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ORTHOGONAL ASYMPTOTIC LINES
ON SURFACES IMMERSED IN R*

LUIS FERNANDO MELLO

ABSTRACT. In this paper we study some properties of sur-
faces immersed in R* whose asymptotic lines are orthogonal.
We also analyze necessary and sufficient conditions for the
hypersphericity of surfaces in R2.

1. Introduction. There are two different ways to construct line
fields on surfaces immersed in R*. The first one consists in considering
the ellipse of curvature in the normal bundle of the surface and taking
the pull back of points on this ellipse to define tangent direction fields.
Examples of this approach are given by: the lines of azial curvature,
along which the second fundamental form points in the direction of
the large and the small axes of the ellipse of curvature; the mean
directionally curved lines, along which the second fundamental form
points in the direction of the mean curvature vector; and the asymptotic
lines, along which the second fundamental form points in the direction
of the tangent lines to the ellipse of curvature.

The other way consists in defining the v-principal curvature lines,
along which the surface bends extremally in the direction of the normal
vector v. To this end, we need to take a unitary normal vector field v
and follow the classical approach for surfaces immersed in R3.

The lines of axial curvature are globally defined, and their singular-
ities are the axiumbilic points where the ellipse of curvature becomes
either a circle or a point. The axiumbilic points and the lines of axial
curvature are assembled into two axial configurations. The first one is
defined by the axiumbilics and the field of orthogonal lines on which the
surface is curved along the large axis of the ellipse of curvature. The
second one is defined by the axiumbilics and the field of orthogonal
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lines on which the surface is curved along the small axis of the ellipse
of curvature. Each axial configuration is a net consisting of orthogonal
curves and axiumbilic points. Therefore, a line of axial curvature is not
necessarily a simple regular curve; it can be immersed with transver-
sal crossings. The differential equation of lines of axial curvature is a
quartic differential equation according to [6, 7, 8]. A global analysis
of the lines of axial curvature was developed in [6].

The mean directionally curved lines are globally defined, and their
singularities are either the inflection points, where the ellipse of curva-
ture is a radial line segment, or the minimal points, where the mean cur-
vature vector vanishes. It was shown in [11] that the differential equa-
tion of mean directionally curved lines fits into the class of quadratic or
binary differential equations. The global behavior of mean directionally
curved lines was studied in [11].

The asymptotic lines do not need to be globally defined on the
surfaces and in general are not orthogonal. It was shown in [13]
that a necessary and sufficient condition for existence of the globally
defined asymptotic lines on a surface M? in R* is the local convexity
of M2. The differential equation of asymptotic lines is also a quadratic
differential equation, and their singularities are the inflection points.

The v-principal curvature lines are orthogonal and globally defined
on surfaces immersed in R*, and their singularities are the v-umbilic
points, where the v-principal curvatures coincide. The differential equa-
tion of v-principal curvature lines is a quadratic differential equation ac-
cording to [15]. An analysis of v-principal curvature lines near generic
v-umbilic points is presented in [15], and in [5] the v-principal cycles
(closed v-principal curvature lines) are studied. A global analysis of
the v-principal curvature lines was developed in [3] for v = H, where
H is the normal mean curvature vector.

We prove in [12] that the orthogonality of the asymptotic lines is
equivalent to the vanishing of the normal curvature. This result has
already been obtained by Romero-Fuster and Sdnchez-Bringas in [14)]
using a different approach. We also prove in [12] that the quartic
differential equation of lines of axial curvature can be written as the
product of the quadratic differential equations of mean directionally
curved lines and asymptotic lines if and only if the normal curvature of
« vanishes at every point. Thus, if the normal curvature of « vanishes at
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every point, then the axial curvature cross fields split into four direction
fields and therefore it is not possible that the lines of axial curvature
have transversal crossings.

On the other hand, it is well known that a point p is semi-umbilic
if and only if the normal curvature vanishes at p, [14]. Semi-umbilic
points are interesting from the viewpoint of the theory of singularities of
functions. Observe now that we have analogous statements if, instead
of vanishing normal curvature, it is required semi-umbilicity.

We say that an immersion o : M2 — R* is hyperspherical if its image
is contained in a hypersphere. We prove the following theorem.

