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A GENERAL FIXED POINT THEOREM
FOR MULTI-VALUED MAPPING
IN UNIFORM SPACE

D. TURKOGLU AND B.E. RHOADES

ABSTRACT. We establish a general fixed point principle
which includes known fixed point theorems in uniform spaces.
Then examples show that this theorem includes known fixed
point theorems and also yields a new theorem.

1. Introduction. A fixed point theorem for multi-valued contrac-
tion mappings was proved for the first time by Nadler [15]. Since then,
many authors have given generalizations of this theorem in various
forms, such as the one given by Wegrzyk. Wegrzyk has applied fixed
point theorems to the proof of multi-valued functions and functional
equations [25].

Uniform spaces form a natural extension of metric spaces. An exact
analogue of the well-known Banach contraction principle in uniform
spaces was obtained independently by Acharya [1] and Taraftar [21].
Since then a number of fixed point theorems for single-valued and multi-
valued mappings using various contractive conditions in this setting
have been obtained ([2, 6-10, 12-14, 18-20]). In this paper we first
prove a fixed point theorem for a multi-valued map in hyperspace. Then
examples show that this theorem includes known fixed point theorems
and yields a new theorem.

Let (X,U) be a uniform space. A family P = {d; : ¢ € I} of
pseudometrics on X with indexing set I, is called an associated family
for the uniformity ¢/ if the family

B=A{V(ir):ie I,r >0}

where
V(i,r) ={(z,y) : x,y € X,ds(z,y) <7}
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is a subbase for the uniformity &/. We may assume [ itself to be
base by adjoining finite intersections of members of 3, if necessary.
The corresponding family of pseudometrics is called an augmented
associated family for ¢/. An augmented associated family for I/ will
be denoted by P*. For details, the reader it is referred to Taraftar
[21], Thron [22], Acharya [1], Mishra [11], Rhoades [19], Tiirkoglu
and Fisher [23], Weil [26], Angelov [3] and Angelov and Donchev [4].
From now on, unless otherwise stated, X will denote a uniform space
(X,U) defined by P*.

Let A be a nonempty subset of a uniform space X. Define
A*(A) = Sup{di(xay) 1T,y € Aal € I}
where {d;(z,y) : i € I} = P*. Then A*(A) is called an augmented

diameter of A. Further, A is said to be P*-bounded if A*(A) < oo, see
[11].

Let

2X = {A: A isanonempty P*bounded subset of X}.

For any nonempty subsets A and B of X, define

d;(z,A) = inf{d;(z,y) : a € A,i € T},
H;(A, B) = max{sup d;(a, B),supd;(4,b)}
acA beB

= sup{|di(z, A) — di(z, B)|}.
zeX

It is well known that, on 2%, H; is a pseudometric, called the Hausdorff
pseudometric, induced by d;, ¢ € 1.

Let (X,U) be a uniform space, and let U € U be an arbitrary
entourage. For each subset A of X, define

UAl={ye X : (x,y) € U for some x € A}.
The Hausdorff uniformity 2% on 2% is defined by the base

2 —{U:Uecu}
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where

U={(4,B)c2¥X x2X : ACU[B],B CUIA]}.

The augmented associated family P* also induces a uniformity {* on
2% defined by the base

B8 ={V*(i,r):iel,r >0}

where

V*(i,r) = {(A,B) € 2% x 2% : H;(A,B) < r}.

The uniformity 2“4 and * on 2X are uniformly isomorphic. The space
(2%,U*) is thus a uniform space called the hyperspace of (X,U). There
exist other bases which could be used to generate uniformities on X as
well as 2% see for details, [5, 16, 17].

The following theorem was proved in [25].

Theorem 1 [25]. If (Y,d) is a complete metric space and F : X —
CL(Y) is a multi-valued function which satisfies the inequality

D(Fz, Fy) < ¥(d(z,y))
for all z,y in X and for some strictly increasing function ¥ such that

lim U*(t) =0

k— oo

for every t, then

(a) for every yo € Y and for every fixed pointy € Y of F, there exists
a sequence of iterates of F at yo which converges to y.

