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OSCILLATION THEOREMS
FOR CERTAIN EVEN ORDER
NONLINEAR DAMPED DIFFERENTIAL EQUATIONS

AYDIN TIRYAKI AND YASEMIN BA§CI

ABSTRACT. In this paper, we are concerned with a class
of nonlinear damped differential equations of even order. By
using the generalized Riccati technique and the integral aver-
aging technique, new oscillation criteria are obtained for every
solution of the equations to be oscillatory.

1. Introduction. This paper deals with a class of damped
differential equations of even order in the form

a—2 ‘(172

(= (t)

(1.1) <‘x("_1) & z0D (t))l +p(t) ‘m("_l) (t)
+F (t,a:(rm @) s s @ (Tom (8) s v s 2D (raiy (8)) -

2D (71 (1)) = 0

for t > tg, where
(i) n is even and m € Nj;
(ii) @ > 1 is a constant;
(iii) F : [tp,00) x R™ x R™ — R is a continuous function;

(iv) ki : [to,00) — R is a continuous function and lim;_, o, 79; (t) =
00, k=0,1,..., n—1,2=1,2,... ,m;

(v) p: [to,0) — [0, 00) is a continuous function and

t s 1/(a=1)
lim <exp {/ p(p) du}) ds = o0
t—o0 i i

for every t > ty.
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By a solution of equation (1.1), we mean a function z(t) € C" ([T,
o), R) for some T}, > t, which has the property that |z("~ 1 (¢)[*~2 x
(=Y (t) € CY([Ty, 0), R) and satisfies equation (1.1) at all sufficiently
large t in [T}, 00). Without further mention we will assume throughout
that every solution z(t) of (1.1) that is under consideration here is
continuable to the right and is nontrivial in the sense that sup{|z(t)] :
t > T} >0 for any T > T,. Such a nontrivial solution of (1.1) is called
oscillatory if it has an infinite sequence of zeros clustering at t = oo;
otherwise it is said to be nonoscillatory.

The oscillation problem for (1.1) with @ = 2 and for less general
equations has been studied by numerous authors. Indeed, the special
case

(1.2) (I 01"~ () + F (1,2 (g (1)) = 0

and other related equations have been the subject of intensive studies
in recent years because these equations are natural generalizations of
the equation

(1.3) " (t)+ F (t,z (g (t))) = 0.

For recent contributions, we refer the reader to [2-8, 13, 14, 18-21,
25, 26, 31, 32, 34, 37, 38] and the references therein.

An important tool in the study of oscillatory behavior of solutions
for the differential equations is the averaging technique. This method
goes back as far as the classical results of Wintner [35], where he gave
a sufficient condition for oscillation of the linear equation

(1.4) " (t)+q(t)z (t) = 0.

Wintner’s condition is

1 t s
lim—/ / q (1) drds = 0.
t—oo t to Jto

Hartman [16] who showed that the above limit cannot be replaced by
the super limit and proved that the condition
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—oo<hm1nf / / ) drds
to to
< limsup — / / ) drds < o0
t—o00

implies that equation (1.4) is oscillatory.

The results of Wintner were improved by Kamenev [17] who proved
that the condition

¢
limsupi/ (t—3s)"q(s) ds= o0

t—o0 to

for some v > 1 is sufficient for the oscillation of equation (1.4). In
1989, Philos [28] presented a new oscillation criterion for equation (1.4)
involving a Kamenev type condition.

Theorem A. Let H: D = {(t,s): t > s > to} — R be a continuous
function, such that

H(t,t)=0 fort>ty, HI(ts)>0 forall (t,s)€ D,

and has a continuous and nonnegative partial derivative on D with
respect to the second variable. Moreover, let h : D — R be a continuous
function with

_3_5 (t,s) =h(t,s)VH{Gs), (ts)€D.

Then equation (1.4) is oscillatory if

t
hirisogp H(tl 70 / {H (t,8)q(s) ds — ih2 (¢, s)} ds = 00

The above result of Philos has been generalized and extended for classes
of differential equations which are special cases of (1.1), and especially
in the absence of damping term [22, 23, 26, 29, 30, 32].
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Although there is an extensive literature concerning the averaging
methods for ordinary differential equations, there is less known about
higher order functional differential equations.

