) =

∫
Rn

ψz(x)u(x) dx, z ∈ U.
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We will require the following estimate on the W 1,1(U) norm of Su:

Proposition 3.2. [9, Lemma 4.5] Su ∈ C∞(U) and ∥Su∥1,1;U ≤
Cn∥u∥1,1;U .

We are now in a position to define the approximator v:

(3.6) v(x) =

{
Su(x), x ∈ U,
u(x), x ∈ K.

By construction, we have

Hn−1+λ
∞ ({x : u(x) ̸= v(x)}) < θ,

which can be made arbitrarily small by choosing θ sufficiently close to
zero.

We may show that v is Hölder continuous with exponent λ by
considering several cases. Throughout the argument, for any point
ξ ∈ U , we denote by ξ′ a point in K satisfying |ξ − ξ′| = dist (ξ,K).
We refer to a generic constant simply as C.

First, if x, y ∈ K then by (3.1) we have |v(x) − v(y)| ≤ CT |x− y|λ.

Second, if x ∈ U and y ∈ K, then |v(x′)− v(y)| ≤ CT |x′ − y|λ since
x′ ∈ K. By (3.5), we have

v(x′) − v(x) =

∫
Rn

ψz(w)[u(x′) − u(w)] dw

so that

|v(x′) − v(x)| ≤ C

∫
B(x′,2|x−x′|)

|u(x′) − u(w)| dw ≤ CT |x− x′|λ.

Since |x− x′| ≤ |x− y|, we have |x′ − y| ≤ 2|x− y| so that

|x− x′|λ + |x′ − y|λ ≤ C|x− y|λ.

The triangle inequality yields |v(x) − v(y)| ≤ CT |x− y|λ.
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Third, if x ∈ U , y ∈ U , and |x−x′| < 2|x−y|, then |y−x′| < 3|x−y|.
Since

|v(x) − v(y)| ≤ |v(x) − v(x′)| + |v(y) − v(x′)|

≤ CT
(
|x− x′|λ + |y − x′|λ

)
,

we have |v(x) − v(y)| ≤ CT |x− y|λ.

In the fourth and final case we consider x ∈ U and y ∈ U with
2|x− y| ≤ |x− x′|. In this case the line segment adjoining x and y lies
entirely within U . For any point z ∈ U and real number a we have

v(z) − a =

∫
Rn

ψz(x)[u(w) − a] dw

so that

Dv(z) =

∫
Rn

Dψz(x)[u(w) − a] dw,

and therefore

|Dv(z)| ≤
∫
Rn

|Dψz(w)||u(w) − a| dw.

In light of (3.3) and (3.4) we have |Dϕz| ≤ Cnδ(z)−n−1, so that

|Dv(z)| ≤ Cδ(z)−1

∫
B(z,δ(z)/2)

|u(w) − a| dw

≤ Cδ(z)−1

∫
B(z′,2|z−z′|)

|u(w) − a| dw.

With the special choice a = v(z′), we may appeal to (3.2) to conclude
that

|Dv(z)| ≤ Cδ(z)−1+λM1−λ|Du|(z′) ≤ CTδ(z)−1+λ ≤ CT |z − z′|−1+λ

for all z ∈ U . In particular, for any point z belonging to the line
segment adjoining x and y and satisfying

|v(x) − v(y)| = |Dv(z)||x− y|

we have the estimate

|v(x) − v(y)| ≤ CT |z − z′|−1+λ|x− y|.
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The geometry of the situation implies |x−y| ≤ |z− z′|, since otherwise
we would have |x− x′| ≤ |x− z′| ≤ |x− z| + |z − z′| < 2|x− y|. Thus,

|v(x) − v(y)| ≤ CT |x− y|λ,

as required.

By construction, we have v, u ∈W 1,1(U). Since

r−n

∫
B(x,r)∩U

|v(y) − u(y)| dy ≤ Cn

∫
B(x,r)

|v(y) − v(x)| dy

+ Cn

∫
B(x,r)

|u(y) − u(x)| dy

for all x ∈ K, the fact that v is continuous and (3.2) holds on K, we
obtain

lim
r→0+

r−n

∫
B(x,r)∩U

|v(y) − u(y)| dy = 0

for all x ∈ ∂U . Proposition 2.7 implies that v − u ∈ W 1,1
0 (U), and

consequently (v − u)∗ ∈W 1,1(Rn). It follows that

v = (v − u)∗ + u ∈W 1,1(Rn).

Moreover,

∥u− v∥1,1 = ∥u− v∥1,1;U ≤ ∥u∥1,1;U + ∥v∥1,1;U ≤ Cn∥u∥1,1;U

by Proposition 3.2. Since |U | → 0 as θ → 0, we may choose θ sufficiently
small to guarantee ∥u− v∥1,1 < ε.
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variable exponent Sobolev spaces, J. Inequal. Appl. 2007, Art. ID 32324, 18 pages.



APPROXIMATION IN A SOBOLEV SPACE 1035

7. J. Kinnunen and H. Tuominen, Pointwise behaviour of M1,1 Sobolev functions,
Math. Z. 257 (2007), 613–630.
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