Theorem 3.1. Let o : M2 — R* be a hyperspherical immersion of a
smooth oriented surface. Then there exist a unitary normal vector field
v and A > 0 such that the ellipse of curvature e,(p) is a line segment
with the following property: the distance from the projection of £,(p)
onto the v-azis to p is A, for all p € M2,

In this work we study some properties of surfaces immersed in R*
whose asymptotic lines are orthogonal. In particular, we relate the
property of having globally defined orthogonal asymptotic lines with
hypersphericity, obtaining the following theorem.

Theorem 3.2. Let o : M2 — R* be an immersion of a smooth ori-
ented surface with globally defined orthogonal asymptotic lines. Suppose
that there exist a unitary normal vector field v and r > 0 such that the
distance from the projection of the ellipse of curvature €,(p) onto the
v-azis to p is r, for all p € M?, and the Gaussian curvature K # r2.
Then « is hyperspherical.

Finally, Theorem 3.4 of [14], Lemma 2.1 and Theorem 2.1 of [12] and
results of this paper are put together in Theorem 3.5 establishing seven
other equivalent conditions to the orthogonality of the asymptotic lines.

This paper is organized as follows. A review of properties of the
first and second fundamental forms, the ellipse of curvature and the
line fields on surfaces immersed in R* is presented in Section 2.
General aspects of the curvature theory for surfaces immersed in R*
are presented in the works of Forsyth [2], Wong [17], Little [10] and
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Asperti [1]. Section 3 is devoted to the study of orthogonal asymptotic
lines as well as hypersphericity of immersions. Finally, in Section 4
some general problems are stated.

2. Line fields on surfaces in R*. For the sake of completeness in
this section we present a survey of the relevant notions that we will need
later. Let oo : M? — R* be an immersion of a smooth oriented surface
into R*, which is endowed with the Euclidean inner product (-,-) and
is oriented. In this paper immersions are assumed to be C'*. Denote,
respectively, by TM and NM the tangent and the normal bundles of
o and by T,M and N,M the respective fibers, i.e., the tangent and
the normal planes at p € M?. Let {v1,v2} be a frame of vector fields
orthonormal to o. Assume that (u,v) is a positive chart of M? and
that {ay,ay,v1,12} is a positive frame of R*. In such a chart (u,v)
the first fundamental form of «, I, is given by

I =1, = {da,da) = E du® + 2F dudv + G dv?,

where E = (ay, o), F = (ay,a,) and G = (a,,a,). The second
fundamental form of «a, Il,, is defined in terms of the NM-valued
quadratic form

II=1II,= <d2a,IJ1>I/1 + <d2a,1/2>1/2 =II,v1 + 11,,vs,
where
11, =11, o = e;du’® + 2f; dudv + g; dv?,
€; = <auu71/i>7 fi = <auv77/i> and 9i = <avv7’/i> for ¢ = 172
The following functions are associated to «, see [10]:

1. The mean curvature vector of «
H = H, = Hiv) + Havs,

where
Eg; — 2F f; + Ge;

Hi = Hi a — )
: 2(EG — F?)

fori=1,2;
2. The normal curvature of o

En = k _ E(f192 — f201) — F(e192 — e2g1) + G(e1 f2 — €2f1)_
N Ne 2(EG — F?) ’
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3. The resultant A of 11; o and 115

€1 2f1 g1 0
_ 1 €9 2f2 g2 0
CA(EG-F?*) |0 e 2fi ¢
0 e 2f2 g2

A=A,

4. The Gaussian curvature of o

e1g1 — (f1)% +eago — (f2)2,
EG — F? ’

K=K, =

5. The normal curvature vector of a defined by n(p,v) = I1(p,v)/
I(p,v).

The image of the unitary tangent circle S! by n(p) : ,M — N,M
describes an ellipse in N,M called ellipse of curvature of o at p and
denoted by e,(p). This ellipse may degenerate into a line segment, a
circle or a point. The center of the ellipse of curvature is the mean
curvature vector H and the area of €,(p) is given by w/2|kn(p)|. The
map 7)(p) restricted to S!, being quadratic, is a double covering of the
ellipse of curvature. Thus, every point of the ellipse corresponds to two
diametrically opposed points of the unitary tangent circle. The ellipse
of curvature is invariant by rotations in both the tangent and normal
planes.

