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CONVEXITY PROPERTIES OF TWISTED ROOT MAPS

JULIUS BORCEA

ABSTRACT. The strong spectral order induces a natural
partial ordering on the manifold H, of monic hyperbolic
polynomials of degree n. We prove that twisted root maps
associated with linear operators acting on H, are Garding
convex on every polynomial pencil and we characterize the
class of polynomial pencils of logarithmic derivative type by
means of the strong spectral order. Let A’ be the monoid of
linear operators that preserve hyperbolicity as well as root
sums. We show that any polynomial in H, is the global
minimum of its A’-orbit and we conjecture a similar result
for complex polynomials.

1. Introduction. An important chapter in the theory of distribu-
tion of zeros of polynomials and transcendental entire functions per-
tains to the study of linear operators that preserve certain prescribed
properties (cf., e.g., [8, 13, 16 and references therein]). The following
example illustrates the viewpoint adopted in this paper. Denote by
End IT the set of linear mappings from the vector space IT := Clz] to
itself, and let II(Q2) be the class of polynomials in IT whose zeros lie
in a fixed set @ C C. As noted in [8], the fundamental problem of
characterizing all operators T € End IT such that T(II(Q)) C II(Q)
is open for all but trivial choices of 2. Indeed, this question remains
unanswered even in the important special cases when € is a line or a
half-plane.! Moreover, in many applications such as stability problems
one often needs additional information on the relative geometry of the
zeros of T(P) and P for P € II(Q) when T € End IT preserves II((2).
For instance, if T'= D := d/dz these questions amount to studying the
geometry of zeros and critical points of complex polynomials, which
is in itself a vast and intricate subject [16]. In this case the Gauss-
Lucas theorem implies that the zero set of T'(P) is contained in the
convex hull of the zeros of P and thus T (I1I(2)) C II(2) whenever
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is convex. However, this result can be substantially refined in various
circumstances [15, 16].

In this paper we propose a general setting for studying the relative
geometry of zeros of polynomials and their distribution under the
action of various classes of linear operators. Let C, be the manifold
of monic complex polynomials of degree n > 1. For P € (C, let
Z(P) be the unordered n-tuple consisting of the zeros of P, each zero
occurring as many times as its multiplicity. Hence Z(P) € C"/%,,
where ¥, is the symmetric group on n elements. Denote by RZ(P),
respectively SZ(P), the unordered n-tuple whose components are the
real, respectively imaginary, parts of the points in Z(P). One says that
P is hyperbolic provided that RZ(P) = Z(P), i.e., if all the zeros of
P are real. A hyperbolic polynomial with only simple zeros is called
strictly hyperbolic. Let H,, = C,, N II(R) be the real submanifold of C,
consisting of hyperbolic polynomials. There is a natural set-theoretic
identification between C,, and C"/X,, by means of the root map

) Z:C, —C"/%,

(1) P+— Z(P)

whose restriction to #,, obviously induces a bijection between H,, and
R"/%,. Let T € End IT be an operator such that T'(C,) C C,. The
composition Z o T is called the T-twisted root map. Note that if T also
acts on H,, then the restriction of the T-twisted root map to #,, has real
components. Given a nonempty set 2 C C we define a multiplicative
monoid of linear operators by setting

(2) An(Q) ={T € End II | T(C, N II(Q)) C C, NII(Q)}.

The relevance of twisted root maps in the present context is quite
clear. Indeed, for degree-preserving linear operators, the aforemen-
tioned questions on the distribution and the relative geometry of zeros
of polynomials may be summarized as follows.

Problem 1. Describe the properties of T-twisted root maps for
T € A,(2), where n is a fixed positive integer and 2 is an appropriate
set of interest.

Below we shall mainly focus on the important special case of Prob-
lem 1 when Q = R. The following fundamental result from the theory
of majorization is a key ingredient in our analysis of twisted root maps.
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Theorem 1. Let X = (z1,%2,... ,2n)  and Y = (y1,y2, ... ,yn)? be
two n-tuples of vectors in R¥. The following conditions are equivalent:

n(i) For any convez function f : RF — R one has Y1 | f(z;) <
> i1 f i)

(ii) There exists a doubly stochastic n X n matriz A such that

X = Ai;, where X and Y are n x k matrices obtained by some (and
then any) ordering of the vectors in X and Y.

If the conditions of Theorem 1 are satisfied we say that X is majorized
by Y or that X is less than Y in the spectral order, and write X < Y.
One can easily check that Y. ;z; = > ., y; if X < Y. Theorem 1
is due to Schur as well as to Hardy, Littlewood, and Pdlya in the
case k = 1 [12], and to Sherman in the general case [17]. These
cases are also known as (strong) classical and multivariate majorization,
respectively. Surprisingly, Sherman’s theorem was long assumed to be
an open problem and does not appear in [14], which is the definite
reference on majorization theory (see p. 433 in loc. cit.). We refer
to [3] for a simple new proof of this result. Note that although the
spectral order is only a preordering on R"™, Birkhoff’s theorem [14,
Theorem 2.A.2] implies that it actually induces a partial ordering on
R"/%,. Therefore, Theorem 1 and the root map in (1) allow us to
define a poset structure (H,, <) by setting P < Q if P,Q € H,, and
Z(P) < Z(Q).

In Section 2 we establish a general convexity property for twisted
root maps associated with operators in A, (R). Namely, we show that
the restriction of any such map to arbitrary polynomial pencils in H,,
is Garding convex (Definition 1 and Theorem 2). This has several
interesting consequences for the so-called span (or spread) function and
its twisted versions (Corollaries 1-2).

In Section 3 we characterize the class of polynomial pencils of loga-
rithmic derivative type contained in #, by means of a local minimum
property with respect to the partial ordering < on H,, (Theorem 4).

