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THE CLIQUE NUMBER OF I'(Z,~(c))

OMAR A. ABUGHNEIM, EMAD E. ABDALJAWAD AND HASAN AL-EZEH

ABSTRACT. The zero-divisor graph of a commutative ring
with one (say R) is a graph whose vertices are the nonzero
zero-divisors of this ring, with two distinct vertices are adja-
cent in case their product is zero. This graph is denoted by
I'(R). We study the zero-divisor graph I'(Zyn» (o)) where p is
a prime number, Z,n is the set of integers modulo p™, and
Zyn(a) = {a+bz : a,b € Zpn and 22 = 0}. We find the
clique number of I'(Zp~ (o)) and the complete subgraphs of
I['(Zpn (o)) that achieve this clique number.

1. Introduction. Zero-divisor graphs were first introduced by Beck,
see [6]. Beck was mainly interested in graph coloring. In his work, he
let the elements of a commutative ring R be the vertices of the graph,
and he let two distinct vertices x and y be adjacent if zy = 0. In a
subsequent work, Anderson and Livingston introduced the zero-divisor
graph of a commutative ring R, see [3]. In their definition, they let
the nonzero zero-divisors of R be the set of vertices for the graph and
two distinct vertices x and y be adjacent if xy = 0. Usually the set
of zero-divisors of R is denoted by Z(R) and the set of nonzero zero-
divisors of R is denoted by Z*(R) = Z(R) — {0}. The zero-divisor
graph of R, I'(Z*(R)), is usually written I'(R). The definition of the
zero-divisor graph that was given by Anderson and Livingston is the
one that is used in the literature now. Also in this paper we will use
their definition.

Many articles have been done on zero-divisor graphs; the reader is
advised to consult [1, 2, 3, 9] for more details. Some researchers
generalized the idea to commutative semigroups, see [7, 8]. Others
worked on the noncommutative case where they introduces the directed
graph related to the zero-divisors of noncommutative rings. For more
information see [11, 12, 14].
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A clique in a graph I' is a complete subgraph of I' that has the
maximum cardinality among all complete subgraphs of I'. The clique
number of a graph I' is the size of a clique in I'. In this paper, our
goal is to find the clique number of the graph I'(Z,~(a)). Where
p is a prime number, Z,~ is the set of integers modulo p”, and
Z, (o) ={a+bx:ab€ Zy and 2> = 0}. Also we find all complete
subgraphs in I'(Zp» (o)) that achieve the clique number.

Note that the ring Z,»(a) can also be described using Nagata’s
principle of idealization. In general, for a commutative ring R and
an R-module M, the idealization of M is the ring R(+)M formed from
R x M using (r,a)+(s,b) = (r+s,a+0b) and (r,a)(s,b) = (rs,rb+sa).
Hence, Zyn () & Zpn (+)Zpn. Zero-divisor graph for rings formed using
idealization was studied in [5]. The diameter and girth of zero-divisor
graph of idealization were investigated in [4, 5].

Next, we will present an algorithm that computes the zero-divisors of
I['(Zy~(a)) and shows how these zero-divisors are adjacent. Basically,
this algorithm can be used to build the zero-divisor graph of Z,» ().
Part of this algorithm was given by Shagboua, see [13].

2. An algorithm for building I'(Z,~(a)). We present the
following lemma; one can find the proof in [1]. This lemma will
characterize the zero-divisors of R(«) where R is a commutative ring
with one.

Lemma 1. Let R be a commutative ring with one not necessarily
finite; then a + bz is a zero-divisor in R(a) if and only if a is a zero-
divisor in R.