A point p € M? is called a minimal point of « if H(p) = 0, and it is
called an inflection point of « if A(p) = 0 and ky(p) = 0. It follows
that p € M2 is an inflection point if and only if its ellipse of curvature
is a radial line segment [10].

Lines of azial curvature. The four vertices of the ellipse of curvature
£q(p) determine eight points on the unitary tangent circle which define
two crosses in the tangent plane. Thus we have two cross fields on
M? called awial curvature cross fields. This construction fails at the
aziumbilic points where the ellipse of curvature becomes either a circle
or a point. Generically the index of an isolated axiumbilic point is
+1/4, see [6, 7, 8]. The integral curves of the axial curvature which
cross fields are the lines of axial curvature.
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Generically there is no good way to distinguish one end of the large,
or small, axis of ¢,(p), and therefore pick out a direction of the cross
field. Thus, a line of axial curvature is not necessarily a simple regular
curve; it can be immersed with transversal crossings.

The differential equation of the lines of axial curvature is a quartic
differential equation of the form

(1) Jac (|ln — H|*,I) =0,

where

Jac(+,-) = W,

which according to [6] can be written as
(2) Agdu* + Ayduddv + Asdu®dv? + Asdudv® + Agdv* =0,

where

Ay = a0E3, Al = a1E3, Ay = —6a0GE2 + 3(11FE2,
Az = —8apEFG + a, E(4F? — EG),
Ay = ayG(EG — 4F?) + a, F(2F? — EG),

ap =4 [F(EG —2F?)(e3 + €3) — Eagaz — E*F(a3 + as) + E3a4] ,

ap =4 [Gag(e% +e2) +8EFGas + E*(g7 + g3) — 2E*G(as + a5)],

az =e1fi +exfa, asz=eig1+e2g92, as= f1g1 + fago,
as = 2(ff + f3), as=EG — 4F*.

Mean directionally curved lines. The line through the mean curvature
vector H(p) meets e,(p) at two diametrically opposed points. This
construction induces two orthogonal directions on 7,M?. Therefore,
we have two orthogonal direction fields on M? called H -direction fields.
The singularities of these fields, called here H -singularities, are the
points where either H = 0 (minimal points) or at which the ellipse of
curvature becomes a radial line segment (inflection points). Generically,
the index of an isolated H-singularity is £1/2 [11]. The integral curves
of the H-direction fields are the mean directionally curved lines.
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The differential equation of mean directionally curved lines is a
quadratic differential equation of the form [11]

(3) Jac{Jac(I1,,,I1,,),I} =0,
which can be written as
(4) B (u,v) du® + 2By (u,v) dudv + Bs(u,v) dv? =0,
where
By = (e192 — e291)E + 2(e2f1 — e1 fo) F,

By = (f192 — f291)E + (e2f1 — e1f2)G,
B3 = 2(f192 — f291)F + (e291 — €192)G-

Asymptotic lines. Suppose that p (the origin of N,M?) lies outside
£a(p), for all p € M2. The two points on ¢,(p) at which the lines
through the normal curvature vectors are tangent to ¢,(p) induce a
pair of directions in 7, M? which in general are not orthogonal. Thus,
we have two tangent direction fields on M2, called asymptotic direction
fields. The singularities of these fields are the points where the ellipse
of curvature becomes a radial line segment, i.e., the inflection points.
Generically, the index of an isolated inflection point is £1/2 [4]. The
integral curves of the asymptotic direction fields are the asymptotic
lines.

The differential equation of asymptotic lines is a quadratic differential
equation of the form [11]

(5) Jac (I1,,,11,,) =0,

which can be written as

(6) T (u, v) du® + Ty (u,v) du dv + T3(u,v) dv? = 0,
where

Ty =eifo—eafr, To=eig2—e291, 13= fig2 — fa01.

v-Principal curvature lines. The projection of the pullback, a*(R?),
of the tangent bundle of R* onto the tangent bundle of an immersion
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o will be denoted by Il, . This vector bundle is endowed with the
standard metric induced by the Euclidean one in R*.