In 2001, Agarwal et al. [3] considered the nth order differential
equation with deviating arguments of the form

a—2

(1.5) <‘x("_1) (t) z=b (t))l + F(t,z(g9(t))) =0, mneven.

They gave some oscillation criteria for this equation which improve and
extend several known results established in [2, 4, 6, 8-13, 24, 27, 37|,
one of which is as follows:

Theorem B. Let
F(t,z)sgnz > q(t) |z’ forz #0 and t >t

hold with o = 3 where 8 > 0 is a constant and q(t) € C([ty,0), RT) is
a function. If there exist o,p € C*([to,00), R"), and a constant § > 1
such that

o (t) <inf{t,g(t)}, lim o (t) = co and o' (t) > 0

t—o0

fort >ty and for T > ty,

lim sup /t lp (s)g(s) — A0 (p' (5)" —| ds = oo,

tooo J (p(s)om=2(s) o’ (s))*

where A = (1/a)*(2(n — 1))~ then equation (1.5) is oscillatory.

The above result is interesting since it makes use of the averaging
technique for higher order functional differential equations. Indeed,
recently, in this direction some oscillation results have been established
by Xu and Xia [38] for equation (1.5) improving Theorem B and by
Wang [34] for equation (1.1) with o = 2.

Thus, it is a natural problem as to whether similar oscillation results
hold for equation (1.1). As far as we know, equation (1.1) has never
been the subject of investigations in this direction.
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Motivated by the ideas of Agarwal et al. [3], Wang [34], Wong [36]
and Tiryaki et al. [32], we obtain in this paper several new oscillation
criteria for equation (1.1) by using a generalized Riccati substitution
and the averaging technique. We extend and improve some earlier
criteria by allowing more general means along the lines given in [36)]
for second order differential equations. Our results are also extensions
of a number of existing ones for linear equations with damping, and
therefore will be of interest in oscillation theory.

2. Preliminaries. In order to discuss our main results, we introduce
the general mean and we present some properties, which will be used
in the proofs of our results.

Let D = {(t,s) : to < s < t} denote a subset of R?, and let
Dy = {(t,s) : to < s < t}. Consider a kernel function K (¢, s), which is
defined, continuous, and sufficiently smooth on D, so that the following
conditions are satisfied:

(K1) K(t,t) =0 and K(¢,s) > 0 for (¢,s) € D;.

(K3) 0K /s(t,s) < 0, -0K /ds(t,s) = A(t,s)(K(t,s))"/? for (t,s) €
D,, where 1/a+1/8 = 1.

(K3) 02K /0s0t(t, s) = 02K /9t0s(t, s) for (t,s) € D.
(K4) 0/0t(\(t, s)(K(t,s))~ ) <0 for (t,s) € D;.

(K5) For each s > tg, lim;_,o, K(¢,5) = 00, and there exist positive
constants ko, Ko such that

K (t
0< ko < lim M§K0<oo.
t— 00 (t,to)

A kernel function K (t, s) satisfying (K;) — (K4) satisfies the following
lemma, which may be proved as in [36].

Lemma 2.1. Let K(t,s) be a continuous kernel function on D
satisfying (K1) — (K4). If h € C [tg,00) and h(s) > 0, then

. (tl’ = /t K (t,5) h (s) ds

1s nondecreasing in t.
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Let p € C![tg,00) and p(t) > 0 on [tg,00). We take the integral
operator A2, which is defined in [36], in terms of K (¢, s) and p(s) as
¢
(2.1) AP (h;t) = / K (t,s)h(s)p(s) ds, t>T1>to,

where h € C[tg,00). It is easily seen that A” is linear and positive,
and in fact satisfies the following:

(22) A¢ (a1h1 + agho; t) = 061A¢ (hl;t) + 062A¢ (hg;t) R
(2.3) AP (h;t) > 0 whenever h > 0,
2.4)
AP (W5t) = —K (t,7)h () p(T) — AP ( Y G h;t> .
p

Here hy, ho, h € C'[tg, o0) and a1, ay are real numbers.