Let A := N2 Ak (R) and denote by A’ the submonoid of A whose
action on IT preserves the average of the zeros of any polynomial. In
Section 4 we show that A consists of ordinary differential operators of
Laguerre-Pélya type (Theorem 7) and that any polynomial in H,, is the
global minimum of its A’-orbit (Theorem 6). In particular, this implies
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that the action of A on H,, does not decrease the span of polynomials
(Corollary 5) and that the polynomial pencils characterized in Section 2
satisfy in fact a global minimum property with respect to the spectral
order.

As we point out in Section 5, a natural question that arises from
our study is whether one can describe classical majorization by means
of (differential) operators in 4, (R) acting on polynomials in H,
(Problem 2). We discuss this question as well as possible complex
analogs of Theorem 6 (Conjecture 1) and extensions of this theorem to
the Laguerre-Pélya class of functions.

2. Polynomial pencils and Garding convexity. A fundamental
theorem of Garding asserts that the largest root of a multivariate homo-
geneous polynomial which is hyperbolic with respect to a given vector is
always a convex function [11]. The properties of such polynomials play
a significant role in the theory of partial differential equations, convex
analysis and matrix theory (see, e.g., [2]). The following definition is
motivated by Garding’s result.

Definition 1. Let K be a convex subset of a vector space. A map
f: K — R"/%, given by f(x) = (fl(x), e ,fn(x)) is called Garding
convez if X — maxi<;<n fi(x) is a convex function on K.

Garding’s theorem is a rich source of examples of maps that satisfy
Definition 1, cf. [2, 11]. For instance, the restriction of the eigenvalue
map to the real space of n x n Hermitian matrices is an important such
example. The main result of this section shows that twisted root maps
associated to operators in A, (R) are Garding convex when restricted
to certain convex subsets of #,, as we shall now explain. Recall the
notations Cy,, Hn, An(R) from the introduction and denote by R,, the
(real) submanifold of C,, consisting of monic real polynomials of degree
n. The inclusion H,, C R, is obviously strict if n > 2, which we assume
henceforth.

Definition 2. Let P; and P; be distinct polynomials in R,,. The real
line through P, and P, i.e., the set £ = {(1 — AP, +AP> | A € R},
is called a polynomial pencil in R,,. A basis of a polynomial pencil
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L C R, is a pair of real polynomials {P, @} that satisfy the following
conditions:

P eR,, thedominant coefficient of () equals n,

3) deg@ <n—1, and L={P-AQ|AeR}

A polynomial pencil £ is said to be of logarithmic derivative type or an
LD-pencil if there exist Q1,Q2, Q3 € L such that Q4 = Q1 — Q-.

Remark 1. As defined above, a polynomial pencil in R,, has only an
affine structure. One can produce real polynomial pencils endowed with
a natural linear structure by using an appropriate projective version
of Definition 2 where a real polynomial pencil is defined instead as
a real line in projective space RP" identified with the space of all
homogeneous degree n real polynomials in two real variables considered
up to a constant factor. Such a pencil is called generic if it intersects
the standard discriminant D,,+1 C RP" transversally. A topological
classification of all generic pencils in RP" was obtained in [5].

Clearly, any polynomial pencil has a basis. Moreover, if {P,Q} and
{R, S} are two bases of the same polynomial pencil then S = @ and
R = P — pQ for some p € R. Note also that a polynomial pencil
L C R, is an LD-pencil if and only it has a (necessarily unique) basis
of the form {P, P'}, which we call the canonical basis of the L D-pencil
L. The main result of this section is as follows.

Theorem 2. If L is an arbitrary polynomial pencil in H, and
T € A,(R), then the T-twisted root map Z o T is Garding convez.

Since we are mainly interested in polynomial pencils contained in H,,,
which we shall alternatively refer to as hyperbolic (polynomial) pencils,
let us first give a complete description of these pencils.

Theorem 3. Let P and R be distinct polynomials in R,, and set
Q=P—-Rand L={P - AQ | A € R}. The following statements are

equivalent:
(i) £ C Ha.
(ii) aP + BR is hyperbolic for any a, 3 € R such that o® + B2 # 0.
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(iii) The polynomials P and R are in H,, and have weakly interlacing
zeros.

(iv) P € H,, Q 1is hyperbolic, deg@ = n — 1, and the zeros of P
and Q are weakly interlacing. Equivalently, these conditions hold with
R instead of P.

(v) The polynomial P+iR or indeed P+iQ or R+iQ has all its zeros
either in the closed upper half-plane or in the closed lower half-plane.

Proof. It is clear that (ii) = (i). Note that if (i) holds then
aP + BR € H, for any o, 3 € R such that o + 3% # 0 and a + 3 # 0.
By assumption the polynomial @ is not identically zero and in fact
deg @ > 1, because otherwise P — A\Q ¢ H,, for some |A| > 0. Since
{Q- k‘lP}zC’:1 is a sequence of hyperbolic polynomials which tends to
Q@ uniformly on compact sets, Hurwitz’s theorem for analytic functions
[16, Theorem 1.6.9] implies that @ is hyperbolic. This proves that (i)
= (ii).

The equivalence between (ii) and (iii) is known in the literature
as Obreschkoff’s theorem [15, 5.2] or the Hermite-Kakeya theorem
[16, Theorem 6.3.8] in the generic case when P and R are strictly
hyperbolic polynomials with no common zeros. In the general case,
this equivalence is due to Dedieu [10, Theorem 4.1]. Actually, the
arguments used in loc. cit. yield also a proof of (i) < (iv). Note
that the roles of P and R may be interchanged and that the condition
deg @ = n — 1 may alternatively be seen as a consequence of (iii) since
P and R are distinct.

