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ASYMPTOTIC INTEGRATION
UNDER WEAK DICHOTOMIES

SIGRUN BODINE AND D.A. LUTZ

ABSTRACT. In a classical result, Levinson considered per-
turbations of diagonal systems of differential equations. He
showed that the unperturbed and the perturbed system are
strongly asymptotically equivalent if the entries of the diag-
onal matrix satisfy a certain dichotomy condition and if the
perturbation is absolutely integrable. Here we are interested
in diagonal linear systems that satisfy dichotomy conditions
which are weaker than Levinson’s. We show that the diago-
nal system is still strongly asymptotically equivalent to a per-
turbed system provided that the perturbation is sufficiently
small. We also generalize these results to perturbations of Jor-
dan matrices. We give some corresponding results for pertur-
bations of systems of difference equations and conclude with
examples.

1. Introduction. In [3], we introduced a concept called strong
asymptotic equivalence between two linear systems 2’ = A(t)z and y' =
B(t)y defined for ¢ > ty. This means that there exist corresponding
fundamental solutions related by the asymptotic equation

X(t) =[I+0(1)]Y(t) as t — +o0.

While it can be shown (see Theorem 5) that any two systems are
strongly asymptotically equivalent provided A(t) — B(¢) is “sufficiently
small,” this general result does not yield a practical (close to optimal)
bound. Instead, in most applications, one should think of A(t) as
having a certain structure (e.g. diagonal, block-diagonal, Jordan) and
B(t) = A(t) + R(t) as a perturbed system. Then a simpler problem
is, given the structure of A and certain easily-checked properties,
to determine suitable smallness conditions on R which imply strong
asymptotic equivalence to the unperturbed system.
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What has become the central, classical result concerned with pertur-
bations of diagonal systems is due to Levinson (see [12] or [8, Theorem
1.3.1]). He showed essentially that if A(t) = A(t) is diagonal and sat-
isfies certain dichotomy conditions (see below), then R € L'[t, o0) is
sufficient for strong asymptotic equivalence between =’ = A(t)z and
y = [A(t) + R(1)] .

This result is central because it has been shown that many other
types of results on strong asymptotic equivalence can be reduced to
it, namely, ones which involve stronger dichotomy conditions on the
diagonal matrix and weaker conditions on the perturbation terms, see
e.g., [1, 4, 9-11].

For a diagonal matrix A(t) = diag{Ai(¢),...,Xa(t)}, Levinson’s
dichotomy condition pertains to integrals of the form

/ Re [Ai(1) — Aj(7)] dr

where t) < s <t < co. If every such integral is either bounded from
above or bounded from below, then A(t) is said to satisfy Levinson’s
dichotomy condition.

If, on the other hand, the integrals oscillate and become unbounded in
both directions (toward plus and minus infinity simultaneously), then
Levinson’s condition fails. Examples due to Eastham [8, page 10] and
Perron [13] show that in such a case R(t) € L}[ty,00) is generally not
sufficient for strong asymptotic equivalence.

Here we will be concerned with weakening Levinson’s dichotomy
conditions and then finding admissible growth conditions on R(t). We
will quantify the unbounded oscillations by first assuming the existence
of a positive function 3 on [tg, 00) satisfying either

exp[ tRe{Ai(T)—Aj(T)}dT]ﬁo as t — 0o

to

and

exp [/t Re {\i(r) — Aj(r)}df] < B(s) forallty<s<t< oo
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or else

t
exp [/ Re [Ai(T) = A\j(7)] dr| < B(s) forallty <t <s< oo

One of our main results, Theorem 2, shows that if A(t) satisfies
these conditions for all (i,) and if B(t)R(t) € L'[ty,00), then strong
asymptotic equivalence follows. We then will also show that such a
function § always exists, although for applications finding an optimal,
i.e. smallest, # might involve some computational difficulties.

We will derive our results for differential equations in Section 2 and
some analogous results for systems of linear difference equations will
be given in Section 3. In Section 4, we will present some families of
examples (depending upon parameters) which explain how our results
are related to the (counter) examples of Eastham and Perron, and we
will see that the growth condition above is quite sharp.

Our work was motivated by results of Chiba and Kimura [5] who stud-
ied perturbations of systems which do not satisfy Levinson’s dichotomy
conditions using Hukuhara’s theorem. In our approach, we are able to
simplify their hypotheses and, moreover, show that strong asymptotic
equivalence is always obtainable for sufficiently small perturbations.