According to Lemma 1, one can characterize the zero-divisors of
Z,~»(a) by finding the zero-divisors of Z,~. In [10], Joan Krone
presented an algorithm to compute the zero-divisor graph of Zj for
some cases of k. One can find the zero-divisors of Z,» by taking the
numbers 1,2,p" ! — 1 then multiplying those numbers by p. One can
divide the zero-divisors into n — 1 sets according to how many factors
of p each divisor has. We can categorize the zero-divisors of Z,»(c)
into three types. In the first type we have n — 1 sets, and these sets

are Sy, Spz,... ,Syn-1 where S, = {sp’ : ged (s,p) = 1}. The use
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of Euler’s phi-function gives the sizes of the S,:’s, and one will get
|Spi| = p" =t —p™~(+D for 1 < § < n—1. The second type consists of n
sets, and these sets are Eyo, Ept, ... , Eyn-1 where Eji = {bx : b€ S, }.
Note that Spo is the set of units in Zj», i.e., the set of elements in Zjn~
that are not divisible by p. We have |Ep:| = |S,:| = p"~ — p"~(+1) for
1<i<n-1land|Ey|=p"—p" ' The third type consists of n(n—1)
sets. These sets are Syi 5,7 € {1,2,... ,n—1}and j € {0,1,... ,n—1}
where S, i = {sp' + tp’z : ged (s,p) =1 and ged (¢,p) = 1}. Again
the use of the Euler’s phi-function gives the sizes of the S, ,;’s and one
will get |Syi pi| = (p" =t — p D) (pn—d —pr= Uy for 1 <i<n -1
and 0<j3<n-—1.

We will state how the elements of these types are adjacent. Elements
of Sy are adjacent to elements of Sp,-r if ¢ +¢ > n. Also elements of

Spi are adjacent to elements of £ i+ if i + i’ > n. Again elements of S
are adjacent to elements of S ;- if i +i' > n and i +j' > n. For the

E,i’s, the elements of E,: are adjacent to all the elements of E . for
any i', and hence U} E,: forms a complete subgraph of I'(Z,n(a)).
Again, elements of E,: are adjacent to elements of S ;v if i + i >n.
Observe that no conditions are required on j'. We want to see when
the elements of S,ir ;» are adjacent to each other. Consider the two
sets Spi i and Spr ,m. Observe that an essential condition in order
that some elements in the set S,: ,; be connected to some elements in
the set Spk ,m is that i + k > n. Now consider the following subcases
where i+ k > n and p # 2 (we will talk about case p = 2 at the end of
this section).

1) Suppose that i + m > n and k + j < n, and take y; € S, ,; and
Y2 € Spk’pm, say y1 = a1p’ + bip’x and yp = asp® + bop™x, where
ged (a1,p) = ged (b1,p) = ged (az,p) = ged (be,p) = 1. We have
Y1-y2 = a1a2p T F +arbop" T+ asbipF e = asbipF iz £ 0 (mod pm).
Hence, no element in the set Sp: ,,; is connected to any element in the
set Spr pm. Similarly, if i +m < n and k + j > n then no element in
the set Sp: ,; is connected to any element in the set Spx ,m

2)Ifi+m > nand k4 j > n, then it is clear that all the elements
of S, pi are connected to all the elements in the set Syr ,m

3) Suppose that i + m < m and K+ j < n with i + m <
k+j. Take y1 € Spipi and yo € Sprpm, say y1 = aip’ +
bipiz and y, = ap® + byp™z where god (a1,p) = ged (bip) =
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ged (ag,p) = ged(by,p) = 1. We have y1 - y» = aragp™™* +
a1bap™ ™z + asbipF iz = piT™(arby + asbipFH ™)z (mod p). If
Pt (arby + agbipFtiT ™) = 0 (mod p™), then p"~+™) divides
(a1be + azb;p*T7=i=™) and hence p divides ajbs. So we get p di-
vides ay or p divides by. But this is impossible because ged (a1,p) =
ged (ba,p) = 1. Thus, y; - y2 # 0 (mod p™). Hence no element in the
set Spi pi is connected to any element in the set Spr ,m. Similarly, if
t+m < nandk+j <n with ¢+ m >k + j, then no element in the
set Spi pi is connected to any element in the set Spk m.

