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SOME REMARKS ON
EXTREMALLY RICH C*-ALGEBRAS

HYUN HO LEE

ABSTRACT. The concept of extension of a partial isome-
try, which originally appeared in [3], is discussed more care-
fully. For C*-algebras of real rank zero, an extension property
is equivalent to extremal richness or purely infiniteness. We
also discuss the relations between extension property and uni-
tary lifting problem.

1. Preliminaries. Throughout this article £(A), or just &, will
denote the set of extreme points of A; the unit ball of a unital C*-
algebra A. Recall the characterization by Kadison [6] that elements in
€ are the partial isometries V such that (1-VV*)A(1-V*V) =0. We
call them extremal partial isometries and call the projections 1 —VV*,
1 — V*V defect projections. In [3], Brown and Pedersen defined the
notion of extremal richness for a C*-algebra A which means quasi-
invertible elements are dense in A as an analogue of stable rank one for
possibly infinite C*-algebras. (We say T in A is quasi-invertible if T’
has closed range and the kernel projections of 7* and 1" are centrally
orthogonal in A. For more equivalent definitions, see [3, Theorem
1.1].) We denote by A ' the set of quasi-invertible elements. As a
result, stable rank one C'*-algebras are characterized within the class
of extremally rich C'*-algebras by the property that all extreme points
of the unit ball are unitaries or Aq’1 = A~! where A1 is the set of
invertible elements of A. The set of unitary elements in A will be
denoted by U(A), shortly U. Also, A** will denote the enveloping von
Neumann algebra of A.

2. Extension property of extremally rich C*-algebras. If
V,W are partial isometries, we say W extends V (write V' < W) if
W*W >V*V,and V = WV*V. We say V has a unitary (respectively
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isometric, extremal) extension if W is a unitary (respectively isometry,
extremal partial isometry). It has been well known that a partial
isometry in B(H), the set of bounded linear operators on a Hilbert
space H, has a maximal extension which is an isometry or a co-isometry,
and, more generally, a partial isometry in a von Neumann algebra has
an extremal extension. Brown and Pedersen showed this could hold in a
larger class of C*-algebras, namely, extremally rich C*-algebras which
cover stable rank one algebras, von Neumann algebras, and purely
infinite simple C*-algebras (see Corollaries 7 and 9 below).

If we consider the polar decomposition of T as V|T'|, we do not expect,
in general, V € A (but in A**). For every § > 0, let E5 and Fs be the
spectral projection of |T'| and |T™*|, respectively, corresponding to the
open interval (d,00). Note that VEs = F5V is a partial isometry. One
of remarkable results of Brown and Pedersen is the following theorem
about finding an extension of V Ejs.

Theorem 1 ([3, Theorem 2.2]). Let a, = dist (T, A,"). If 6 >
aq(T), then VEs has an extremal extension. Furthermore, if § <
aq(T), then no such extension exists in £.

Corollary 2 ([3, Corollary 2.3]). If T = V|T| is the polar decomposi-
tion of an element of A, then each element of V f(|T|) has an extremal
decomposition Uf(|T|) = Vf(|T|), with U € &, provided that f is a
continuous function on o(|T|) vanishing on [0, 6] for some § > ay(T).

Proof. Note that VEs f(|T]) = Vf(|T|) for § > ¢ > o4(T). By
applying Theorem 1 to V Es/, we get the conclusion. m]

Corollary 3 ([3, Proposition 2.6]). If V is a partial isometry in A,
then ag(V) =1, or else ag(V') = 0, in which case V. =UV*V = VV*U
for some U € &.

Proof. If ay(V) < § < 1, then let f(t) = max{(¢t—0d)/(1—46),0}.
Also, let P = V*V. By Corollary 2, there is a U € £ such that

V =Vf(P)=Uf(P) =UV*V.
Since U(P +¢l) € A, " for any &, it follows that oy (V) = 0. o
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Corollary 4. If a unital C*-algebra A is extremally rich, then every
partial isometry in A has an extremal extension.

Proof. Note that when A is extremally rich, ay(T) = 0 for every
T € A. Thus the conclusion follows from Corollary 3. O

Corollary 5. If a unital C*-algebra A has stable rank one, then
every partial isometry has a unitary extension.

Proof. Note that a C*-algebra A has stable rank one if and only if
it is extremally rich and £ = U(A) [10, Corollary 3.4]. Thus it follows
from Corollary 4. u]

Recall that a unital C*-algebra A has real rank zero if and only if
it has IP property [1]: If p and ¢ are projections A** such that p is
compact, ¢ is closed and pg = 0, then there is a projection r in A such
that p < r < 1—4q. The following result was originally proved by Brown
and Pedersen (unpublished). However, since this extension property,
in our opinion, is a more powerful condition than the original definition
of extremal richness at least for C*-algebras of real rank zero, we give a
proof of this result. Note that a version of this theorem also appeared
in [7, Proposition 3.4].

Theorem 6 [2]. A unital C*-algebra A of real rank zero is extremally
rich if and only if every partial isometry in A has an extremal extension.

Proof. “Only if” was proved in Corollary 4.