2. Differential equations. In [6, page 76], Coppel considered per-
turbations of linear systems of differential equations which possess an
ordinary dichotomy. He showed that there is a one-to-one and bicon-
tinuous correspondence between the bounded solutions of unperturbed
and perturbed systems provided that the perturbation is absolutely in-
tegrable. Our first theorem is a reformulation of this result, allowing
weaker dichotomy conditions on the unperturbed system but imposing
a more restrictive requirement on the perturbation R(t). The proof is
just a modification of Coppel’s original proof, but we include it for the
sake of completeness and emphasize that Coppel’s result is a special
case of Theorem 1 corresponding to bounded 5(t).

Throughout this section, we will assume the continuity of all coeffi-
cient matrices to have existence and uniqueness of solutions. As usual,
we could also just require that coefficient matrices are locally integrable
which would lead to almost everywhere differentiable solution matrices.
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Theorem 1. For continuous d X d matrices A(t) and R(t), consider
the unperturbed system

(1) o = A(t)z, t>to,
and the perturbed system
(2) v =[A@t) + R(H)]y, t=to

Let X(t) be a fundamental matriz of (1). Assume that there exists a
projection matriz P and a continuous function B(t) > 1 such that

(3) X(t)PX(s)| < B(s) foralltg < s<t
and
(4) | X (1) — PIX*(s)| < B(s) for allto <t <s.

Suppose that
(5) B(t)R(t) € L*[ty, 00).

Then there exists a one-to-one and bicontinuous correspondence be-
tween the bounded solutions of (1) and (2). Moreover, the difference

between corresponding bounded solutions of (1) and (2) tends to zero as
t— oo if X(t)P — 0 ast — oco.

Proof. Fix t; > tg such that

6 /w BEOIR(®)| dt < 1.

Let B be the Banach space of bounded d-dimensional vector-valued
functions with the supremum norm

[yl = sup [y (t)]-
t>t1
For t > t1, define an operator T acting on B by

(Ty)(t) = | X(O)PX ' (s)R(s)y(s) ds
(6) "
f/t X(t)[I — P]X (s)R(s)y(s) ds.
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Now (3), (4) and (5) imply that
(Ty)(®)] < Hyll/t B(s)|R(s)| ds < 0lyl|,

and, similarly,

(Ty1)(t) = (Ty2) ()] < /too B(s)R(s)| lyr(s) = y2(s)l ds < Ollyr — w2ll;

thus, also
1Ty1 = Tyal| < Ollyr — v2-
Hence T : B — B is a contraction. Therefore, for any x € B, the
operator equation
v=y—-Ty
has a unique solution y € B, and it is straightforward to check that
if # is a solution of (1), then y = x + Ty is a solution of (2). The
equation x = y — T'y establishes therefore a one-to-one correspondence
between bounded (for ¢ > ¢;) solutions of (1) and (2) (using (6)).
The bicontinuity of the correspondence for t > t; follows from the
inequalities
1 1

1496 1-46
Using continuous dependence of solutions on initial conditions, the
bicontinuity can be extended to [tg,c0). Finally, given corresponding
bounded solutions z and y of (1) and (2), respectively, and £ > 0, fix
to = ta(€) > t; such that

" BOIRE! )] dt < Iyll/too B(t)|R(t)] dt < %

ta
Then, for ¢t > t3,

21 — 22|l < [ly1 — w2l < |21 — z2l|-

19 — a(t)] = [(Ty)(®)
SIXWP [ X R ds

=l [ BloIRs) s
<IXOP] [ 1X R ds 5 <

for all ¢ sufficiently large if X (¢)P — 0 as t — oo. o
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In Theorem 1 the existence of a function 5(s) satisfying (3) and (4)
was assumed. However, it can be easily shown that such a §(s) always
exists. For example, one may put for s > tg,

Bls) = sup | X ()X~ (s)

)

where X (t) is the fundamental matrix of the differential system (1)
satisfying X (¢9) = I. Then B(s) is well-defined and continuous for
s > tg, B(s) > 1 for all s > sg, and (3) and (4) hold corresponding to
the projection matrix P = 0. It is clear, however, that this choice for
B(s) will not yield, in general, an optimal bound for the perturbation.
Instead, one should take into account the special structure of X (¢) and
choose P and [ using that information.

This brings us to our first result on asymptotic integration of per-
turbations of diagonal systems not necessarily satisfying Levinson’s di-
chotomy conditions.