For an arbitrary positive £ € C'! [ty, 00), define the kernel function

(2.5) K(t,s)—(/:d—r>m, m>a-1,

£(7)
with ftooo(l/f(T)) dr = oo. For example, an important particular
case is £(7) = 7%, where o < 1 is real. When £(7) = 1 we have

K(t,s) = (t — s)™, and when £(7) = 7 we have K(t,s) = (In(¢/s))™.
It is easily verified that the kernel function (2.5) satisfies (K1) — (K5).
The following lemmas will also be needed in the proofs of our results.

The first is the well-known Kiguradze’s lemma. The second can be
found in [14, 27].

Lemma 2.2. Let u(t) € C™([tg,0), RT). If u(™(t) is of a constant
sign and not identically zero on any interval of the form [t*,00), then
there exist a ty > to and an integer [, 0 < I < n, with n + [ even for
u™(t) >0, or n+1 odd for u™(t) < 0 such that

1>0 implies that w® (t)>0 fort>ts, k=0,1,2,...,1—1
and

I<n-—1 implies that (—1)""u® (t)>0 fort>t4,
k=04Ll+1,...,n—1.
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Lemma 2.3. If the function u is as in Lemma 2.2, and
u™ D () u™ (£) <0 for every t > t,,
then for every 6, 0 < 8 < 1, we have

1 1
Z_lp- =
2 2

for all large t.

u(et)zﬂ[

(1) r_ [ (1)

Lemma 2.4. Suppose that the conditions (i)—(v) hold. Suppose
also that sgn F(t,2o1,--. yZom,--- sTn—11,--- sTn—1m) = SEN Ty for
zoizor > 0, 1 =1,2,...,m. Then if z(t) is a nonoscillatory solution
of (1.1), we have

() 2"V (t) >0  for all large t.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that z(¢) > 0 on [t1, 00) for some sufficiently
large t; > to since a similar argument holds also for the case when z(t)
is eventually negative. As lim; o, 70;(t) = 00, there exists t2 > ¢ such
that TOi(t) 2 tl, t Z tz, 1= 1,2,... s M. Hence, I(Tol(t)) Z 0, t 2 tz,
i=1,2,...,m. By (L.1), we obtain

(Je @ a0 @) +p @t @] e )
=—F(t,z(t01(¢)),.- .,z (tom (&) ,-.-,

™V (11 (), 2D (T im (t))> <0.

Multiplying this inequality by exp{ ftto p(p) du}, we obtain

<e><p {/t:p (1) du} ‘w("_l) (1)

Thus, it follows that exp{fti) p(p) du}z™= (t)|*~22=D(t) is decreas-
ing and z("~V)(t) is eventually of one sign, that is, either z(»=Y(¢) > 0

!

1) (t)> <0.

a—2
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for t > ty or there is t3 > to such that z(» 1) (t) < 0 for t > t3. The lat-
ter case is impossible, for if (=1 (¢) < 0 for t > t3, then on integrating
the inequality

exp {/t:p(u) du} (—w("‘” (I‘))CH

> exp {/tap(u) du} (—a™ b (t5))> 1

to

from t3 to t, we have

— 22 () + 2" (£3)

> (=2 Y (1)) /t: <exp {—/t:p(u) du}>1/(a_1) ds,

so on letting ¢ — oo and using the fact that (v), we get a contradic-
tion. O

3. Main results. We are now able to state the main results.

Theorem 3.1. Let conditions (i)—(v) hold, and assume that

(vi) F € C([to,o0) x R™*™, R) satisfies the one-sided estimate

F (t,201,.- yT0om,--+ >Tn—11,--- »Tn—1m) SGN To1
m a—1
Z(I(t)<2|$01|> fOTIOimOIZoa i:la27"'7m7

i=1

where q € C([tg,00),RT) and q(t) is not identically zero on any ray
[t*, 00);

(vil) there exist a nonempty subset J C {1,2,...,m} and o;(t) €
C*([tg, ), R), j € J, such that oj(t) < min{t, 70;(t)}, im0 0j(t) =
oo and oj(t) >0, t > ty, j € J.