4) Suppose that i + m < n and k+ j < n with i + m = k + j.
In this case some elements of the set S, ,; will be connected to some
elements in the set Spr ,m. To explain that, take y; € Sp:,; and
Y2 € Spkpm, say y1 = a1p’ + bip’x and yo = asp® + bop™ax where
ged (a1,p) = ged (b1,p) = ged(az,p) = ged(be,p) = 1. We have
Y1 - Y2 = a1a2p"F + a1bop™™x + asbipF iz = pt™(aiby + asby)z
(mod p"). If a;by + asby = 0 (mod p"~*~™), then y; is adjacent
to y2 and otherwise y; and y» are not adjacent. For instance, if
ay =az =1, by = pniiim + 1, by = pniiim -1, then aibs + agby =0
(mod p"~i=™), and hence y; and y» are adjacent. On the other hand,
if a3 = az = by = by = 1, then a1by + azb; = 1 (mod p"~"~™), and
hence y; and yo are not adjacent.

The following simple example explains the zero-divisor graph of
Z33 (Ol)

Example 1. Consider the zero-divisor graph I'(Z3s(«)). We have
Sy = {s3' : ged (s,3) = 1} = {3,6,12,15,21,24} and Sz = {s32 :
ged (s,3) = 1} = {9,18}. We have the following Esi’s: E3 =
{bz : b € Sn} = {3z, 6z, 12z, 15z, 21z, 24z}, E3» = {bz :
b € Sy} = {92,182z}, and Ez0 = {bx : bis not divisible by 3 } =
{z, 2z, 4z, bz, Tz, 8z, 10z, 11z, 13z, 14z, 16z, 17z, 19z, 20z, 22z,
23z, 25z, 26x}. Now, we will state the Ssi 3;’s. We have S350 =
{3s+tx:gcd(s,3) =1and ged (¢,3) =1} ={a+bzr:a€ Sz and b e
B={1,24,5, 7 8 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26}},
Ss2 50 = {9s + tx : ged (s,3) = 1 and ged (¢,3) =1} = {a+br: a €
S32 and b € B}, S33 = {35+ 3tz : ged(s,3) =1 and ged (¢,3) =1} =
{a+bzx: a € S;andb € Sz}, Ss23 = {9s + 3tz : ged(s,3) =
land ged(t,3) = 1} = {a+br : a € Szzandb € Sz}, S332 =
{3549tz : gcd (s,3) =1 and ged (¢,3) =1} = {a+bz: a € Sz and b €
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Ss2}, and Ss2 32 = {9s + 9tz : ged(s,3) = 1 and ged(t,3) = 1} =
{a+bx: a € Sz and b € S32}. Observe that Ezo U E31 U E32 form a
complete subgraph, the elements of S32 are adjacent to all the elements

of
2 2 2
U Sz U U Es: U U S3i,3ja
=1 =1

ij=1

and the elements of S5 are adjacent to all the elements of S32 U
Es2 U S32 32. Now, we state the adjacency between the elements of
the S3: 35’s. We have the following: the elements of Ss2 32 are adjacent
to all the elements of

2 2 2
U Sgi U U E3i U U Sgi,gj,
i=1 i=1

i,j=1
the elements of Ss2 31 are adjacent to all the elements of

2
532 U U E3i U 532731 U 532732,

i=1

the elements of S31 32 are adjacent to all the elements of Ss2 U E32 U
S32 32, the elements of S3i 31 are adjacent to all the elements of
S32UE32 US32 32, the elements of S32 30 are adjacent to all the elements
of U?_, E3:, and the elements of S31 30 are adjacent to all the elements
of F3i. Also we have some of the elements of S32 30 are adjacent to
each other and some of the elements of S31 30 are adjacent to some of
the elements of Ss2 31. For instance, the element 9 + 3z € S32 31 is
adjacent to all the elements in the set A = {(3+9i)+ (2+3j)z: i€
{0,1,2} and j € {0, ... ,8}}U{(64+99)+(1+3j)x : i € {0,1,2} and j €
{0,...,8}} C S51 30.