Theorem 2. Let A(t) = diag{A1(t),..., a(t)} be a diagonal and
continuous d X d matriz for t > tg. Fiz h € {1,2,...,d}. Assume that
there exists a continuous function By (t) > 1 for t > ty such that, for
each 1 <1 < d, either

exp[/tRe{)\i(T))\h(T)}dT} 0 as t — 0o

to

(7) and

exp [/t Re {\s(r) — Ah(T)}dT} < Ba(s) for allto < s <t
® o] [ Re(u(r) - Mbar] <o) forait i<

Furthermore, assume that R(t) is a continuous d x d matriz for t > to
and that

(9) Br(t)R(t) € L'[to, o).
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Then the linear differential system
(10) v =[A(t) + R(t)]y

has a solution satisfying

t
(11) yn(t) = [en + o(1)] exp {/ An(s) ds} as t — oo,
where ey, is the hth column of the identity matrix.

Proof. For fixed h € {1,2,...,d}, put

(12) y(t) = 2(t) exp {/ () dT].
Then (10) implies that

(13) () = [A(t) — M (6)T + R(2)] 2.

We also consider the unperturbed shifted system
(14) w' = [A(t) — M (t) ] w,

and we will apply Theorem 1 to these shifted systems. For that purpose,
let P = diag {p1,p2,.-. ,pd}, where

[ 1 if (4,h) satisfies (7)

Pi= 0 i (i, h) satisfies (8).
Then the unperturbed shifted system (14) satisfies dichotomy condi-
tions (3) and (4) with 3(s) replaced by SBr(s) and, moreover, W (¢t)P —
0 as t — oo. Recall that R satisfies (9). Now, by Theorem 1 and

since wy,(t) = ey, is trivially a bounded solution of (14), there exists a
bounded solution z,(t) of (13) with

zn(t) = en, +0(1) as t — oo.

By (12), (10) has a solution of the form (11) ast — co. O
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Remark 3. If By(s) is bounded from above by a constant, then A(%)
satisfies Levinson’s dichotomy condition, and the statement of The-
orem 2 reduces to Levinson’s well-known result, see e.g., [8, Theo-
rem 1.3.1].

Although in Theorem 2 the existence of an appropriate function 8y
was assumed, it can again be shown that such a function 8, always
exists. For example, for fixed h and for each ¢ € {1,...,d}, one may
put

s = sw (e [‘Repun) - wirpar] ),

to<t<s

and

Br(s) = llgggd%(S),

i.e., the point-wise maximum over all 7;. It follows that (8) holds for
all 1 < i < d. However, this construction of 3, should be avoided in
applications, since By, (t) derived this way is likely neither the smallest
possible choice nor easy to compute (also see Example 8).

While Theorem 2 was concerned with perturbations of diagonal
systems, these results can be generalized to perturbations of Jordan
matrices in a standard manner, see e.g., [8, Theorem 1.10.1] or [6,
page 91]. This method uses preliminary transformations resulting in a
differential system with a diagonal main matrix (with additional terms
on the diagonal) and then applying Theorem 2 to this new system
provided that the perturbation is sufficiently small.

More specifically, we consider the situation of M distinct eigenvalues
Ai(t) which are grouped (for each ¢) into d; Jordan blocks of size n;;.
For 1 <7< M and 1 < j < d;, we will use the notation

(15) Jij(t) = (D)L, + N,

ij?

where I,,;; denotes the n;; x n;; identity matrix and NNy,,; is the n;; x n;;
matrix with ones on the first super-diagonal and zeroes elsewhere. We
will also put for 1 <i < M
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d;

16 n; = max n;; no = max n; n; = g Ngi.

( ) % 1<j<d;s e V<< M X i - ij
]_

The overall dimension of the system is d = Zf\il n;.

Theorem 4. For each i, 1 < i < M, let \;(t) be continuous scalar-
valued functions for t > ty. Let a pair of indices h,l be given such that
1<h<Mandl<Il<np for somek € {1,2,...,dp}. Assume that
there exists a continuous function Br(t) > 1 for t > to such that for
each 1 <1 < M either
(17)

t
exp [/ <Re {Ni(T) = An(T)}+
to

ni—l

>d7’} —> 0 ast — oo and

ni—l

exp {/St@e{xi(f) ()4 >dT} < Bu(s) foralito < s <t

(19
exp [/t (Re{)\i(r) ()} + IT_Z> dr} < Bu(s) for all to <t < s.