Suppose also that K (t, s) satisfies conditions (K1) and (K2), and that
AP s defined by (2.1). If there exist a positive function p € C* [tg, o0)
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and a constant 0, 0 < 0 < 1, such that

l 1 a—1 1
1) Timsup———A42 (g
(31 Bnswp 2 7)Ao (q <9M (n,9)> oot

’ a
><{l )\Kl/"—kp—p‘} ;t):oo,
a p

22—n T 1
(n—2)!|2 2

where

M (n,6) = } L )= (1) (1),

jeJ

then every solution of (1.1) is oscillatory.

Proof. Suppose on the contrary that equation (1.1) has a nonoscil-
latory solution z(t). Without loss of generality, we may assume that
z(t) > 0 on [t;,00) for some sufficiently large ¢; > to since a simi-
lar argument holds also for the case when z(t) is eventually negative.
As limy oo 70,(t) = o0 and limy,o, 0(t) = o0, there exists t2 > ¢
such that 7o;(t) > t1, 0;(t) > t1, t > to, ¢ = 1,2,...,m, j € J.
Hence, z(70:(t)) > 0, z(oj(t)) > 0,t > t2,i=1,2,...,m, j € J. By
Lemma 2.4, there exists t3 > t» such that z(® V() > 0 for t > t3.
From (1.1) we obtain 2(™)(t) < 0 for t > t3. Moreover, g(t) # 0 on any
ray [t*,00) ensures that (™) (t) also has this property. Notice next that
the hypotheses of Lemma 2.2 are satisfied on [t3,00), which implies
that there exists t4 > t3 such that

(3.2) 2 (1) >0 and z™ Y (t) >0 fort>t,.

It is easy to check that we can apply Lemma 2.3 for u = z’ and conclude

that there exists t5 > t4 such that
22— 1 1

"(Bg; (£)) > ——— [ = Z
x(oj())_(n—Q)! [2 ‘ 2

> M (n,6) U;L—z (t) 21 ()

] o2 ()2 (o (1)

(3.3)

for 8 € (0,1), t > t5 and j € J. Define

_ a1 () o
(3.4) w(t) = <m> '
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Then differentiating (3.4) and making use of (1.1), (3.3) and (vi), it
follows that

W () = — E2 O 2 om @) 2 D013 (O) 207D (7 im (9)

- (Zjer(aaj(t)))a_l

p(®) (=D (1)
(ZJEJ x(ggj(t))) o
(2D )" >, o (1) (80;(t))

—(a—1)6

(550, 00,0)”
< g Ea®) ™
(e 260, (2))

— (@ =1)0M (n,0) o (t) w™/ >~V (1),
that is,
(35) q(t) < —w' () —p @) w(t) — (a — 1) M (n, 8) @ (t) w*/ @V (t)

for all t > t5. Thus, for all ¢ > t5, applying the operator Af to (3.5)
and using (2.4), we obtain

A7 (g1) < K (865) p (t5) w (t5)
!
+ Afs( [—)\Kl/a + £ —p] w
p
— (a—1) M (n, 8) puw/ =1, t>

< K (t,t5) p(ts) w(ts)

/
(e

(3.6)

— (o — 1) M (n, 6) pw/ (=1, t>.
For given ¢ and s, set

!
Fy (u) = AK—U&*F%—p

u—(a—1)0M (n,0) pu®/ @Y 4> 0.
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F;(u) obtains its maximum at

a—1

/
)\K_l/o‘—i—p——p
p

1 R
u =
abM (n,0) px1

and
(3.7)

1 el 1
Fl(u)gFlmax:<9M(n,9)> (Pa_l {a

Then we get, by using (3.7) in (3.6),

A} (g;t) < K (t,t5) p(ts) w (t5)
P 1 ot
(3.8) + Ats( <0M (n,9)>

1 1 ! «
x a_l{— )\Kl/a—i-p——p‘} ;t>.
@ o P
Hence, for all t > ts,

1 el 1 0 o
AP — — )\K_l/a L -t
b (q <9M(n,9)> pot {a T p‘} ’ >
<K (

tyts) p(ts) w(ts) < K (t,t0) p(ts) w(ts).