The well-known Hermite-Biehler theorem [16, Theorem 6.3.4] asserts
that statements (iii) and (v) are equivalent if the words “weakly” and
“closed” in these statements are replaced by “strictly” and “open,”
respectively. For the general case, let us set P = P/S and R = R/S,
where S denotes the greatest common monic divisor of P and R. Note
that degP = degR > 1 since P and R are distinct. If (iii) holds then
P and R have strictly interlacing zeros, cf. [16 Remark 6.3.3]. By the
Hermite-Biehler theorem, the polynomial P-+iR must have all its zeros
either in the open upper half-plane or in _the open lower half-plane. It
follows that the polynomial P+ 4R = S(P +iR) has all its zeros either
in the closed upper half-plane or in the closed lower half-plane, which
proves (v). Conversely, if the latter holds, then P + iR has all its zeros
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either in the open upper half-plane or in the open lower half-plane
(since any real zero of this polynomial would have to be a common
zero of P and ﬁ) Thus, P and R have strictly interlacing zeros so that
P = SP and R = SR have weakly interlacing zeros, as stated in (iii).
The claims in (v) < (iv) concerning the polynomials P, @, and P +1iQ
can be verified in similar fashion by using the Hermite-Biehler theorem
for the pair {P,Q}. O

Proof of Theorem 2. Let L be a polynomial pencil in H, and
T € A,(R). Then either T|; is a constant map, in which case the
conclusion of the theorem holds trivially, or the image T'(L) is again
a polynomial pencil in #,,. Thus, it is enough to prove the theorem
for T' = Idj7, which we assume henceforth. Fix a basis {P,Q} of L as
in (3) and denote the zeros of P and @ by z; < 3 < --- < z,, and
y1 <yz < -+ < y,_1, respectively. By Theorem 3 we know that

(4) T <y1 <z <<y 1 S Ypo1 < Ty

Set Ry = P — AQ, A € R, and denote the zeros of Ry by z;(}),
1 < i < n, which we label so that z;(0) = z;, 1 < ¢ < n. Since
Ry — pQ € H, for any p € R, Theorem 3 again implies that
(5)

z1(N) <yp <xo(AN) < <xpo1(A) <yp—1 <znp(A) for AeR.

Step 1. P and Q have strictly interlacing zeros. This means that
P and @ are strictly hyperbolic and have no common zeros. Clearly,
any common zero of Ry and @ would also have to be a zero of P. It
follows that the interlacing properties in (4) and (5) are both strict.
In particular, the polynomial R) is strictly hyperbolic for any A € R.
We may therefore differentiate the identities Ry(z;(A)) =0, 1 <i <n,
with respect to A to get
© = 2E0)

Ry (i(N))
where R)(z) = (0/0xz)Rx(z). Note that (6) readily implies that
zi(A) > 0 for all A € R and 1 < i < n since both Q(z;()\)) and

R’ (z;(\)) have constant signs while

Qw(0) _ Q@) . y
D)~ Pley " L@ w - >0

for Xée R and 1<i<n,

[

j=1

<

<
B
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because of the (strict) inequalities in (4). Thus, all the zeros of the
polynomial R, are increasing functions of A. By differentiating (6)
with respect to A we obtain

[Q Ry — QRI)(:| Q'

0w =0y | LS o+ [ R,z](xi(x))

100 )
- @)’ |5 —%] (@)

for A € R and 1 < i < n. The special case when ¢ = n in (7) yields

" oW 2 = 2 = 2
z, () = (il?n()\)) = zn(A\) — y; - ; zn(N\) — xj()\)

by (5). This implies that R 5 A — max Z(R)) = z,(A) is a convex
function. Thus Z|. is a Garding convex map, which proves the theorem
in the generic case.

Step 2. The general case. Let S denote the greatest common monic
divisor of P and (). Step 1 shows that the theorem is true if S =1
and so we may assume that degS > 1. Set P = P/S, Q = Q/S,
and Ry = — )\Q, so that Ry = SR, and thus max Z(Ry) =
max (o, max Z(RA)) for A € R, where « is the largest zero of S. If

@ is a constant polynomial, which by (3) would actually mean that
@ = n, then max Z(R,) is obviously a linear function of A. Otherwise
P and Q must have strictly interlacing zeros and so by Step 1 the
function R > A — max Z (RA) is convex. In either case it follows that
R > A — max Z(R)) is a convex function so that Z|, is a Garding

convex map, which completes the proof. O

Remark 2. Theorem 2 generalizes the result announced in [6, The-
orem 1.7], where the Garding convexity property was stated only for
LD-pencils in H,,.
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Recall that the span (or spread) of a polynomial P € H, is the
length of the smallest interval that contains all its zeros, i.e., A(P) =
max Z(P) — min Z(P). A review of the literature on the span of
hyperbolic polynomials and related questions may be found in [16,
Chapter 6]. Given an operator T' € A,(R) we define the T-twisted
span function on H,, to be the composite map A oT. From Theorem 2
we deduce the following properties for twisted span functions:

Corollary 1. If L is an arbitrary polynomial pencil in H, and
T € A,(R), then the T-twisted span function A o Tz is convex and
has a global minimum.

Proof. As in the proof of Theorem 2, it is enough to consider the case
T =1dy. Let £ be a polynomial pencil in #,, with a basis {P,Q} as
in (3). Set P(z) = (—1)"P(—z) and Q(z) = (—1)""'Q(-z), so that
Z(P - )Q) = —Z(P + AQ) for all A € R. By Theorem 2 the function
R 5 A — max Z(P+AQ) is convex and thus R 3 A — min Z(P—\Q) =
—max Z(P + A\Q) is a concave function. Hence R 3 A — A(P — AQ)
is a convex function and therefore also Lipschitz continuous on any
compact interval. Since A(P — AQ) — oo as |A| — oo it follows that
A|. has a global minimum, as required. ]

Corollary 1 can be further refined in the case of hyperbolic LD-
pencils:

Corollary 2. If L is an LD-pencil in H, with canonical basis
{P, P'}, then the span function Al|. is convezr and has a global minimum
at P. In particular, for any P € H, and X\ € R, one has A(P) <
A(P — AP'). More generally, if A1, A2 € R are such that A\; A2 > 0 and
[A1] < A2, then A(P — A P') < A(P — A P').