Furthermore, assume that R(t) is a continuous d x d matriz for t > to
and that, for all1 <i< M,

(19) t" B (E)7jm () € L' [to, 00),

forni+...+n; 1 +1<j<n+...+7; and all 1 < m < d, where n;,
n; were defined in (16). Then for each k such that np,, > 1, 1 < k < dj,
there exists a solution y of the linear differential system

(20) y' = |:Z i ®J;; (t) + R(t):| Y,

i=1 j=1
satisfying

tl—l

(21) Y= [en + 0(1)] (l — 1)'

t
exp [/ )\h(T)dT], as t — oo,
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where

h—1 j-1
RS S 1.
pn=1 v=1
Proof. In (20), make the change of variables

M d;
(22) y= lz > eaqnj(t)] 2,

i=1 j=1
where
(23)
1t /2 (t%51)/(nij — 1)!
0 1 t (t™ii=2)/(n;; — 2)!
D;j(t) = exp[Nn,;t] =
t
0 0 1

Then @;;(t) = N,,;®;;(t). It follows from (20) that

Y@Mt + R(t)

=1

(24) 2=

2,

with

R(t) = {i i eaq»ij(t)] _1R(t) [i i eaq»ij(t)] .

i=1 j=1 i=1 j=1

Noting that both ®;;(t) and (I)Z._jl(t) are of order t"#~! for all i and j,

it is straightforward to show that R(t) = O(t2("0~D|R(t)|) as t — oo,
where no was defined in (16). Hence, while the leading matrix in
(24) is diagonal, the magnitude of the perturbation has been increased

significantly.

To reduce the magnitude of the perturbation, put

M d;
(25) 2= {ZZ@D,&, (t)]w,

i=1 j=1
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where D, (t) = diag{l,t,... ,t™s 1}, Since D;;(t)®;;(t)D;;'(t) =

tJ

e where e"ii was given in (23) for ¢t = 1) it follows that

(26) w' = [éi@{&(mﬂﬁ% diag {0, 1,... ,nijl}}—i-fi(t)} w.

Here R is, up to multiplication by a constant matrix from the right and
from the left, given by

whose (j,m) element has order

O(tni_lrjm) forny +...+n_ 1 +1<j<ni+...+7, 1 <m<d,
for some 1 <7 < M. Hence, by (19), it follows that

(27) Br(t)R(t) € L'[to, ).

For the fixed pair of indices h,l with 1 < h < M and 1 <1 < npy for
some k € {1,...,dp}, we make in (26) the change of variables

w(t) = £(t) exp [/t {/\h(r) + 1—71} dr]
=&(t)t  Lexp [/t A (7) d’r] .

Then it follows from (26) that

¢ = [ii@{ <)\i(t) — n(t) — Z_Tl>1nij

i=1 j=1

+ %diag{o,l,... ,Mij — 1}} +fz(t)] £

(28)

(29)

The corresponding unperturbed system
(30)

v = [ii@{(Ai(t)Ah(t)l ; 1) Inij% diag {0,1,... ,n,-j1}Hv,

i=1 j=1
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has bounded solutions in the form of Euclidean unit vectors if : = h
and, moreover, for those values of j where 0 <1 —1 < mn; — 1. Then
the 1/t term vanishes at the {th position in the (h, j)th Jordan blocks.
Hence, for each j with ny; > [, there exists a bounded solution of (30)

h—1 j—1
v =e, with p = Zﬁu—i—Znhu—i—l,
p=1 v=1

and we want to apply Theorem 2 with the goal of finding an asymp-
totically constant solution §{ = e, + o(1) of (29) as t — oo.

Rewriting (30) as
vl = dlag {,u’l(t)a v a/l'd(t)}vv ,U’p(t) = Oa
one finds for the differences, 1 < k < d,

pe(t) = p(8) = pe(t) = Ni(t) — n(8) + w

0<vy;; <ny; —1<m; —1,

for some 1 < ¢ < M. By (17) and (18), pr(t) — p,(t) satisfies
the dichotomy conditions (7) and (8), respectively; hence, Theorem 2
implies the existence of a solution £ of (29) satisfying

£(t) =e,+o0(l) ast— oo.
Therefore, by (22), (25) and (28), there exists a solution y of (20)

satisfying

)= (fi@%(t)) (de@D )

=1 j=1 i=1 j=1
t
X exp [/ An(7) dT] le, +0(1)], as t — oo,
which by basic matrix multiplication can be rewritten as (21). O

Theorem 4 yields the same result that was first established by Chiba
and Kimura [5, Theorem 5.1] but under simplified hypotheses. In
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particular, various monotonicity requirements from their result are not
needed in Theorem 4.