For “if,” suppose A is a C*-algebra of real rank zero. First, we show
that, given 6 > 0, T € A, there is an S in A such that S has closed range
and ||T"— S]] < §. Let p be the spectral projection of |T'| corresponding
to [4, ||T||] and ¢ the spectral projection of |T| corresponding to [0, §/2]
in A**. Then p is compact, g is closed and pg = 0. Thus, there is
a projection r in A such that p < r < 1 —¢q. If we define S as T'r,
then S*S > pT*Tp > 6%p. It follows that S has closed range and
IS =T < ||(1=p)|T))|| < é. In this case, 0 is an isolated point
o(]S]). Therefore, (0, ) No(|S|) = @ for some € > 0. Let e(t) = 1/t
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if ¢t > ¢ with ¢(0) = 0. Then V = Se(|S]) € A is a partial isometry
and S = V|S|. By the assumption, then we have an extremal extension
U € € of V. In addition, we have

S =V|S| = VV*V|S| = UV*V|S| = U|S].

Note that U(|S| 4 0I) € A;* for any & > 0; hence, oy (T') < 26 for any
6 > 0. Thus we have shown that Aq’ 1 is dense in A and we are done. O

Corollary 7. If A is a von Neumann algebra, it is extremally rich.
Proof. Tt follows from [2, Proposition 1.3] and [10, Proposition 3.6]. O

Following Cuntz a simple C*-algebra A is said to be purely infinite
if it has real rank zero and every non-zero projection is Murray-von
Neumann equivalent to a proper projection [5]. This implies that for
any pair P, @ of non-zero projections, there is a partial isometry V
in A such that V*V = P and VV* < Q. It is well known that a
purely infinite simple C*-algebra is extremally rich [10]. We re-prove
this fact by showing purely infinite simple C'*-algebras satisfy isometric
or co-isometric extension property.

Theorem 8. Let A be a unital C*-algebra. A is simple and purely
infinite if and only if it has real rank zero and every partial isometry
in A has an isometric or a co-isometric extension.

Proof. If A is purely infinite and simple, it has real rank zero. In
addition, if V' is a non-zero partial isometry in A, and if we let P = V*V
and @ = VV*, then I — P and I — @ are non-zero projections (if not, we
are done). Hence, there is a partial isometry W such that W*W = I—P
and WW?* < I — Q. It is easily checked that V + W is an isometry
which extends V.

For the converse, it is enough to show that every non-zero projection
is infinite. Let P be a non-zero projection in A. Since P itself is a
partial isometry, by the assumption, it can have an isometric extension
W but not co-isometric in A. Then

P=WP=PW*=PW=W*P.
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It follows that PWW*P(3 P) is a projection which is Murray-von
Neumann equivalent to W*PW = P, and the other case is similar. O

Corollary 9 [2]. If a unital C*-algebra is purely infinite and simple,
then it is extremally rich.

Proof. Tt follows from Theorem 6 and Theorem 8. O

3. Some examples of lifting problems. If A is a C*-algebra
and I is a closed ideal of A, we denote by 0; : K1(A/I) — Ky(I)
the index map in K-theory. In this section, we observe that either
extremal richness or extension property plays a role in lifting unitaries
to extremal partial isometries. Since certain extremal rich C*-algebras
have good non-stable K-theoretic properties as stable rank one or
purely infinite simple C*-algebras do [4], the following results are also
expected under the same spirit.

Proposition 10. Let A be a (non-simple) extremally rich C*-
algebra, and let I be a (o-unital) ideal of A. Then any unitary u in
A/I is liftable to an extremal partial isometry in A. Moreover, if A is a
(non-simple) C*-algebra of stable rank one, then any unitary u in A/
is liftable to a unitary in A. Consequently, 01 ([u]) = 0 in this case.

Proof. This result was also pointed out in [9, Theorem 3.6] and
Nistor also proved the latter statement (see [8, Lemma 3]). However,
we give our proof emphasizing the extension property. From Theorem
6.1 in [3], since A is extremally rich, any extremal partial isometry in
A/I can be lifted to a partial isometry. Thus a unitary w which is an
extremal partial isometry in A/I can be lifted to a partial isometry
V in A. By Theorem 6, there is an extremal partial isometry W in
A such that V< W. If 7 : A — A/I is the natural quotient map,
u=7m(V)=a(WV*V) = 7(W)u*u = 7(W).

If u can be lifted to a partial isometry V in A, then it is a standard
fact that the index can be computed as 01 ([u]) = [1-V*V]-[1-VV*].
Thus if u is liftable to a unitary, 0;([u]) = 0. O
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Proposition 11. Let I be an ideal of an isometrically rich CPx-
algebra A. Assume A has a (strong) cancelation property. If a unitary
u in A/I satisfies that 01([u]) = 0, then u lifts to a unitary in A.

Proof. Since A is isometrically rich which is equal to extremally
richness for prime C*-algebras, then any unitary w in A/I is liftable
to an extremal partial isometry V' in A and V is either an isometry or
a co-isometry. Thus 9;([u]) = 0 and the cancelation property implies
that V' must be a unitary. o
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