Proof. 1t is clearly enough to prove only the last assertion of the
corollary. Let P be a strictly hyperbolic polynomial in #,, with zeros
21 < +-+ < @,. Denote by z;(A\), 1 < i < n, the zeros of the
strictly hyperbolic polynomial P — AP’; A € R, and assume that these
are labeled so that z;(0) = z;, 1 < i < n. The arguments in the
proof of Theorem 2 show that z;(A) < z;11(\) for all A € R and
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1 <4 < n—1. Moreover, by using (6) and (7) with @ = P’ we see that
R > A — z,(\) — \is a strictly convex function with a global minimum
at A =0 while R 5 A\ — z;(X) — A is a (strictly) concave function with a
global maximum at A = 0, which proves the corollary in the generic case
when P has simple zeros. If P has multiple zeros, then we consider the
strictly hyperbolic polynomial P. with zeros zy + ke, 1 < k < n, where
e > 0. Let A1, A2 € R be as in the corollary. The desired conclusion
follows by letting € — 0 in the inequality A(P. —\; P!) < A(P-—X\2P.),
which holds thanks to the first part of the proof since P has only simple
Z€Eros. O

The study of the geometrical structure of #,, was initiated by Arnold
in [1]. Subsequently, the convex subsets of H,, were characterized in
[10]. In view of the above results one may ask whether twisted root
maps are Garding convex when restricted to arbitrary convex subsets
of H,. This is definitely not true, as one can see by considering for
instance the subset {(1 — a)P1 + aP> | a € [0,1]} of Ha, where
Pi(z) = 22 — 1 and Py(z) = 2? — 2. However, we can show that
the following analog of Theorem 2 holds for arbitrary segments of
hyperbolic polynomials:

Corollary 3. Let P, and P, be distinct polynomials in ‘H,, such that
the segment [P1,P] := {(1 — a)Py + aP2 | « € [0,1]} is contained
in H,. There exists a (not necessarily unique) polynomial P3s € H,
such that for any T € A,(R) the T-twisted root maps Z o T|p, p,] and
Z o T'|(p,,py are Garding convez.

Proof. Let z;1 < -+ < x, and y; < --- < y, be the zeros of P;
and P, respectively. According to [10, Theorem 2.1], the segment
[Py, P,] is contained in H,, if and only if max(x;,y;) < min(z;41, Yit1)
for 1 <i<mn-—1. Letz;, 1 <1i<n,besuch that z, > max(z,,y,)
and max(z;,y;) < z; < min(zi41,¥i+1), 1 <7 < n— 1. Denote by Ly,
k = 1,2, the real line through P, and Ps, k = 1,2, where P; € H,,
is such that Z(Ps) = (21,...,2,). Since both pairs of polynomials
{P1, Ps} and {P,, P} have weakly interlacing zeros Theorem 3 implies
that both £; and L3 are polynomial pencils contained in #,. The
result follows readily from Theorem 2. ]
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3. A characterization of hyperbolic LD-pencils. Hyperbolic
pencils of logarithmic derivative type are particularly interesting for
at least two reasons. On the one hand, they are obviously related
to the action of linear differential operators on the manifold #,. On
the other hand, these pencils have interesting connections with classical
majorization via the partial ordering on #,, defined in the introduction.
Indeed, the main result below states that the class of hyperbolic LD-
pencils is actually characterized by a local minimum property with
respect to the spectral order. This hints at possibly even deeper
connections between hyperbolic polynomials, classical majorization,
and differential operators, which we shall further investigate in the
next sections.

Definition 3. Let £ be a polynomial pencil in R, with a basis
{P,Q} asin (3). The set L;(P, Q) :={P(z+ ) —AQ(z+ ) | A € R}
is called the {P, Q}-shift of L.

Note that all polynomials in the {P, @Q}-shift of £ have the same zero
sum as P.

Theorem 4. A polynomial pencil L C H, is an LD-pencil if and
only if there is a shift Ls(P,Q) of L such that the root map Z|. (p o)
has a local minimum with respect to the spectral order, i.e., there exist
Mo € R and ¢ > 0 such that

P(z+Xo) —2Q(z+Xo) X P(z4+X)—AQ(z+A) for A € (Ao—¢,No+¢),

where < denotes the partial ordering on H,,.

The proof of the sufficiency part of Theorem 4 relies on the following
lemma.

Lemma 1. Let L be a polynomial pencil in H,, with a basis {P,Q}
as in (3), and assume that there exists € > 0 such that

(8) P(2) < P(e+p) — nQ(a + 1) for p € (=2,e).

Then Q = P', so that L is an LD-pencil with canonical basis {P, P'}.
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Proof. Let S denote the greatest common monic divisor of P and
Q. Then either S = 1 or degS > 1, in which case we denote
by wi,...,wg the distinct zeros of S with multiplicities sq,... , sg,
respectively. Hence, we may write

58 e
3e) = 9 =L@ -w.

where d > 1, Zlesi:nfd, T <Y <x2 <+ < Tg—1 < Yqg—1 < Tqg
if d > 2, with the usual understanding that empty products are equal
to one while empty sums equal zero. For u € R let R, = P — AQ) and
R,=P—pQ = Sép. Denote by z;(u), 1 < i < d, the zeros of }éﬂ,
which we label so that z;(0) = z; for 1 <7 < d. Since I?CH and C} have
strictly interlacing zeros if d > 2, all of these zeros are simple. We may
therefore use a computation similar to (6) to get
’ o Q(wz (N))
(9) zi(p) = =—— =
R, (zi(1))
Choose ¢ € R such that ¢ + ¢ # 0 whenever P(¢) = 0, and consider
the sequence of convex functions {f,,}2°_; given by fn.(z) = (z +¢)™.
Note that the complete list of zeros of R,, consists of w; —pu, 1 < j <k,
with multiplicities sy, ..., sk, respectively, and z;(u) — p, 1 <7 < d,
and that condition (8) reads Ry < R, for |u| < e. By Theorem 1 this
implies that the differentiable function

forpeR, and 1 <i<d.

d k
Ropur—= ) fulzilp) —p)+ Zijm(wJ' — )

i=1

has a local minimum at g = 0 for any fixed m € N. Differentiation
with respect to p and formula (9) then yield the identities

d ~
(10) Zl (1652,((?1)) 1> (Ii+0)m71 *Z Sj(wj+0)m71 =0 for m € N.