Take the function

it is easy to see that, for all ¢t > t5,

A7 (hit) = A7 (h;ts) + A7 (h;t)
< AD (g5ts) + K (t,t0) p (ts5) w (t5) -

Therefore,
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- L 1 |
im sup —4——— —
S K (o) o\ \ oM (n,0))  pot

1 ! o
i)
o p

g/5q(s)p(s)ds+p<ts>w<t5><oo,

to

which contradicts condition (3.1). This completes the proof. O

A close look at the proof of Theorem 3.1 reveals that condition (3.1)
may be replaced by the conditions

(3.9) lim sup

4AP ) =
PRI K(t,to) to (Q7 ) 0.9

and

1 1
3.10) L AL
U e S T <<P“1

/
)\K_l/o‘—l—p——p
p

(e
;t> < 00.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied except
that condition (3.1) is replaced by (3.9) and (3.10). Then every solution
of (1.1) is oscillatory.

This leads to the following result.

Theorem 3.2. Let conditions (i)—(vii) hold. Suppose also that
K(t,s) satisfies conditions (K1)—(K5), and that A? is defined by (2.1).
If there exist a positive function p € C! [tg,00) and nonnegative func-
tions @1, P4 € C [ty,0) and a positive constant 0 such that, for T > ty,

(3.11) lim sup

AP (g;t) > @
P K(t,to) -r(q )— 2(7-)

and

1 1
3.12 li AP
312 Jim et (o

/
)\K_l/a—l—p——p
p

a5t>§‘1)1(7),
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where p(t) =3¢, U;-’_2(t)09-(t), @y and Py satisfy

(3.13) o
a—1 af(a—1
1 1 1
lim ———A [p~ /e Vo) — — [ ——— ) & ot
oo K (t,0)" to|” P52 7 e \ M (n, 0) 1,
—OO,

with [®(t)]+ = max{®(t),0} and 0 < 8 < 1, then every solution of
(1.1) is oscillatory.

Proof. We proceed as in the proof of Theorem 3.1 and return to
inequality (3.8). Dividing (3.8) through by K (¢,tp), we obtain

. ) | 1 1 a—1 1
B T @Y - T <0M(n,9)> a*

x AP ! it <K(t’t5)
ts (pafl ’ —

K (ta tO)
Taking lim sup in (3.14) as t — co and noting from (3.11), (3.12) and
(K5) for t5 Z to that

p(ts) w(ts)-

!
)\K_l/o‘+%—p

1

@, (t5) — <W> . aia(}l (ts) < Kop (ts) w (t5),

it follows that

/(e t
Ko/ ¢ (ts)

+

< o (ts) w7 (t5) .

To reach a contradiction from the foregoing and condition (3.13), we
need to show that
1

: = pp a/(a—1),
(3.15) tl;rgo K(t,to)At"’ ((pw ,t) < oo0.
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Returning to (3.6) and rearranging, we obtain

(3.16) AL, (a5) + A7, ((@ = 1)6M (n,6) p {w™/ @D

1 1 !
: HGER R )

(a—1)0M (n,0
S K(t,t5)p(t5)w(t5).
Set
o 1 s s —-1/a M_ s
) = et o ) K )
and
b(s)=w(s).
Using the Young inequality, we get
1 L YL S

617 oy PA 5

1 1 hgver? _ |

=4 K(a—l)@M(n,@)) v ‘AK T p]

LoD e,
(0%

Substituting (3.17) into (3.16), we obtain

(a—1)0M (n,H)Afs <(pwa/(a—1);t>
6%

1 1 a—1 1 «
AP lg— = it
+ 4 (q a((a -1)0M (n,9)> pa-l ’ >

S K(tts)p(ts)w(ts) < K (tto) p(ts) w(ts) -
As in the proof of Theorem 3.1, it can be easily shown that
;t>

(3.18)

/
AK Ve £
p

a—1)0M (n,0 o/ (a—
(3.19) ( )a ( )Afo <<pw / 1);t>

1 1 aml
P I
*A“(q a((al) oM (n,e>> o

< K (t,to) {(o‘ — DM (n,0) /t5 o (5) p (s) w @D (5) ds

[0 to

o [ st o)

to

/
)\K_l/"‘—i—%—p
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Dividing (3.19) through by K(t,ty), we note that by Lemma 2.1, and
(3.11), (3.12) and (3.19), the following limits exist and are finite:

1
- o (o (@=1).
Jim K(t,to)AtO (‘Ow ’t) )
1

1
lim AP
t—oo K (tatO) 0 (pail

;t> .
Thus we can take the limsup in (3.19) as ¢ — co and obtain, by (3.11)
and (3.12),

/
)\K_l/a—i—%—p

(@ 1)6M(n,6) 1
h?f.‘.fp a K (t,to)
< DOV [ ) p o) ()7 23 1)

(0% to

+é ((a— 1)91M(n’9)> i (to) + p (ts) w (t5)

+/5q(5)p(5) ds < oo.

to

Afo (g@wa/(o‘fl); t)

This gives the desired contradiction to (3.13) and completes the proof. O

Now, we consider the following special case of equation (1.1), namely,

(3.20) (x("‘” Ol (t))l ) o @

+q(t) f(z(r01(t)) =0, n even,

where f € C1(R, R) is such that uf(u) > 0, u # 0. We can also prove
the following theorems analogous to Theorems 3.1 and 3.2, respectively.

Theorem 3.3. Let the conditions of Theorem 3.1 be satisfied except
that the condition (vi) is now replaced by

/()
[ (7Y

(3.21) >B >0, u#0,
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where 1 is a constant. If

lim sup

t—o0 K(:, tO)AfO <q - <01\§02n_, 6})),6’1>a1 (0772 (1) ifl )"
‘ o

1 /
x{— )\Kl/“—i-p——p} ;t):oo,
(6

then every solution of (3.20) is oscillatory.

Proof. Suppose to the contrary that equation (3.20) has a nonoscil-
latory solution z(t). Without loss of generality, we may assume that
z(t) > 0 on [t1,00) for some sufficiently large t; > to. It follows, as in
the proof of Theorem 3.1, that there exists t4 > t; such that

(1) >0 and ™Y (t)>0 fort>t,.

Define 1
(n=1) ($))*™
wiy= & W)
f (2 (001 (2)))
Then, for ¢ > t4, by (3.20) and Lemma 2.3, we find that
(3.22)

w' () < —q(t) —p(t)w(t)
o7 2 (8) of (1) (&1 ()" f' (x (801 (1))
12 (z (801 (1)) '

Because of condition (3.21) and z'(¢t) > 0, (3.22) implies that w(t)
satisfies the differential inequality

—6M (n,0)

q(t) < —w' () ~p(t)w(t) - F10M (n,0) 0772 () o (¢) (1) w7 (2).

Then, we can complete the rest of the proof by the procedure of the
proof of Theorem 3.1. O

From Theorems 3.2 and 3.3 we present the following theorem. We
omit the proof because it is similar to those of the theorems cited above.

Theorem 3.4. The conclusion of Theorem 3.2 remains valid for
equation (3.20), if condition (vi) is replaced by (3.21).
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Finally, we consider the following second order differential equations

(3.23)
(1" @122 () +p (&) |2 O (O+F (8,2 (701 (), (102 (1)), -
2 (rom (£)) 2 (701, (8) @' (702 (8)) - @' (rom (1)) = 0

and
(3.24)

(r@1e W22 (1)) +p @) | (1)’ (1) +a(0) f (= (1)) = 0.

Equation (3.23) is the special case of (1.1) with n = 2. We can obtain
sharper conditions than the condition (3.1) for equation (3.23), and
the oscillation criteria for (3.24) do not depend on the signs of the
coefficients p and/or g.

Theorem 3.5. Suppose that (ii)—(vil) hold, and let K(t,s), p and
AP be the same as in Theorem 3.1. If

(3.25)
1 1 1. P o
limsup ———Af ——{— AK Ve B ‘} it
t—)oopK(tatO) e (Z U')a_l “ p P
JjeEJ 7]

= ()o7
then every solution of (3.23) is oscillatory.