Denote by v = v, the unit normal vector field of a. The eigenvalues
k1 = k1,0 < koo = ko of the Weingarten operator W, = —1l, Dy,
of TM are called the v-principal curvatures of a. The points where
k = k1 = ko will be called the v-umbilic points of o, and define the set
Su = Su,o. Wesay that o is v-umbilical if each point of the immersion is
v-umbilic. Outside S,, are defined the minimal, Ly, o, and the mazimal,
Lo, v-principal line fields of «, which are the eigenspaces of W,
associated respectively to k; and k3. Generically, the index of an
isolated v-umbilic point is £1/2 [15]. The integral curves of the v-
principal line fields are the v-principal curvature lines.

In a local chart (u,v) the v-principal curvature lines are characterized
as the solutions of the following quadratic differential equation [15]

(1) (Fg, — f,G)dv® + (Eg, — €,G)dudv + (Ef, — Fe,)du® =0,

where E, F and G are the coefficients of the first fundamental form
and e, = (Qyu, V), fo = (Quo, V) and g, = {auy, V) are the coefficients
of the second fundamental form relative to v, denoted by 11, = II,.
Equation (7) is equivalently written as

(8) Jac (IT,,I) = 0.

3. Orthogonal asymptotic lines. Let o : M?> — R* be an
immersion of a smooth oriented surface into R*. In [6] Garcia and
Sotomayor prove the following theorem: Suppose that the image of the
surface M? by « is contained into R3. Then the quartic differential
equation of lines of axial curvature is the product of the quadratic
differential equation of its principal curvature lines and the quadratic
differential equation of its mean curvature lines. It is interesting to
observe that every point of M? is an inflection point.

We have established in [11] the following theorem: Let o : M? —
S3(r) be an immersion of a smooth oriented surface into a three-
dimensional sphere of radius r > 0. Consider the natural inclusion
i:83(r) — R* and the composition i o a also denoted by . Then
the quartic differential equation of lines of azial curvature (1) can be
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written as
(9) Jac{Jac(I1,,,I1,,),I}-Jac(II,,,I1,,) =0,

where the first expression in (9) is the quadratic differential equation of
mean directionally curved lines (3) and the second one is the quadratic
differential equation of asymptotic lines (5).

It is interesting to observe that in the above construction the asymp-
totic lines are orthogonal and the normal curvature of « vanishes at
every point. This is a particular case of the following theorem proved
in [12] which was also obtained in [14] using a different approach: Let
a : M? — R* be an immersion of a smooth oriented surface with iso-
lated inflection points. The immersion « has orthogonal asymptotic
lines if and only if the normal curvature of a vanishes at every point.

We have established in [12] the following theorem: Let o : M? — R*
be an immersion of a smooth oriented surface with isolated inflection
points. The quartic differential equation of lines of azial curvature (1)
can be written as in (9) if and only if the normal curvature of o vanishes
at every point.

We can prove the following corollary: Let o : M?> — R* be an
immersion of a smooth oriented surface into R*. If the immersion o
has orthogonal asymptotic lines, then the inflection points are obtained
where the ellipse of curvature becomes a point. In fact, from equation

(9),

Jac (|ln — H|*,I) = Jac{Jac(I1,,,11,,),1} - Jac (I1,,,11,,)

(10) o

As the inflection points are singularities of asymptotic lines, then
by (10) they are singularities of lines of axial curvature. But the
singularities of lines of axial curvature are the points where the ellipse of
curvature becomes either a circle or a point. Thus, the only possibility
in this case is that the ellipse of curvature becomes a point.