Jj=1
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From (10) and the choice of ¢, we deduce that the following relations
must hold:

k<d; Zg(wj):0for1§j§k;
d
H x —x;)", where n; =s; +1
i=1

if S(z;) =0 and n; = 1 otherwise;

Q(x)

and = =n; for 1 <3 <d.
P'(x;)

Using these relations and a partial fractional decomposition, we obtain

for all x # x;, 1 < i < d. It follows that Q = P’, as required. o

The proof of the necessity part of Theorem 4 is based on a criterion
for classical majorization due to Hardy, Littlewood, and Pdlya [12]. It
should be mentioned that there are no known analogs of this criterion
for multivariate majorization.

Theorem 5. Let X = (1 <23 <---<z,) andY = (y1 < y2 <
- < yp) be two n-tuples of real numbers. Then X <Y if and only if
z; and y;, 1 <1 <mn, satisfy the following conditions:

n n k k
in = Zyi and Zfﬂnﬂ' < Zynﬂ' for 0 <k <n-2.
i=1 i=1 i=0 i=0
Lemma 2. If P € H,, then there exists € > 0 such that for all real
X with |A| < € one has P(z) < P(z+ ) — AP'(z + )\).

Proof. We show first that for any P € H,, there exists ey = £1(P) >0
such that if A € [0,e1) then P(z) < P(zx + A) — AP'(x + A). Let
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ry < --- < mq denote the distinct zeros of P with multiplicities
ni,...,nq, respectively. Set S(z) = H?Zl(m — ;) L, P = P/S,
Q = P'/S,and Ry = P-)Q, A € R. Clearly, R, is a strictly hyperbolic
polynomial for all A € R. Denote its zeros by z;1(A),...,zq()), and
label these so that z;(0) = z;, 1 < ¢ < d. An argument similar to
the one used in the proof of Theorem 2 shows that all these zeros are
increasing functions of A. Moreover, by analogy with (6) and (7) and
some straightforward computations, we obtain

and

Ry

any a0 = (w;<o>)2[ b ﬁ} (2:(0))

I
3

[8e-5)- S 2

i Ly
j#i

d
for1 <i<d; Zmi’(O) =0;
i=1

and
k k d —
" 'Yy
z; (0) =2 ——— <0
Z ‘(0 ZZ T — &
i=1 i=1 j=k+1
if k<d-—1since z1 < -+ < x4.

Assume for now that A > 0, and set Ry = P — AP’ = SI?E)\. Let
zm(A), 1 < m < n, be the zeros of Ry, which we label as follows.

Given m € {1,2,...,n}, there is a unique i = i(m) € {1,...,d}
such that Z;;tn] < m < 3. ynj, where ng := 0. Then we

set zm(A) = z;, A > 0, if n; > 2and m < Zé.:onj, and we let
zm(A) = z;(A), A > 0, otherwise. Note that with this labeling we
have z1(A\) < z23(A) < -+ < 2z,(A) for any A > 0. Furthermore, if
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1 <m < n—1, then for all small A > 0, we get

i(m)—1

12) 30N 5= (m X n)rr o0

j=1 j=1 j=0
i(m)
ifm < Z nj,
j=0
> (50 -0 = 350 = 5 ( X0+ o)
Jj=1 Jj=1 Jj=1

i(m)

ifm= g n;.
j=0

From (11) and (12) we see that there exists €1 = &1(P) > 0 such that
if Ae0,e1) and 1 <m < n—1, then Z;n:l(zj()\) - < Z;’;l zj(0),
which is the same as

k k
Zzn_i(O) < Z (2n—i(A) = A) for A € [0,e1) and 0 <k < n —2
i=1

i = i=1

since Y7, (2;(A) —A) = 3°7_, 2j(0) whenever A > 0. By Theorem 5
this means that P(z) < P(z+X)—AP'(z+A) for X € [0,¢1), as required.
In order to complete the proof let Py(z) = (—1)"P(—z) € H,. The
above arguments applied to P; show that there exists some eo =
€2(P) > 0 such that P;(z) < Pi(z+ p) — pP(z+p) for all p € [0, €2).
Since Z(Pi(z+p) — pPl(z+p)) = —Z(P(x+A) — AP'(z+ A)), where
A = —p, it follows that P(z) < P(z + \) — AP'(z + X) for any real A
with |A\| < € := min(e1,e2). This finishes the proof of the lemma. o

Proof of Theorem 4. Let L be a polynomial pencil in H,, such that
there exists a shift £,(P,Q) of £ that satisfies the local minimum
property stated in the theorem with A\g € R and ¢ > 0. Set P(z) =

~

P(z+ X)) — MQ(z + Xo), Q(z) = Q(x + Xo), and g = XA — Ag. Clearly,
the local minimum condition translates into

o)

(z) < Pz + p) — pQ(z + ) for p € (—¢,¢).
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Applying Lemma 1 to the polynomial pencil L= {18 — ,u@ | v € R},
we get @ = P Hence, @ = P’ — M@, so that (P — X\Q) =
(P=X0Q)— (P—(Ao+1)Q) and thus £ is an LD-pencil by Definition 2.
Conversely, if £ is an LD-pencil in H,, with canonical basis { P, P’} then
Lemma 2 shows that the shift £,(P, P’) satisfies the local minimum
property stated in the theorem. a

Remark 3. The necessity part of Theorem 4 may also be seen as a
corollary of Theorem 6 below, where it is shown that LD-pencils in H,,
satisfy in fact a global minimum property with respect to the spectral
order. Note also that, unlike the property stated in Theorem 4, the
minimum property for (twisted) span functions obtained in Corollary 1
is not specific for the class of hyperbolic L D-pencils.