Proof. Without loss of generality, we may assume that there exists
a solution z(t) > 0 on [t1,00) for some sufficiently large t; > to. It
follows, as in the proof of Theorem 3.1, that there exists t3 > ¢; such
that '(t) > 0, 2" (t) <0, t > t3. Define

(3.26) w(t) =
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Then differentiating (3.26) and making use of (3.23) and z'(¢t) <
z'(o;(t)), j € J, it follows that

(@ ()" Yjes ' (0 () o (1)
(Sjesz o)

(& ()" Ljes 7} (8

(Sjeszlos @)

w'(t) < —q(t) —p()w(t) — (¢ —1)

<) - pBw() (1)

that is,
a(t) < —w(t)—pB)w(t) — (a—1) (Zvﬁ- (t)>wa/<al> @
JjEJ

for all t > t3. The rest of the proof is similar to that of Theorem 3.1,
so we omit the details. O

Theorem 3.6. Suppose that r,p,q € C([to,0),R), r(t) > 0,
zf(z) >0, f'(z) exists and

(327) |f (x)|{aEa;))/(a—1) > /62 > 07 €T # 07

and B2 is a constant. Let K(t,s), p and AP be the same as in
Theorem 3.1. If

1 a—1\*"1
3.28 limsup ———— 47 — | ——
(3:28)  Bmsup 2 o) Ao (q ( B )

1 /
xr{— ‘,\K—l/“ +£2_2
o p T

o)

Proof. Without loss of generality, we may assume that there exists a
solution z(t) > 0 on [t1,00) for some sufficiently large ¢; > to. Define

then every solution of (3.24) is oscillatory.

(3.29) w(t) = r(t) |z’ ()" (t)
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Then differentiating (3.29) and making use of (3.24) and (3.27), it
follows that

t
f x(t)) ’I"il/(ail) |U) (t)‘a/(a—l)

W () = —q (1) - p“; (t
|

(
‘f( (t)) (a—2)/(a-1)
<—q(t) - pgt; (t) — Bor~ Y (@=1) gy ()| /@~ D

for all ¢ > ¢;. The rest of the proof is similar to that of Theorem 3.1,
so we omit the details. O

Theorem 3.7. Suppose that r,p,q € C([to,o0),R), q(t) > 0,
r(t) > 0, and f € C(R, R) such that

(3.30) @ > Bs]z|** >0, x#£0,

and B3 is a constant. Let K(t,s), p and AP be the same as in

Theorem 3.1. If
o)

(3.31)
Proof. Without loss of generality, we may assume that there exists a
solution z(t) > 0 on [t1,00) for some sufficiently large ¢; > tg. Define

lim sup

1 I PP
— AP —pd K Ve B E
t—oo K (t,t0) o <ng " { @ ‘ " p T

then every solution of (3.24) is oscillatory.

RGN0 i a0)
. O ke

Then differentiating (3.32) and making use of (3.24) and (3.30), it
follows that

=g TED 20,0 oy rO O



1030 AYDIN TIRYAKI AND YASEMIN BASCI

for all t > t;. The rest of the proof is similar to that of Theorem 3.1,
so we omit the details. O

Remark 3.1. Our results are presented in a form which is essentially
new. We also mention that we do not assume that the functions 7x;(t),
k=0,1,...,n—1,7=1,2,... ,m, in (1.1) are of retarded, advanced
or mixed type. Hence, the above Theorems 3.1 and 3.5 may hold for
ordinary, retarded, advanced or mixed type equations.

Remark 3.2. When p(t) = 0 and F(t,Z015- -+ y@omy -« s Tne11y--- 5
ZTn—1m) = F(t,z01), Theorem 3.1 gives Theorem 2.1 in [38]. Also,
when o = 2, Theorems 3.1, 3.5, 3.6 and 3.7 give Theorems 2.1, 2.4, 2.5
and 2.6 in [34], respectively.

Remark 3.3. For n = 2, 791(t) = t and K(t,8) = (t — s)™ from
Theorem 3.3, we obtain Theorem 6 in [1], with ¢(x(t)) = 1 and
r(t) = 1.

Remark 3.4. In the special case of equation (3.20) withn = 2, p(¢) =0
and 791 (t) = t, Theorems 3.3 and 3.4 are the same Theorems 3.1 and
3.2 in [32] with ¢(z(¢)) = 1 and r(t) = 1, respectively.

Remark 3.5. When n = 2 and a = 2, Theorem 3.5 extends and
improves Theorems 1 and 2 of Rogovchenko [29]. Also, Theorem 3.6
gives Theorem 1 in [36], respectively.