Similarly, we divide the zero-divisors of Zgn () into FEayi’s, Soi’s
and Syi »;’s. The adjacency between different elements of Eji’s, Sy:i’s
and Sy 5;’s in Zgn () is similar to the adjacency between different
elements of Ey:’s, Spi’s and Spi i’s in Zyn (o) except for one case. We
will explain this case next. Take Sji o and So om with i +1 > n
and i +m = j+1 = n— 1. Take y; € Sy and y2 € Sai i,
say y1 = a12' + a2z and y, = b128 + by2™x where a1,a2,b; and
by are odd numbers. We have y; - yo = (a;be2™™ + apb; 27tz =
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(a1b2 + a2b1)2i+mx = ((lez + a2b1)2"*1x (IIlOd 2”) Since al,ag,bl
and by are odd numbers, we get aibs + asb; is an even number, and
hence (a1by + a2b1)2"~! =0 (mod 2"). So y; - y2 = 0 (mod 2"), and
hence y; and y are adjacent. Thus, the elements of the set Sy: 55 are

adjacent to all the elements of So: om. We give the following example
on Zsn(a).

Example 2. Consider the graph I'(Z,:(«)); one can divide the
zero-divisors of Zjs(a) into Eai’s, Sai’s and Syigi’s. Observe that
the elements of Sy2 0 form a complete subgraph, and the elements
of So1 90 are adjacent to all the elements of Sy o1. Other than that,
the adjacency between the elements in I'(Zs3 () is similar to that of
the previous example.

3. The clique number of I'(Z,~ («)). The following lemma will be
used in calculating the clique number of I'(Z,~ (c)), where p is an odd
prime.

Lemma 2. In R =T(Z,~(a)) where p is an odd prime, suppose that
Y1 € Spipi, Y2 € Spipm and y3 € Spupy, with i +1 > n, i +u > n,
l+u>nandi+m=j+l=i+v=u+j=l+v=u+m<n-—1
Moreover, assume that yy, y2 and y3 are distinct elements, and Sy i,
Spipm and Spu pv are not necessarily distinct sets. Then {y1,y2,y3}
cannot form a complete subgraph of T'(Zyn(c)).

Proof. We have y; = aip’ + bipiz, ys = asp' + bop™z and ys3 =
a3pu + bSva where ng(alap) = 17 ng (a2ap) = ]-a ng (a3ap) = ]-7
ged (by,p) = 1, ged (b2,p) = 1 and ged (bs,p) = 1. Suppose that
{y1,y2,ys} form a complete subgraph of I'(Z,(c)); then y; - yo = 0
(mod p"), y1-y3 =0 (mod p™) and y2-y3 = 0 (mod p™). Since y;-y3 =
0 (mod p"), we get a1bz +azb; =0 (mod p"~ (iT?) = pn—(+m)) Gince

by is invertible in Z,.—(i+m), We get az = —albgbfl (mod pn—(+m)),
In the same way, since ys - y3 = 0 (mod p"), we get ag = —agbgbgl
(mod p"~(Hv) = pn=G+m)y Qo we have az = —aibsb; ' = —agbsby !

(mod p™~(*+™)) and since by is invertible in Zn—(i+m), we get arby =
asby (mod p~ (™)), Since, y; -y = 0 (mod p"), we get a1by+ash; =
0 (mod p"~(*™)) and hence a1by = —agb; (mod p"~+™). So we



THE CLIQUE NUMBER OF T'(Zpn () 7

have aiby = agb; (mod p” ™)) and a1by = —agb; (mod p™~ (™)),
Combining these together we get 2a;b, = 0 (mod p™~(+™)). Since p
does not divide 2, aj or by, we get a contradiction. Thus, {y1,y2,¥3}
cannot form a complete subgraph of I'(Z,~ ()). o

Basically, this lemma tells us that we cannot have a complete sub-
graph of order greater than two in Sy ,; USpy ym USpu po C T'(Zpn(ar)),
where t+1>n,i+u>n,l+u>nandi+m=j5+1l=i4+v =
u+j=I1l4+v=u+m<n—1. In the next lemma we state a similar
result for I'(Zan (a)).

Lemma 3. Suppose that y1 € Sy 2 C I'(Zan(c)), y2 € Satom C
['(Z2n(a)) and ys € Sougv C I'(Zan(v)), with i +1 > n, i+u > n,
l4u>nandi+m=j+l=it4+v=u+j=l+v=u+m<n-—2.
Moreover, assume that y1, y2 and y3 are distinct elements, and Sy p;,
Spt pm and Spu po are not necessarily distinct sets. Then {y1,y2,y3}
cannot form a complete subgraph of T'(Zan(cx)).