4. Spectral order and differential operators of Laguerre-
Pélya type. The monoid A,(R) = {T € EndII | T(H,) C H, } was
previously defined only for n > 1. Let us extend this notation to n = 0
by putting Ho = {1} C II and Ao(R) = {T € End II | T(Ho) = Ho}-
Given a nonconstant polynomial P € IT we denote by o(P) the sum of
the zeros of P. Set

and
A'={T e A|o(T(P)) =0o(P)if P €II, deg P > 1}.

Thus A is the largest monoid of linear operators that act on each H,
for n > 0 while A’ is the largest submonoid of A consisting of operators
whose action on I preserves the average of the zeros of any nonconstant
polynomial. As we already saw in Section 2, hyperbolic L D-pencils may
be described by means of a local minimum property that involves the
spectral order on R. More generally, the study of the relative location
of the zero sets Z(T'(P)) and Z(P) for T € A’ and P € H,, reveals some
interesting connections between the action of hyperbolicity-preserving
linear operators on the manifold H,, and classical majorization. Indeed,
the main result of this section shows that if n > 1 then any polynomial
in H,, is the global minimum of its .A’-orbit with respect to the partial
ordering on H,:

Theorem 6. Ifn > 1 and P € H,,, then P X T(P) for any T € A'.
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Before embarking on the proof let us point out that [7, Theorem 1]
and the Hermite-Poulain theorem yield actually a complete description
of the structure of the monoids A and A’:

Theorem 7. An operator T € EndIl belongs to A if and only if
T = p(D), where D = d/dz and ¢ is a real entire function in the
Laguerre-Pdélya class of the form

oo

(p(iL’) — e*a2z2+bz H(l _ akw)eaka:
k=1

with a,b,ap € R and ) 1 | o2 < oo. In particular, A is a commutative
monoid.

Corollary 4. The monoid A" consists of linear operators of the form
©(D), where D = d/dx and ¢ is a real entire function in the Laguerre-
Pdélya class given by

o(z) = e H(l — apxz)e*?

k=1

with a,ap € R and Y_p-; af < co. Thus, A= A" x (e’? | b€ R).

In view of Theorem 7 it seems reasonable to adopt the following
terminology: an operator 7' € End I7 is said to be a differential operator
of Laguerre-Pélya type if T = (D), where D = d/dz and ¢ is a
real entire function in the Laguerre-Pdlya class. Such operators were
studied in, e.g., [9] in connection with various generalizations of the
Pélya-Wiman conjecture. Since A’ contains only differential operators
of Laguerre-Pdlya type, it is enough to check that Theorem 6 is true for
the “building blocks” of these ozperators, that is, differential operators
of the form (1 — AD)e*” or e™* P with A € R. To do this we need the
following lemma.

Lemma 3. Letn > 2, x = (z; < -+ < z,) € R", and
P(z) = [[i-,(z — z;) € H,. For X\ € R, denote by §; = (i(A;x),
1 < i < n, the zeros of the strictly hyperbolic polynomial P — AP'. If
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these are labeled so that (;(0;x) = z;, 1 < i < n, then

9C;i G
(G(sx) — mj)28§j (A;x) = A2 84)\

for A#£0and1<1i,j <n.

(M%) >0

In particular, for any fived values ©1 < --+- < xp_1 and X # 0, each of
the functions (2,-1,00) D z, — (;(A;x), 1 < i < m, is increasing.

Proof. Let 1 <i,j <n, x € R", and set P(z) = (¢ — z;)Q(z). For
A € R we get

P(z) = AP'(z) = (z — z;) [Q(z) — \Q'(2)] — AQ(),
P'(z) = AP"(z) = Q(z) — 2)Q'(2) + (z — ;) [Q'(z) — AQ" (z)],
P(Gi(Xsx)) = AP (G(Asx)) = (GAx) — ;) Q(Gi(A3x)),

0G
and [P/(G)) ~ AP (G4 0)] B (g x) = P (GOxx).
The arguments in the proof of Theorem 2 show that if x is fixed then
for any X one has 9¢;(A;x)/0X > 0 and (;(\;x) # a2k, 1 < k < n, if
A # 0. By differentiating the identity

(G(Nx) —z5) [Q(G(Nx)) — AQ (Gi(Nx))] = AQ(Ci(A;x))

with respect to z; and using the relations listed above, we arrive at the
desired conclusion. ]

Proof of Theorem 6. The theorem holds trivially for n = 1 since
T|py, = Idy, if T € A’ by Corollary 4. Hence we may assume that
TecA and P € H,, with n > 2.

Step 1. P is strictly hyperbolic and T = (1—AD)e*P for some A € R.
Using the notations of Lemma 3 we denote the zeros of Pby z1 < -+ <
z,, and those of the (strictly hyperbolic) polynomial Py := P — AP’ by
G =¢i(Nx), 1 <i<n, where x = (21 < --- < z,) € R". We further
assume that the latter are labeled so that (;(0;x) =z;, 1 <i < n. As
in the first step of the proof of Theorem 2 we see that this labeling of
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the zeros yields (1(A\;x) < -+ < (u(A;x) for all A € R. By Theorem 5

the relation P < T'(P) is equivalent to the following inequalities:
J J
(13) ZQ)\X )Sinforlgjgn—l,
i=1 i=1

We now prove these inequalities by induction on n. Clearly, if P(z) =
z? + az + b with a,b € R such that a? > 4b, then

—2((1()\;x)—>\) =a++vVa2—4b+4)2>a++/a? —4b= -2z,
for A € R.