(v) If )
Z TF(t) < oo,
k=1

for t > 0, then the set of fized point of F is nonempty.

In this theorem ¥ : [0, 00) — [0,00), D is the Hausdorff metric and

CL(Y) ={A: Ais closed in Y}.
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Now we are going to formulate the following.

Theorem 2. Let (X,U) be a complete Hausdorff uniform space
defined by {d; : i € I} = P* and (2%,U*) a hyperspace. Let
F : X — 2% be a continuous mapping and Fx compact for each x
in X. Assume that

(1) H;(Fz, Fy) < K(M;(z,y))
forallie I and z,y € X, where

M;(z,y) = max{d;(z,y), di(z, Fz),di(y, F'y), di(z, F'y), di(y, F)},
K : [0,00) = [0,00),K(0) = 0,K(t) < t for all t € (0,00) and K is
nondecreasing. Then there exists a z in X with

oo

Z K" (d;(zg, F'zp)) < 0.

n=1

Note that in this theorem K is not assumed to be continuous and
K" (t) = K(K"1(t)).

Proof. If z € X, then d;(2,Fz) = 0, 0 = K(0) = K2(0) = ---
K™(0) =--- for each ¢ € I and

Let 2o € X and x; € Fx( be arbitrary. Suppose that there exists x
such that

Z K”(di(azo,Fwo)) < o0
n=1

for each 7 € I.

Let U € U be an arbitrary entourage. Since (§ is a base for U,
there exists V' (i,7) € B such that V(i,r) C U. Now y — d;(zo,y)
is continuous on the compact F'zy, and this implies that there exists
an z; € Fzg such that d;(xzp,z1) = d;(xo, Fzg). Similarly, Fz; is
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compact so there exists an o € Fx; such that d;(z1,z2) = d;(z1, Fx1).
Continuing, we obtain a sequence {z,} such that z,,; € Fz, and
di(mn7$n+1) = dz(mna Fxn)

Noting that K is nondecreasing and using inequality (1), we have

di(xnamn-i-l) = dz(l'naFwn) < Hi(FfL'n—lann)
< K(max{d;(zn—1,2n), di(Tn 1, Frn_1),
di(Tn, Fxy),di(tn 1, Ftn),di(Tn, Fr,1)})

which implies that
(2) di(Tn, Tny1) < K(max{di(zn—1,Tn), di(Tn, Tny1)})-

Suppose that d;(zn, Znt1) > di(zn—1,x,) for some n. Then, from (2)
and K (t) <t for all t € (0, 0c0), we have

di(@n, Tnt1) < K(di(2n, Tnt1)) < di(Tn, Tnt1),
which is a contradiction. Therefore, we have

dz(xnflaxn))
dz(xn—laFIn—l))
Hl(an—QaFwn—l))
(dz(xnfbwnfl))

di (xna anrl)

ﬁ,iAA

VAN VAN VAN VAN

K"(di(xo, Il)) = K"(dz(mo, FI()))
Hence, we obtain

di (.Tn, xn+m) S di(wna xn+1) + di(xn+17 mn+2) +

+ dz (xn+m717 anrm)
n+m—1

S Z Kk(di(aﬁo,F.I'o)).

k=n

Since

ZK” :l?o,Fmo)) < 00,
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it follows that there exists a p such that d;(zn,zm,) < r and hence
(Tp,Tm) € U for all n,m > p. Therefore, the sequence {z,} is a
Cauchy sequence in the d;—topology on X.