The proof is similar to that of Lemma 2, and we will omit it. u]

We give some complete subgraphs of I'(Zpyn» (c)), where p > 3, and n
is an integer that is greater than one. Let

n—1 n—1 n—1 n—1
L, = U U SpiJ,j U U Spk U U Epl
i=[n/2]4+m j=|n/2]-m k=[n/2]4m I=|n/2]—-m

with m € {0,1,...,[n/2] — 1} and N = U} 'E,., where | | is the
greatest integer function, and [ | is the least integer function. Observe
that each one of the L,,’s is a complete subgraph of I'(Zy»()), and
N is also a complete subgraph of I'(Z,~ («)). Ultimately, we will show
that each one of the L,,’s and N have the maximum cardinality among
all complete subgraphs of I'(Z,~ («)). First, we want to calculate the
sizes of the L,,’s and N. One can view the elements of L,, in the plane
Z,» x Zyn. The entire set consists of the nonzero points of the form
(ap®,bp') where s = [n/2] +m, 0 < a < p" %, t = |n/2] —m, and
0 < b < p™7', (but not both a and b are zeros). Adding (0,0) gives
a rectangular grid. Thus, |L,,| = p?>*~+t) —1 = p» — 1. For N, it
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is clear that N corresponds to the nonzero elements of Z,~ and hence
|N| =p" —1.
We will present a sequence of lemmas that will be used in showing

that the L;’s and N have a maximum cardinality among all complete
subgraphs of I'(Z,~(a)).

Lemma 4. Suppose that H is a complete subgraph of I'(Zpn (o)) that
contains an element of U,El/lﬂ_lspk, where p ts an odd prime and n
is an integer that is greater than one. Then |H| < p"™ — 1. Moreover,
H cannot have mazimum cardinality among all complete subgraphs of

[(Zyn(a)).

Proof. Suppose that y € Sy where 1 < k < [n/2] —1 (implying n >
2) and y € H; then y = ap”® where gcd (a,p) = 1. Since H is a complete
subgraph of I'(Z,~ (o)), then H is a subset of {y} U Ann (y)\{0}. We
have Ann (y) = Ann (ap®) = {bp"* +cp"Fzx: 0<b<pk, 0<c<
pF}. Thus, |H| < |[Ann (y)| = p** < p" — 1 (with 1 <k < [n/2] - 1).
Since |L,| = p™ — 1 and each one of the L,,’s is complete, then H

cannot have the maximum cardinality among all complete subgraphs
of I'(Zpn (). O

Lemma 5. Suppose that H is a complete subgraph of I'(Zyn(c))
that contains an element of U!Z{ﬂ*l U;-L;OI Spi pi, where p is an odd
prime and n is an integer that is greater than one. Then |H| < p™ — 1.

Moreover, H cannot have the mazimum cardinality among all complete
subgraphs of T'(Zpn ().

Proof. Suppose that 2 € H and z = ap’ + bp’x where gcd (a,p) =
ged(b,p) = 1 and 1 < ¢ < [n/2] — 1 (implying n > 2). If j > i,
then Ann(z) = {ep" P +dp" iz : 0<c < p’, 0<d < p‘}. Thus,
|H| < [Ann (2)] = p* <p" ' <p* — 1.

For the other case, if j < 4, then there are p**/—1 (< p"~1—1) nonzero
annihilators of z of the form y = ¢/p" =7 +d'p"*2 with 0 < ¢’ < p’ and
0 < d' < p*. The other type of annihilator is an element of the form
w = ep®+ fplx where i+k > n > i+l = j+k, ged (e,p) = ged (f,p) = 1,
and af + be = 0 (mod p» (D), By Lemma 2, H contains at most
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one such w. Hence, at most p**J nonzero annihilators of z are in H.
Asn—1>2 |H| <pti +1 < p* L In both cases |H| < p™ — 1, and
therefore H cannot have the maximum cardinality among all complete
subgraphs of I'(Z,= (a)). o

Lemma 6. Suppose that H is a complete subgraph of I'(Z,n (c)) (p is
an odd prime and n is an integer that is greater than one) that contains
an element of the form z = ap® + bp’z with ged (a,p) = ged (b,p) = 1,
i > [n/2], andi+j <n. Then |H| < p"—1. Moreover, H cannot have
the mazimum cardinality among all complete subgraphs of T'(Zyn ().