Thus, (13) is true for n = 2. Let n > 3 and assume that (13) holds
for all monic strictly hyperbolic polynomials of degree at most n — 1.
Then we may write

P(z) = (z—2,)Q(z) and Py(z)= (z —z,)Qx(z) — A\Q(z),

where
Q@) = [[(@ -2, Qu(2) = Q) )= 1 (o~ wx:),

:(x1<---<a:n_1)6R"71, wi(0;x')=mz;, 1<i<n-—1

Note that with this labeling we get w1 (A\;x') < ... < wp—1(A;x’) for all
A € R and that if we fix A then (;(\;x) — w;(A\;x) for 1 <i<n-—1
while (,(\;x) — o0 as z, — oo. By Lemma 3 and the induction
assumption applied to @), we obtain

J j j

D60~ ) < X (w0ix) -0 £

i=1 i=1 i=1
for A\#20and 1 <j<n-1,

which proves (13). We conclude that the theorem is true in this generic
case.

Step 2. The general case. Let P be an arbitrary polynomial in H,,,
and consider first an operator T of the form (1 — AD)e*P for some
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fixed A € R. As in the proof of Corollary 2 we denote by P. the
strictly hyperbolic polynomial with zeros zy + ke, 1 < k < n, where
e >0and z; < --- <z, are the (possibly multiple) zeros of P. By
Step 1 we have P. < T(P:) for all € > 0. Using a standard continuity
argument we see that the relation P < T'(P) is just the limit case ¢ — 0
of the aforementioned relations. Alternatively, we may approximate P
with the polynomial (1 — D)™ 1P, which is strictly hyperbolic for all
e # 0 by [9, Lemma 4.2]. Finally, if T' is an operator of the form e~ XD
with A € R, then

et (- 22 (1 2)er

m— 00 m m

since P < (1 — puD)e*P P for u € R. This completes the proof of the
theorem. a

Note that Theorem 7 and Corollary 2 imply that operators in A
do not decrease the span of hyperbolic polynomials. We can actually
deduce an even more general result from Theorem 6 and some well-
known properties of classical majorization. Recall that a function
F :R" — R is called Schur convez if F(X) < F(Y) for all X,Y € R”
with X <Y, cf, e.g., [14]. Clearly, any such function is symmetric on
R"™ and may therefore be viewed as a function on R"/X,,, where X,
denotes as before the symmetric group on n elements. Theorem 6 and
(11) yield the following conditions on the relative geometry of Z(P)
and Z(T(P)) for P € H,, and T € A’

Corollary 5. Letn > 2, P € H,, and denote the zeros of P by
Zl(P), 1 S 3 S n.

(i) If T € A, then minZ(T(P)) < min Z(P) and max Z(P) <

max Z (T (P)), so that A(P) < A(S(P)) for any operator S € A. All

these inequalities are strict unless T = S = Idyz.

(ii) The inequality (F o Z)(P) < (F o Z)(T'(P)) holds for any

Schur convez function F on R™/%, and any operator T € A'. In
particular, if f : R = R is a convez function then Y i, f(zi(P)) <

Yiny f(@i(T(P))).
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5. Related topics and open problems.

5.1. Toward an analytic theory of classical majorization.
Although we did not explicitly address the question of describing all
operators in the monoid A, (R), Problem 1 and the results of the
previous sections are certainly a good motivation for studying this
question. Indeed, these results show that even a partial knowledge
of operators in A, (R) can provide some interesting information on the
relative geometry of the zeros of a hyperbolic polynomial and the zeros
of its images under such operators. We therefore propose the following
general problem.

Problem 2. Let n > 2, and set Px = {Q € H, | P < Q} for
P € H,,. Define the monoid B, = {T € A,(R) | P < T(P) if P € H,}
and note that A’ C B, by Theorem 6 and that B,P C Py for all
P € H,,, where B,P = {T(P) | T € B,,}.

(i) Is the inclusion A" C B, strict for all n > 2? Describe all
operators in B,,.

(ii) Is it possible to describe classical majorization by means of the
action of linear (differential) operators on hyperbolic polynomials? In
other words, is it true that B, P = P for all P € H,, if n > 27

(iii) Characterize all operators in the monoid A, (R).

Using Corollary 5 it is not difficult to show that A'P C P whenever
n >3 and P € H,, is such that A(P) > 0, where A/'P = {T(P) | T €
A } In particular, if P is strictly hyperbolic, then A'P C Pg. Thus,
if the answer to the first question in Problem 2 (i) were negative, then
it would not be possible to get a description of the spectral order on
R as suggested in part (ii) of Problem 2. Nevertheless, it seems likely
that A’ C B, for n > 2.

Note also that an affirmative answer to Problem 2 (ii) would actually
provide a description of classical majorization which in a way would
be dual to the usual characterization by means of doubly stochastic
matrices (cf. Theorem 1): the former deals with the set Px = {Q €
H. | P < Q}, while the latter deals with the “polytope” P := {Q €
He | Q< P}, where P is an arbitrary polynomial in H,,. We refer to
[4] for a further study of these questions and related topics.
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5.2. Pencils of complex polynomials. The manifold C, is
a natural context for discussing possible extensions of the results
in Sections 1-3 to the complex case. Indeed, by analogy with the
hyperbolic case, we may view (C,, <) as a partially ordered set, where
the ordering relation < is now induced by the spectral order on n-tuples
of vectors in R?, cf. Theorem 1 and Birkhoff’s theorem. This means
that zero sets of polynomials in C,, are viewed as subsets of R? and that
if P,Q € C, then P < Q if and only if Z(P) < Z(Q). The following
example shows that if the partial ordering < on C, is defined in this
way then one cannot expect a complex analog of Theorem 6.