We conclude this section with a result on general linear differential
systems which do not possess any particular structure, e.g., Jordan
form. Here |- | denotes any submultiplicative matrix norm.

Theorem 5. Let A(t) and R(t) be continuous d X d-matrices for
t > to. Let X (t) be the fundamental matriz of (1) satisfying X (to) = I.
Assume that

(31) p(t) == | X1 (t)R(t) X (t)| € L'[to, o)
and
(32) X)X (8] /too p(r)dr — 0 ast — oo.

Then (2) has a fundamental solution matriz satisfying

(33) Y(t)=[I+0(1)]X(t) ast— oco.

Proof. In (2), we make the change of variables
(34) y= X7
Then (2) implies that
7' =XTORMHX (),

which we consider as a perturbation of the trivial system 2z’ = 0. Since
the zero matrix satisfies Levinson’s dichotomy conditions, (31) and
Levinson’s theorem, see e.g., [8, Theorem 1.3.1], imply the existence
of a fundamental matrix of the form Y = I +0o(1) as t — co. However,
we prefer to apply [4, Theorem 11] which gives the existence of a
fundamental matrix of the form

}7_1+O</toop(7')dr>.
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By (34), (2) has a fundamental matrix

Y(t) = X(1)Y(t) = [I +X(t)O </t°° p(7) d7'>X1(t)] X(t) as t — o0,
which satisfies (33) by hypothesis (32). O

We wish to emphasize that the above conditions on p(t) are rather
restrictive. The reason is the lack of any assumptions on A(t), for
example, being diagonal with a fundamental matrix satisfying some
dichotomy condition.

3. Difference equations. The fruitful interplay between results
for systems of linear differential and difference equations is well known
and has led to a better understanding of the parallel theories. Benzaid
and Lutz [2] proved an analogue of Levinson’s theorem for difference
equations and also constructed an example showing that, in the ab-
sence of a Levinson type of dichotomy condition for diagonal systems,
summable perturbations do not necessarily preserve strong asymptotic
equivalence (also defined analogously). Here we wish to point out that
some results corresponding to those in Section 2 carry over to linear
difference systems satisfying dichotomy conditions weaker than Levin-
son’s.

Theorem 6. For d x d matrices A(n) and R(n), consider
(35) z(n+1) = A(n)z(n), n>ng
where A(n) are nonsingular for all n > ng, and the perturbed system
(36) y(n+1) =[A(n) + R(n)]y(n), n > n.

Let X(n) be the fundamental matriz of (35) such that X (ng) = I.
Suppose that a projection matrix P and a scalar-valued sequence {3}
exist with B(n) > 1 for all n > ny such that

(37) X(n)PX Y(k+1)| <B(k) forallng <k< n} ‘

I X(n)[I - PIX *k+1)|<B(k) forallng<n<k
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Suppose that

o0

(38) > B(n)|R(n)| < oo.

n=nog

Then there exists a one-to-one and bicontinuous correspondence be-
tween the bounded solutions of (35) and (36). Moreover, the difference
between corresponding bounded solutions of (35) and (36) tends to zero
asn — oo if X(n)P — 0 as n — oo.

The proof is analogous to the proof of Theorem 1, and we will just
outline the necessary modifications. Let [, be the Banach space of
bounded d-dimensional vector-valued sequences with the supremum
norm

lyll = sup |y(n)|,

n>ni

where n; is picked sufficiently large such that

6= B(n)R(n)| <1.

n=ni
For n > ny, define an operator Ta acting on [, by

n—1

(Tag)(m) = 3 X()PX *(k + DR(k)y(k)

k::n1

= > X(n)[I - PIX 7} (k + 1)R(k)y(k).

As in the proof of Theorem 1, one can show that Th : loo — Il is a
contraction and hence, given z € [,

(39) r=Yy— TAy

has a unique solution y € [, which can be shown to be a solution of
(36) if x is a solution of (35). Equation (39) therefore establishes a
one-to-one correspondence between the bounded solutions of (35) and
(36) for n > ny. The bicontinuity of this correspondence as well as
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that the difference between corresponding solutions tends to zero if
X(n)P — 0 as n — oo is then shown in a similar manner to the proof
of Theorem 1. O

As in the case of differential equations, the existence of such a
sequence ((k) is easily shown, e.g., (corresponding to the projection
matrix P = 0)

B(k):= sup |X(n)X 1(k+1).
no<n<k+1

We continue with a discrete version of Theorem 2.