Proof. Suppose that z € H and z = ap’ + bp’x where ged (a,p) =
ged (b,p) = 1,7 > [n/2] and i+j < n. Note that j < 7 and the number
of annihilators of the form y = cp™ ™7 + dp”*x with 0 < ¢ < p’ and
0 <d< pispt/ < pr~l. By Lemma 2, z has at most one other
annihilator in H. Thus H < p" ! +1 < p® — 1 and H cannot have the
maximum cardinality among all complete subgraphs of I'(Z,» (). O

In the next lemma, we show that if M is a subgraph of I'(Z,(«))
that contains IV or any of the L;’s properly, then M is not complete.

Lemma 7. If M = NU {y} wherey ¢ N or M = L, U{y} where
y & Ly and m € {0,1,...,|n/2] — 1}, then M is not a complete
subgraph of T'(Zyn(a)) (p is an odd prime).

Proof. The elements of E,o are not adjacent to any element of

Us,jSpi pi OT UZ;%SPIC. Hence, we cannot add any elements to N and

get a complete subgraph. For the L;’s, suppose that

M = Ly, U{y}
n—1 n—1 n—1 n—1
= U U Spi pi U U Spr U U E, U{y}
i=[n/2]4+m j=|n/2]-m k=[n/2]+m I=|n/2]-m

where y ¢ L,, and m € {0,1,...,|n/2| —1}. Ify € U,El/fj_m_lE k:

pks
then y is not adjacent to any element of S,rn/214m, and if y €

UL1/12-|+m715pk, then y is not adjacent to any element of E,in/2-m.
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It
n—1 n—1
ye (Us) . ( U U s>
i i=[n/2]+m j=|n/2]—-m
then either y € S, ,; where i < [n/2] + m or y € Spi,; where
i > [n/2]+m and i + j < n. In the former case y is not adjacent

to any element of F,n/2j-m, and in the latter case y is not adjacent to
any element of Sprn/214m. o

In the next theorem, we will show that every one of the complete
subgraphs

n—1 n—1 n—1 n—1
L, = U U SpiJ,j U U Spk U U Epl
i=[n/2]4+m j=|n/2]-m k=[n/2]4m I=|n/2]—-m
where m € {0,1,...,|n/2] — 1} and N = U}'"}' E,; has the maximum

cardinality among all complete subgraphs of I'(Z,~ (c)).

Theorem 1. If p is an odd prime and n is an integer that is
greater than one, then every one of the complete subgraphs L,, where
m € {0,1,...,[n/2] — 1} and N = U} 'E, has the mazimum
cardinality among all complete subgraphs of I'(Zyn(cr)).

Proof. Suppose that M is a complete subgraph that has a maximum
cardinality among all complete subgraphs of I'(Z,~(a)). We will
show that either M is N or M is one of the L;’s. Observe that
Eyn-1 C M, and this is because M is a complete subgraph with
maximum cardinality and the elements of E,»-1 are adjacent to any
element of I'(Z,~(c)). Hence, M intersects U] E,i. Let [ = min{l :
0<I<n-1land MNE, # @}. If Iy = 0, then M contains some
elements of E,0. Hence, M contains no elements of

n—1 n—1 n—1

U U Spi#,j U U Spk,

i=1 j=0 k=1

and this is because M is a complete subgraph and no elements of

1 n—1
Spi’pj U U Spk
0 k

n—1 n—
i=1 =1

J

j=
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are adjacent to any element of E,. Thus, M is a subset of V. Since
M is a complete subgraph with maximum cardinality we get M = N.
If 0 < lp < |n/2], then the use of Lemmas 5, 6 and 7 ensures that M
will be

n—1 n—1 n—1 n—1
U USwwu U S0 U Es = Linja-i)