Let S, = {z, : n > p} for all positive integers p, and let 8 be
the filter basis {S, : p = 1,2,...}. Then since {z,} is a d;-Cauchy
sequence for each ¢ € I, it is easy to see that the filter basis 3 is
Cauchy filter in the uniform space (X,U). To see this we first note
that the family {V(i,r) : ¢ € I} is a base for U as P* = {d; : i € I}.
Now, since {z,} is a d;-Cauchy sequence in X, there exists a positive
integer p such that d;(z,,z,;,) < r for m > p,n > p. This implies that
Sp x Sp C V(i,7). Thus, given any U € U, we can find an S, € 8 such
that S, x S, C U. Hence, 3 is a Cauchy filter in (X, ). Since (X,U)
is a complete Hausdorff space, the Cauchy filter 3 = {S,} converges
to a unique point z € X. Consequently, F'S, — Fz (follows from the
continuity of F'). Also,

Spi1 € F(Sp) = | J{Fzn : n > p}

for p=1,2,.... It follows that z € F'z. Hence, z is a fixed point of F.
This completes the proof. ]

To apply Theorem 2, one needs a nondecreasing function K and z in
X with

o0

Z K"(d;(z,Fz)) < oo.

n=1

The following examples satisfy these conditions and therefore illus-
trate the generality of Theorem 2. Let X denote a complete Hausdorff
uniform space defined by {d; : i € I} = P* and

M;(z,y) = max{d;(z,y), di(z, Fx),d;(y, Fy), di(z, Fy),di(y, Fz)}

for all z,y in X.

Example 1. Suppose 0 < \; < 1. Let K(M;(z,y)) = \iM;(z,y)
for all z,y € X. Then H;(Fz,Fy) < K(M;(z,y)) = \;M;(z,y) and
K"(d;(z,Fz)) = A\'d;(x, Fz) for any = in X. It is known that there
exists a z with z € F'z without assuming that F'z is compact.
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Example 2. Suppose that F' satisfies

for all z,y in X, where ® : [0,00) — [0,00) and ® is nondecreasing.
Then K(M;(z,y)) = M;(z,y)®(M;(z,y)), K is nondecreasing, and
K : [0,00) = [0,00). It follows by induction that K™(¢) < ¢[®(¢)]",
since ®(¢) < 1 and

iK"(t) < 0.

Example 3. Consider K(M;(z,y)) = M;(z,y)@(M;(z,y)) for all
z,y in X, where ® : [0,00) — [0,00),®(¢t) < t for t < 1. Tt follows
that K™(t) < ¢[®(¢)]". If K is nondecreasing, then Theorem 2 can be
applied.

Example 4. K(M;(z,y)) = M;(z,y)®(M;(z,y)) for all z,y in X,
where @ : [0, 00) — [0, 00), ®(aM;(z,y)) < a®(M;(z,y)) for ¢ € (0,1).
If &(t) < 1, then K"(t) < K(t)[®(¢)]" for all n > 2.

Assume that K is nondecreasing, K is convex on [0, 1) and K (M;(z,y))
< M;(z,y) for all z,y in X. If t <1, K(t) <t forall 0 <t < 1. Then
K(t) = at for some 0 < a < 1. It can be shown that K"(t) < a™t for
all n and thus

iK”(t) < oo0.

Theorem 3. Let (X,U) be a complete Hausdorff uniform space
defined by {d; : i € I} = P*, let F : X — 2% be a continuous multi-
valued mapping and Fx compact for each x in X. Assume that

where ¢ > 1, then F has a fized point in X.

Proof. Let K(M;(z,y)) = [M;(z,y)]? for all z,y in X. Then
K(0) = 0 and K is increasing, K(t) < t if ¢t < 1 and K is convex.
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If t = d;(z, Fx) <1, then
Z K"(t) < o0
n=1
from the previous example. Also F is continuous, so Theorem 2 applies.

Remark 1. If we replace with M;(z,y) in Theorem 2, Theorem 3 and
Example 1—5 in the uniform space (X,U) by d;(z,y), then the result
of Tiirkoglu et al. [24] will follow as special cases of our results.

Acknowledgments. The authors are grateful to the referees for
their valuable comments in modifying the first version of this paper.