Theorem 7. Let A(n) = diag {\1(n),..., a(n)} be a diagonal and
invertible d x d matriz for n > ng. Fiz h € {1,2,...,d}. Assume
that a scalar sequence Br(n) > 1 exists for n > ng such that for each
1 <1 <d either

" hi(k)
— 0 as n — 00
,}Jno An (k)
(40) and
nzfl
T |29 < gunr) for altng <y <o
k=ni+1 )\h(k)
or
(41) ﬁ Ai(k)> L >0 forallng<ni<mn
(k)| Br(nz) o= =T

k::n1

Furthermore, assume that R(n) is a d x d matriz for n > ng such that

(42) < oo for this fixed value of h.

= f(n) [ R(n)|
()

n=n
Then the linear differential system

(43) y(n+1) = [A(n) + R(n)] y(n)
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has a solution satisfying

(44) yu(n) = [en +o(1)] [ (k) as n— oo,

k:ng

where e, is the hth column of the identity matriz.

Proof. For a fixed h € {1,2,...,d}, put

y(n) = =(n) [ k).

k=no

Then (43) implies that

(45) z(n+1) = [A(n) + R(n)] z(n).

1
)\h (n)

We also consider the unperturbed shifted system

(46) w(n+1) =

and we will apply Theorem 6 to these shifted system. For that purpose,
let P = diag {p1,p2,.-. ,pa}, where

[ 1 if (i, h) satisfies (40)
Pi=0 it (i, h) satisfies (41).

Then (46) satisfies the dichotomy condition (37) with 8(k) replaced
by Bn(k), and W(n)P — 0 as n — oo. Now, by Theorem 6 and
since wp(n) = e, is a bounded solution of (46), there exists a bounded
solution zp(n) of (45) with

zp(n) = wp + en(n) = ep + ep(n) and 1i_>m en(n) =0.

Therefore, (43) has a solution of the form (44). O
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In Theorem 7, such a sequence S (n) always exists. For example, for
this fixed value of h, one may put

n

Br(n) = sup  sup
1<i<d no<k<n

An(1) ‘
R0
Then (41) holds for all 1 < ¢ < d. However, as for differential equations,
this choice usually leads to a nonoptimal, i.e., too large, 5(n).

4. Examples. As we mentioned in the introduction, there are exam-
ples showing that with weaker dichotomies than Levinson’s, absolutely
integrable perturbations do not necessarily preserve strong asymptotic
equivalence. Such an example was privately communicated to one of
the authors by Devinatz [7] and another one can be found in East-
ham [8, page 10]. Devinatz’s example is essentially the same as one
found in Coppel [6, page 71]. That example is also equivalent to one
given by Perron [13], but Perron and Coppel were concerned with a
related question concerning perturbations of asymptotically, but not
uniformly, stable systems. There, even exponentially small perturba-
tions of asymptotically stable systems may be unstable. The same
class of examples applies to both questions because of a relation be-
tween uniform stability and Levinson’s dichotomy condition for linear
systems.

We will now show how our results apply to some modified examples
in which we introduce parameters to determine more precisely how the
rate of decay in the perturbation is related to preservation or not of
strong asymptotic equivalence.

Example 8 (Modified Coppel/Devinatz/Perron system). Consider,
for t > tg > 1 and positive numbers a and b,

r_ —a 0
(47) ¥y = th sinlogt + coslogt — 2a} Y

and the unperturbed diagonal system

(48) T =

—a
[ sinlogt + coslogt — 2a} -
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Since

Re [A2(t) — A1 (t)] = V2sin(logt + 7/4) — a,

Levinson’s dichotomy conditions hold for a > \/5, and hence Levinson’s
theorem, see e.g., [8, Theorem 1.3.1], implies that (47) and (48) are for
a > /2 strongly asymptotically equivalent for any value of b > 0.

We will now consider what happens when 0 < a < v/2. It turns out
that there exist explicit constants 7, respectively 7, dependent upon
the value of a (see (54), respectively (58)) such that strong asymptotic
equivalence to the unperturbed system holds if b > -, respectively 7,
but not for b < v, respectively 7.