’i:nflo ]:lo k:nflo l:lo

If lp > |n/2], then the use of Lemmas 4, 5, and 6 ensures that M is a
subset of one of the elements of the set

n—1 n—1 n—1 n—1
{ U U sz'ij U U Spk U U Epl :

i=[n/2]+r j=|n/2]—r k=[n/2]+r I=lo
n
L...,0=|—1; ;.
refonen 3] 1))
And these elements are proper subsets of Lo, L1,. .., L|,/2)—1. Since

each one of the L;’s is a complete subgraph and M is a complete
subgraph with maximal cardinality then this case will not happen.
Hence, either lp = 0 and we get M = N or 0 < Iy < |n/2] and
we get that M is one of the L;’s. O

Hence the clique number of I'(Zyn () is p™ — 1, and this clique
number is attained by each one of the L;’s and N, where p is an odd
prime and n is an integer that is greater than one. Indeed, Theorem 1
shows that the only complete subgraphs with maximum cardinality are
N and L,, where m € {0,1,...,|n/2] —1}.

If Syi 95 C I'(Zyn(a)) with n is an integer that is greater than one,
i > [n/2] and i+ j =n — 1, then using Lemma 3, Sy: »; is a complete
subgraph of I'(Zzn(a)). This will increase the number of complete
subgraphs with maximum cardinality in I'(Za~ («)). Take

n—1 n—1 n—1 n—1

L, = U U Szi72j U U Sor U U Ey

i=[n/2]4+m j=|n/2]-m k=[n/2]4+m I=|n/2]-m
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where m € {0,1,...,|n/2] — 1},

n—1 n—1

I, = Sytuszree—) ainzi-0 U | U
i=[n/2]+s j=|n/2]—s+1

n—1 n—1
5’21,2]' U U Sgk U U E2l
k=[n/2]+s I=[n/2]—s+1

where s € {1,2,...,[n/2]}, and N = U] 'E,. Each one of the
L;’s, Iy’s and N is a complete subgraph of I'(Za~()). In the same
way as the p™ case, one can show that the cardinality of each one
of the L;’s and N is equal to 2" — 1. With regard to the sizes
of the sets I, the size of the set Sy(rn/2144-1) o(1n/21-0 is equal to
(2(n=[n/21=s+1) _ g(n—[n/2]-s+1-1))(g(n—[n/2]+s) _ g(n—In/2]+s-1)) =
271 The rest of I (plus (0,0)) forms a rectangular grid with 271
points. Hence, |I5| = 2" —1. In a similar fashion to the p™ case, one can
show that each one of the L;’s, I,’s and N has a maximum cardinality
among all complete subgraphs of I'(Z2» («)). Hence, the clique number
of I'(Za~ () is equal to 2™ — 1, and this clique number is achieved by
each one of the L;’s, I,’s and N. Next we will give two examples.

Example 3. In I'(Zy2(a), we have Eso = {z,3z}, Es1 = {2z},
So1 = {2}, So1 90 = {2+ 2,2+ 3z}, So1 01 = {2+ 2z}. The subgraphs
N = FEy U Es, Ly = 521721 U Se1 U Eg and I} = 5'21720 U E51 are
the complete subgraphs with maximum cardinality among all complete
subgraphs in I'(Z2(a)). The clique number of I'(Z:()) is equal to
22-1=3.

Example 4. The subgraphs N = FEy U E91 U Ey2, Ly = S2 01 U
S92 92 U S22 U Eg1 U Ey2 and Iy = Sy2 90 U Eg1 U Ey2 are the complete
subgraphs with maximum cardinality among all complete subgraphs in
['(Zys(c)). The clique number of I'(Zys()) is equal to 23 — 1 = 7, and
this clique number is achieved by N, Lg and I.

We did not mention anything about the case I'(Z,1(a)), i.e., the case
when n = 1. In this case I'(Zj (o)) = {az : @ € Z,} which is a
complete subgraph, and hence the clique number is p — 1.
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