REFERENCES

1. S.P. Acharya, Some results on fized point in uniform space, Yokohama Math.
J. 22 (1974), 105-116.

2. V.V. Angelov, Fized point theorem in wuniform spaces and applications,
Czechoslovak Math. J. 37 (1997), 19-32.

3. ———, Fized points of multi-valued mappings in uniform spaces, Math.

Balkanica, New Series, 12 (1998), 29-35 (see page 31).

4. V.G. Angelov and Tz. Donchev, On the mentral functional differential inclu-
sion, J. Nonlinear Anal. 32 (1998), 127-134.

5. T. Banzaru and B. Randi, Topologies on spaces of subsets and multi-valued
mappings, Math. Mono. 63, University of Timisora, 1997.

6. L.B. Ciric, On contractive type mappings, Math. Balkanica 1 (1971), 52-57.

7. B. Fisher, Common fized points of mapping and multi-valued mappings,
Rostock Math. Kolloq. 18 (1981), 69-77.

8. A. Ganguly, Fized point theorems for three maps in uniform spaces, Indian J.
Pure Appl. Math. 17 (1986), 69-77.

9. T.L. Hicks, Fized point theorems for multi-valued mappings, Indian J. Pure
Appl. Math. 20 (1989), 1077-1079.

10. T.L. Hicks and B.E. Rhoades, Fized points and continuity for multi-valued
mappings, Internat. J. Math. Math. Sci. 15 (1992), 15-30.

11. S.N. Mishra, A note on common on fized points of multi-valued in uniform
space, Math. Sem. Notes. Kobe Univ. 9 (1981), 341-347.

12. , On common fized points of multi-mappings in uniform spaces, Indian
J. Pure Appl. Math. 13 (1982), 606—608.

13. S.N. Mishra, Fized points of contractive type multi-valued mappings in
uniform spaces, Indian J. Pure Appl. Math. 18 (1987), 283-289.




MULTI-VALUED MAPPING 647

14. S.N. Mishra and S.L. Sing, Fized points of multi-valued mappings in uniform
space, Bull. California Math. Soc. 77 (1985), 323-329.

15. S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30
(1969), 475-488.

16. D.V. Pai and P. Veeramani, Fized point theorems for multi-mappings, Yoko-
hama Math. J. 28 (1980), 7-14.

17. , Fized point theorems for multi-mappings, Indian J. Pure Appl. Math.
11 (1980), 891-896.

18. K. Qureshi and S. Upadhyay, Fized point theorems in uniform spaces, Bull.
California Math. Soc. 84 (1992), 5-10.

19. B.E. Rhoades, Fized point theorems in uniform spaces, Publ. L’ Inst. Math.
25 (1979), 699-703.

20. R.E. Smithson, Fized points for contractive multi-functions, Proc. Amer.
Math. Soc. 27 (1971), 192-194.

21. E. Taraftar, An approach to fized point theorems on uniform space, Trans.
Amer. Math. Soc. 191 (1974), 209-225.

22. W.J. Thron, Topological structures, Holt, Rinehart and Winston, New York,
1986.

23. D. Tiurkoglu and B. Fisher, Related fized points for set-valued mappings on
two uniform spaces, Inter. J. Math. Math. Sci. 69 (2004), 3783-3791.

24. D. Tiirkoglu, O Ozer and B. Fisher, Some fized point theorems for set valued
mappings in uniform space, Demon. Math. 32 (1999), 395-400.

25. R. Wegrzyk, Fized point theorems for multi-valued function and their appli-
cations, Diss. Math. (Rozprawy Math.) 201 (1982), page 28.

26. A. Weil, Sur les espaces a structure uniforme at sur la toplogie generale,
Hermann & C-ie, Paris, 1937.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, UNIVERSITY
oF GAzI, 06500-TEKNIKOKULLAR, ANKARA, TURKEY
Email address: dturkoglu@gazi.edu.tr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF INDIANA, BLOOMINGTON, IN
47405
Email address: rhoades@indiana.edu




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