Proposition 1. Let P(z) =z" —1 and A € C*. Ifn > 5 and || is
small enough, then (1—AD)e’PP and P are incomparable as elements
of the poset (Cp, X).

Proof. Let z;()\), 1 < k < n, denote the zeros of (1—AD)e*” P, which
we label so that z(0) = 2 := e(?™*)/™ for 1 < k < n. Since zx()),
1 < k < n, are analytic functions of A in a neighborhood of 0, we can use
formulas (6)—(7) to show that 2(zx(A) = A) = 2z, + (n—1)Z A%+ O(A3),
1 < k < n. Hence,

n—1

lze(A) = A =1+

R(2:A%) + O(N?) for 1 < k < n.

It is geometrically clear that if n > 5 and A # 0 then there exist
distinct indices k1 and ks such that §R(2k1)\2) > 0 and §R(Zk2 )\2) < 0.
This implies that if n > 5 and |)\| is a small enough positive number
then |zx, (A) — A| > 1 and |z, (A) — A] < 1 for some 1 < k; # ky < n.
It follows that for these values of A\ there can be no inclusion relation
between the convex hulls of the zeros of (1 — AD)e*P P and P, so that
these polynomials are incomparable as elements of the poset (C,, <). O

We also note that the results of the previous sections concerning
hyperbolic polynomials are valid only for real values of the parameter
A

Proposition 2. For any n > 3 and 6 € (0,7) U (m,27), there
ezists € = £(n,0) > 0 with the following property: if A\ = re'® and

€ (0,¢), then one can find P € H,, such that P and (1 — AD)e*”P
are incomparable as elements of the poset (Cp, <).
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Proof. Given a function f : R? — R and z € C, we shall write f(z)
instead of f(z,y), where z = z+4y. Set I = (0,7)U(m, 27) and assume
first that 8 € I\ {m/2,37/2}. Let P be a strictly hyperbolic polynomial
in #, with zeros z;, 1 < j < n, and denote the zeros of P — AP’ by
zj(A), 1 < j < n, where X\ = re? and r > 0. If r is small enough, we
may label these zeros so that z;(0) = z;, 1 < j < n. Note that

— z;P"(2;) il
2 P'(z;) (n=1)
and

Z(A) — A=z +

by (6) and (7). Fix a € R such that |a| > |cot 26|, and consider the
convex functions fi, : R? — R defined by fi.(z,y) = (z+ay)?. Using
the above relations, we get

Fia(X) = Zf:l:a(zj()‘) - ) — Zfia(zj)

= r%(cos 26 + asin 26) Z
j=1

=n(n — 1)(cos 20 + asin 20)r? + O(r3).

zi P (25)

P'(z;) o)

Clearly, these formulas and the choice of a show that there exists
g1 = €1(n,0) > 0 such that F,(A)F_q(N\) < 0 whenever |A| € (0,e1).
By Theorem 1 we see that P and (1—AD)e*” P are incomparable with
respect to the partial ordering < on C,,.

Let us now consider the case when § € {m/2,37/2}, that is, A = bi
with b € R. Set P(z) = 2™ — 2"~ ! € H,,, and note that if |A| is small
enough then there is a unique zero of P — AP’ with largest real part.
We denote this zero of P — AP’ by z(\). A computation shows that
2(A) =X = 1+(n—1)A24+0O(A?) and so there exists e = £2(n) > 0 such
that R(z(A\)) = 1—(n—1)b2+0O(b*) < 1if |b| € (0,e2). Since n > 3 the
polynomial (1 — AD)e*P P has at least one zero at —\ ¢ R.. It follows
that in this case there can be no inclusion relation between the convex
hulls of the zeros of (1 — AD)e*’P and P. Thus, as in the proof of
Proposition 1 we conclude that these polynomials are incomparable as
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elements of the poset (Cy,, <). To complete the proof of the proposition,
we simply let ¢(n,0) = min(eq,€2). O

Propositions 1 and 2 suggest that complex generalizations of Theo-
rem 6, if any, should involve only classical majorization and real val-
ues of the parameter \. Using the computations in (11) and (12),
it is not difficult to show that if P is a polynomial in C, whose ze-
ros have distinct real parts then there exists ¢ = ¢(P) > 0 such that
RZ(P) < RZ((1— AD)e*’ P) if X is real and |A| < €. Based on exten-
sive numerical experiments, we make the following conjecture.

Conjecture 1. IfT € A and n > 1, then for any P € C, at
least one of the relations RZ(P) < RZ (T (P)), SZ(T(P)) < SZ(P) is
valid.

5.3. The Laguerre-Pdlya class of functions. There are several
known extensions of majorization to infinite sequences of real numbers
[14, page 16]. A natural question is whether these extensions could
yield infinite-dimensional analogs of Theorem 6. For this one would
need to find both a suitable set of functions in the Laguerre-Pdlya class
and an appropriate submonoid of A’ that acts on this set. One could
for instance consider the set of functions of genus 0 or 1 in the Laguerre-
Pélya class. Indeed, using [9, Lemmas 3.1 and 3.2] one can show that
this set is closed under the action of operators in .A’. Finally, it would
be interesting to know whether there are any analogs of Conjecture 1 for
transcendental entire functions with finitely or infinitely many complex
ZETos.

Acknowledgments. The author would like to thank George Csor-
das, Tom Craven and Rajesh Pereira for stimulating discussions on
these and related topics and the anonymous referee for useful com-
ments.

ENDNOTES

1. Note added in the proof. The question of describing all lin-
ear operators that preserve the set of univariate hyperbolic (real-
rooted) polynomials has been settled quite recently by the author
jointly with P. Brandén, Pdlya-Schur master theorems for circular
domains and their boundaries, to appear in Annals of Math., see
Www.arxiv.org/abs/math.CV/0607416.
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