Case 1. 0 < a < 1. We first want to apply Theorem 2 with h =1 to
find a lower bound on b for (47) and (48) to be strongly asymptotically
equivalent (note that because of the lower triangular structure of the
coefficient matrix in (47), we do not need to consider the case h = 2).
Since

exp { /t “Re{dofr) ()} ir
= cexp [t(sinlogt — a)] # o(1) as t — oo,

we consider (8) for tg <t < s. Looking for a 31(s) in the special form
B1(s) = explys] for some positive v, (8) is satisfied if we can find a v
such that

(49) t(sinlogt — a) — s(sinlogs —a) < s, to<t<s.
Using sinlogt <1 and t < s, a first estimate might be

t(sinlogt — a) — s(sinlog s — a)
<t(l—a)— s(sinlogs —a) < s(1 —sinlogs) < 2s,
but this value v = 2, independent of the particular value of a € (0, 1),
is unnecessarily large.

To obtain a better estimate, we want to find, for fixed s > #g, an
upper bound for

f(t) :==t(sinlogt —a) to <t <s.
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Now f(t) takes on its maxima when

(50) t="T, = exp [37r/4 — arcsin (a/x/i) + 2n7r] , ned.

We put

3m a
51 =" _arcsin [ -2 ),
(51) n= -, —arcsin (\/§>

and it is straightforward to show that

(52) sinn—a:l<\/2—a2—a>,

2

which is positive for 0 < a < 1 and negative for 1 < a < /2. Let
to = Tp and fix the integer n = n(s) > 0 such that T,, < s < Ty 4.
Since f(T,) = Tn(sinn — a), f(t) has increasing local maxima for
0 < a <1, and it follows that f(t) < max{f(Ty), f(s)} for tg <t < s.
Thus, f(t) — f(s) < max{f(T) — f(s),0} and, by (49) it is sufficient
to find a positive 7 such that

max{f(T,) — f(s),0} <~s, T, <s<Tphi1.
We want to find the minimal positive v satisfying
f(Tn) — f(s) =T, (sinn — a) — s(sinlogs —a) <vs, T, < s < Tpys.
Dividing by T;, and putting

(53) T = T_n’

we want to find the smallest v such that

sing —a — r[sin(logT +1) —a] <71, 1<7 <.

Hence, one can put

sinn —a .
(54) v=~(a) = sup /B sin(n + log 7),
1<7—§821\' T
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and we will show below, see (57), that y(a) > a + 1 and is therefore
positive. Theorem 2 now implies that (47) and (48) are strongly
asymptotically equivalent if 3;(t)R(t) = exp[(y(a) — b)t] € L'[ty, ),
ie.,

b > v(a).

Next, we want to find an upper bound for the values of b for which
there is no strong asymptotic equivalence between (47) and (48). For
that purpose, observe that solving (47) by quadrature shows that (47)
is strongly asymptotically equivalent to (48) if and only if

t
[ esomer-amsotontoanins gg o (), (1 )
T

or

t
(55) I(t) ::/ et(sinlogtfa)+s(a7bfsinlogs) ds :O(l), (t—) OO)
T

for an appropriate choice of T' € {tp,00}. We also assume here that
b > a+1, and consequently we may choose T' = oo since the improper
integral converges. Recalling that f(¢) = t(sinlogt — a) takes on its
maxima when ¢ = T}, where T}, was defined in (50), we want to find
an upper bound for b such that

I(T,) #0(1) asn — oo.

Now, with 1 and 7 given in (51) and (53), respectively,

|[I(T%)| :eTn(Sinnfa)/ eS(a—b—sinlogs) 1.
Tn

4 Tt 4
> eTn(smnfa)/ es(afbfsmlog s) ds
T,

n
27

= Tn/ exp [Ty, {sinn —a+ 7(a — b —sin(n + log 7))}] dr.
1
If there exists a b > a + 1 such that

(56) sup {sinn—a+7(a—b—sin(n+logT))} >0,
1<7<exp|[27]
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then there exists an g9 > 0 and 1 < 71 < 79 < exp[27] such that
{sinn—a+7(a—b—sin(n+1log7))} > g for 1 <7 < 73, and hence

T2

|[I(T,)| > Tn/ exp [T, {sinn — a+ 7(a — b —sin(n + log 7))}] dr

T1

T2
> Tn/ exp[Treo]dT — 00 as n — 0.
T

1

Therefore, sufficient for I(T},) # o(1) as n — oo is that b > a + 1 exdsts
such that (56) holds, or, equivalently, that

b <~(a),

where v(a) was given in (54).