Theorem 3.1. Let o : M? — R* be a hyperspherical immersion of a
smooth oriented surface. Then there exist unitary normal vector fields
v and A > 0 such that the ellipse of curvature e4(p) is a line segment
with the following property: the distance from the projection of €4 (p)
onto the v-axis to p is A, for all p € M2.
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Proof. Let a(M?) C S*(r), r > 0. Let {v1,v2} be a frame of vector
fields orthonormal to a, where v;(p) € 7,,S3(r) and v (p) is the inward
normal to S3(r), for all p € M2, Thus,

1 1 1 1
w=--a e=-F [fi=-F ad g¢g=-G,
r r r

where E, F' and G are the coefficients of the first fundamental form of
a. It follows that

1
I, =~ I
r

Now
11 11, n 11, 11,
= — = 1% Vo =
A S S S
This implies that the ellipse of curvature £4(p) is a line segment
orthogonal to ve, for all p € M2. Define v = vp and A = 1/r. The

theorem is proved.

v1+ — vs.
r

Let a : M2 — R* be an immersion of a smooth oriented surface
with globally defined orthogonal asymptotic lines. Then the ellipse of
curvature €, (p) is a line segment for all p € M? except at the inflection
points. We say that the immersion « has constant projection if there
exist a unitary normal vector field v and r > 0 such that the distance
from the projection of €, (p) onto the v-axis to p (the origin of N,M?)
is 7, for all p € M2. The constant r is called distance of projection.

Theorem 3.1 shows that if « is hyperspherical, then « has constant
projection whose distance of projection is r—!, where r is the radius of
the hypersphere.

Theorem 3.2 Let o : M2 — R* be an immersion of a smooth ori-
ented surface with globally defined orthogonal asymptotic lines. Suppose
that o has constant projection with distance of projection r > 0, and
the Gaussian curvature K # r2. Then o is hyperspherical.

Proof. Since all the notions of this paper are independent of the
chart, it is enough to prove this theorem for an orthogonal one. By
hypothesis there is a unitary normal vector field v orthogonal to e, (p),
for all p € M2. We can take {r; = v vy = v} a frame of vector
fields orthonormal to «, where v+ (p) is parallel to e,(p), such that
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vt, v} is a positive frame of R*, for a positive orthogonal chart

(u,v) of M. As in the beginning of the proof of Theorem 3.1, one has
es = rE, fo = 0, go = rG. The immersion « satisfies the Codazzi

equations

(11
61)
(12

)

(

)

(e2)v

(13)
(f1)o

(14)

(

f2)o

(fl)u = I‘1261
— (f2)u =Tige2 + (F12
— (91)u = hye1 + (F§2

— (g2)u = Type2 + (Fzz

+ (I, —Th) fi — Thigr — adsen +aiy fo,
1) fa —Thhga — afser +aiy fi,

- Fi2) f1—Tlg +alyf2 — alig2,
iy) f2 = Iag2 — alafi +aiign,

and the following structure equations

1
ap; =

1 _
a1z =

1
g1 =

1
Qg =

fiF

EG —
g F —
EG —

JoF — e2G
EG —
goF —

EG -

_ 1 2 3
= 0110y +a71,0y + a1 7,

_ .1 2 3
= 7500 + A7150 + ajal,

a%lau + a%lav — a?luJ‘,
= a0, + aja, — ajyr,

— 61G 2 61F* flE
FT 1T peo g
G 2 [F—-—gFE
FT 2T pG- g

- 62G 2 62F— sz
F2 ) a’21 EG F2 9
oG 2 o' —goF
F2’ 22T g _p2o

and I‘k are the Christoffel symbols of «;, ¢, j, k = 1,2, which in this case

are glven by
F%l =

2 _
F12_

ﬁa
Gu
2G’

FE, FE,
F%lz_ﬁa Fi2:ﬁ7
G, G,
Fé2:_ﬁa Fg2:ﬁ-
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Equations (11)—(18) as well as the Christoffel symbols can be found
in [2]. Substituting the above Christoffel symbols in the Codazzi
equations (12) and (14) we have respectively

E, E,
(19) rE, = ﬁ’I‘E + ﬁrG —afyer +aii fi
and
G G,
(20) —rG, = —ﬁTE - %TG - ai’zfl + ai’lgl'

But equations (19) and (20) are equivalent to

(21) —a}yer +af; fr =0
and
(22) _a%2f1 + a%gl =0,

respectively. Now the Gaussian curvature is

= a0~ () L €29 _ e — (1)

2
2
EG G~ EG

By hypothesis, K # r2, and thus

(23) e1g1 — (f1)* # 0.

From the equations (21), (22) and (23), we have that

(24) a}, = ajy = 0.