Remark 3.6. Note that in the special case of equation (3.24) with
f(z) = |z|*~2z, the condition (3.27) is satisfied. Then Theorem 3.6
gives the main Theorem 2.1 given in [23].

Remark 3.7. For p(t) =0, p(t) = 1 and K(t,s) = (t — s), we may
derive Corollary 3.2 in [33] from Theorem 3.3.

Remark 3.8. The above Theorems 3.6 and 3.7 extend and improve
Theorems A and B of Grace and Lalli [14], the theorems of Yeh [39,
40], and Theorem 1 of Philos [28].
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4. Examples. In this section we will show the applications of our
oscillation criteria with two examples. We will see that the equations in
the examples are oscillatory based on the results in Section 3, though
the oscillation cannot be demonstrated by the results in [1-14, 16-40]
and most other known criteria.

Example 4.1. Consider the even order nonlinear equation

a—2 ! a—2
a1 (t)> +%‘x(”*1> @ ="V (@)

(4.1) <‘m(”1) (t)

(1+ cos?t) ot o 1
(2 + cos?t) (n/2+sin2t)| (t = 2m)| (1+1+(x(t—2ﬂ'))2>

1+Z( tzm)ﬂ —0, t>2nn,

where n is even, 1 < a <7,0 < u < a— 1. In fact, let

z (t — 2m)

701 (t) = (t — 2m), p(t)=t" and K (t,s)=(t—s)"
for t > s > ty. It is easy to see that the conditions (i)—(vii) hold and
p(t)=op 2 () oy () = (t—2m)" 7,

Then,

. 1 ¢ o (1+00523)
hmsupm/to(ts) s ((

t—o0 24 cos? s) (n/2 +sin” s)

vk
S

K
t—s S

(ot 1
OM (n,0) (s — QW)("—Q)(Q—U a
1

> lim sup

P
t—oo  (t—to)”

t o Y a
% / 2(t S) S - Y — (tis)'yfa s ) ds = 0o
to 3n+6 a® (0M (n,0))

Consequently, all conditions of Theorem 3.1 are satisfied and hence
equation (4.1) is oscillatory. In particular, observe that x(t) = cost is
an oscillatory solution of (4.1) with n = 4k + 2, « =2 and p = 0.
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Example 4.2. Counsider the differential equation

a—2 ! a—2
(4.2) <\w(”‘” t) 2y (t)) +%‘m("_1) @ 2™V @)
a—2
t t
where n > 4 is even, @ > 1, 0 < p < ag, ap := min{(n — 2) x

(a—1)—a,a—1} and g € C([1,00), R"), Here, we choose o1 (t) = t/4,
p(t) =t* and K(t,s) = (t — s) for t > s > 7 > 1, such that
c

a<y, pt)et) =5, c>0.

It is easy to see that the conditions (i)—(vii) hold and

o) =721 (1) = - (g)

From Theorem 41 in [15] we see that

(t—s)" >t —yst?™!, t>s.

Then,
t
lim su t—35)"p(s)q(s) ds
meup o> [ (t=9)p()a (5
> limsu ;/t(t"’— st7)£d$>E
jtl t_yoop (t _ 1)’)’ . Y 82 - T’

(e}

2(2n72)(a71)
ds

1 ¢ .
1 - - _ H
A, (t—l)V/T (t=9) s e

a9(2n—2)(a—1 t
2 e (t = 5)70 (D) g
~ t—oo (t — T)’Y -

a9(2n—2)(a—1) —a [t
< lim 22T e (1 _ Z)” sh—(n=2)(a=1) g _ .
T t—oo (t — 7_)’7 t -

S

T B
t—s S
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Therefore,

1 1 c
¢ (s) =p2(s) — O‘—QW% (s) = .

Hence, we obtain

1 t 1 /cye/(a-1)
li - t— Y op—(pa/a—1)+n—2 (_) d
im TR /1 (t—s)"s 5=z | s

t—o0
oo/ (a=1)

t
> —_ —8)" ds = oo.
tl_mo 2 (1)) /1 (t—s)" ds =00

Therefore condition (3.13) is satisfied. Consequently, by Theorem 3.2,
equation (4.2) is oscillatory.

Acknowledgments. The authors thank the referees for their valu-
able comments.
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