To justify that such a b € (a 4+ 1,7v(a)) exists, we note that with
7o defined by n + log(mp) = 37/2 (hence 19 € (exp(3w/4),exp(m)] C
[1, exp(27)]),
sinng —a sinmn

—a
+a—sin(n+logrg) = —— +a+1,
70 70

(67)  ~(e) =

and it suffices to show that sinn —a > 0. But this follows directly from
(52) for 0 < a < 1, which completes our study of Case 1.

Case 2. 1 < a < v/2. This case is treated similarly, and we will
again use T3, n and 7 as defined in (50), (51) and (53), respectively.
Fora > 1,

t

exp[ Re {\o() — Ay (7))} dr]—>0 as t — 00;

to

hence, we require a function §;(s) such that

exp [/t Da(r) = M (1)} dT] <Bi(s) to<s<t.

Choosing again ((s) of the special form exp[ys], we seek a positive
number ¥ such that

f(t) = f(s) =t(sinlogt — a) — s(sinlogs —a) <7s, to<s<t.
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For a fixed s > ty = Ty, let T,y < s < T, for some positive
integer n. Since f(1},) > f(Th+1) for a > 1, it follows that f(¢) <
max{f(s), f(T,,)} for t > s, and it suffices to find a positive ¥ such
that

T, (sinn — a) — s(sinlogs — a) < 7s,

or, after dividing by 7T}, and again putting 7 = /T,

o o~ sinn —a .
(58) 7 =7%(a) = sup el A sin(n + log 7).
e 27<r<1 T

Therefore (47) and (48) are strongly asymptotically equivalent by
Theorem 2 if

b > 7(a).

To find an upper bound for the values of b for which there is no strong
asymptotic equivalence between (47) and (48), we consider I(t) given
in (55) with T' = ty. Then, for n > 1,

Ty
I(Tn) — eTn(sinn—a)/ es(a—b—sinlog s) ds

to

Tn
> eTn(sinn—a)/ es(a—b—sinlogs) ds
Trn_1

n

1
= Tn/ exp [T, {sinn —a + 7(a — b —sin(n + log 7))}] dr,

—27

and sufficient for I(7},) # o(1) as n — oo is that
b <7(a),

where 7 (a) was given in (58).

With some more work, it can be shown that #(a) is positive for
1 < a < /2 and that 7?(\/5) = 0, which coincides with the above-
mentioned fact that Levinson’s theorem implies that (47) and (48) are
strongly asymptotically equivalent for any value of b > 0 if a = /2.

Finally, we discuss an example due to Eastham [8, page 10] which
again shows the “necessity” of dichotomy conditions and apply our
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results to determine which perturbations lead to strong asymptotic
equivalence.

Example 9 (Modified Eastham example). For ¢ > 0, consider
(59)

=" pgen) + (0 79| v =@ 4

This example is due to Eastham [8, page 10] who showed that the
unperturbed diagonal system

(%0 S R

does not satisfy the dichotomy conditions of Levinson’s theorem, see
e.g., [8, Theorem 1.3.1], and that for the absolutely integrable pertur-
bation r(t) = 1/t%, (59) is not strongly asymptotically equivalent to
(60).

To find a measure on the magnitude of the perturbation r(t) to ensure
strong asymptotic equivalence, it suffices to find in Theorem 2 a suitable

function B5(t) (due to the triangular structure of the perturbation in
(59), B1(t) is not needed).

Since exp[fot Re {A\1(7) —A2(7)} d7] does not go to zero as t — oo, one
needs to find B2(¢) such that (8) holds. Observe that, for 0 < ¢ < s,

¢ s s2(1 —sins) +1
exp [Re /S (A1 — A2) dT:| = % = m
< s*(1 —sins) +1 < 2s% +1,
which one can choose for 33(s). Assuming then, for example, that
r(t) =t"P, p=3+¢e for some e >0,

(thus, B2(t)r(t) € L'[ty,00)), Theorem 2 implies that (59) is strongly
asymptotically equivalent to (60). In fact, integration of (59) by
quadrature (integrating from t to infinity) shows that for this choice of
r(t), there exists a fundamental matrix, satisfying, as t — oo,

-y %] -uanly b
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