Substituting equation (24) in (17) and (18) results in
Vy = —T0, and v, = —Tay.

Thus,
v=—-ra-+7,

where v is a constant vector. Therefore,
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This means that «(M?) belongs to a hypersphere with center v/r and
radius 1/r. The theorem is proved. O

The proof of the following theorem is immediate from the proof of
Theorem 3.1.

Theorem 3.3. Let o : M? — R* be a hyperspherical immersion of
a smooth oriented surface. Then there exist a unitary normal vector
field v and X\ > 0 such that I1, = (d*a,v) = \I.

The converse of Theorem 3.3 is given by the following theorem.

Theorem 3.4. Let o : M? — R* be an immersion of a smooth
ortented surface. Suppose that v is a unitary normal vector field such
that II, = (d*a,v) = M, where X\ is a nonzero constant, and the
Gaussian curvature K # \2. Then o is hyperspherical.

Proof. Take the positive frame {ay, a,, v, v}. As I1, = (d%a,v) =
A, we have

Ir I, | II, II,.

s i A

This implies that the ellipse of curvature €, (p) is a line segment whose

distance from their projection onto the v-axis to p is constant and equal

to A, for all p € M2. Therefore, o has constant projection with distance
of projection A > 0. As K # A\? the theorem follows from Theorem 3.2.

v+

Let a : M2 — R* be an immersion of a smooth oriented surface
with globally defined orthogonal asymptotic lines. Then the normal
curvature of o vanishes at every point. So there exist normal vector
fields v and v such that

I I1,. l_ﬁ_II,, I,
S S
Thus, II, = M, where X is a positive scalar function on M2. This

implies that « is v-umbilical. The differential equation of asymptotic
lines (5) is given by

v+ A

0 =Jac(II,.,11,) = Jac (II,., \I),
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which is equivalent to
Jac (II,.,I) =0.

But this equation is the differential equation of v -principal curvature
lines (8).

Theorem 3.4 of [14], Lemma 2.1 and Theorem 2.1 of [12] and the
above results are put together in the next theorem.

Theorem 3.5. Let o : M? — R* be an immersion of a smooth
oriented surface. The following are equivalent conditions on a:

a) The immersion o has everywhere defined orthogonal asymptotic
lines;

b) The normal curvature of a vanishes at every point

c) The immersion o is v-umbilical for some unitary normal vector

field v;
d) All points of a are semi-umbilic;

e) There exist a positive scalar function A and a unitary normal vector
field v such that the second fundamental form relative to v is given by
11, = \I;

f) The asymptotic lines coincide with the lines of azial curvature
defined by the large axis of the ellipse of curvature;

g) The asymptotic lines coincide with the v -principal curvature
lines, for some unitary normal vector field v;

h) The quartic differential equation of lines of azial curvature is the
product of the quadratic differential equations of mean directionally
curved lines and asymptotic lines.

Furthermore, if the above function A\ is a nonzero constant and the
Gaussian curvature K # M2, then o is hyperspherical.

4. Concluding remarks. The geometrical reason for the hypothe-
sis of the Gaussian curvature in Theorem 3.2 is not clear. The author
has not been successful in removing it.

One way of constructing examples of surfaces immersed in R* is to
compose an immersion « of a surface in R? with the inverse of the
stereographic projection ¢ : R3 — §2 C R*. The immersion @ = ¢ o «
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has globally defined orthogonal asymptotic lines and the umbilic points
of a are carried over into inflection points of & [11].

One direction of research can be stated: To give an example of a
non hyperspherical immersion o of a smooth oriented surface in R*
with globally defined orthogonal asymptotic lines having an isolated
inflection point. All the examples in the literature are of hyperspherical
immersions.

Another direction of research emerges with the evaluation of the index
of an isolated v-umbilic point. This is related to the upper bound 1
for the umbilic index on surfaces immersed in R3 which is a stronger
form of the Carathéodory conjecture attributed to Loewner, see [16]
and references therein. Gutierrez and Sanchez-Bringas [9] have shown
that this bound does not hold for the v approach.

Acknowledgments. The author is grateful to an anonymous referee
for suggestions that led to improvements in the presentation of the

paper.
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