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CONDITIONAL ANALYTIC FEYNMAN INTEGRAL
OVER PRODUCT SPACE OF WIENER PATHS
IN ABSTRACT WIENER SPACE

DONG HYUN CHO

ABSTRACT. In this paper, we derive a simple formula
for the conditional Wiener integrals over the product space
of Wiener paths and evaluate analytic Feynman integrals
and conditional analytic Feynman integrals of functionals in
Banach algebras which are equivalent to the space of complex
Borel measures on a real separable Hilbert space.

1. Introduction and preliminaries. Let Cy[0,7] denote the
classical Wiener space, that is, the space of real-valued continuous
functions z(t) defined on [0,7] with z(0) = 0. The concept of
conditional Wiener integral in this space was introduced by Yeh in [14,
15], and he used an inversion formula for evaluating some conditional
Wiener integrals. On the other hand, Park and Skoug [11] derived a
simple formula for evaluating conditional Wiener integrals, and Chung
and Skoug introduced the concept of a conditional analytic Feynman
integral on the classical Wiener space [6]. And then, using the simple
formula, they evaluated the conditional analytic Feynman integrals of
functions in the Banach algebra & which was introduced by Cameron
and Storvick in [2]. Also, they proved that the conditional analytic
Feynman integral of functions in S is a solution of the Schrédinger
equation.

The space Cp(B), which is the space of abstract Wiener space-valued
continuous functions defined on [0,7], was introduced by Kuelb and
LePage in [9], and Ryu [13] introduced various properties on the space,
which appear in the classical and abstract Wiener spaces. In [3], Chang,
Cho and Yoo derived a simple formula for evaluating some conditional
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Wiener integrals on the space Cyp(B) and defined the conditional an-
alytic Feynman integral on the space with the conditioning function
X, (z) = (z(t1),...,z(tx)). And then, they evaluated the conditional
analytic Feynman integrals of various types of functions, in particular,
functions which appear in quantum mechanics and Feynman integra-
tion theories.

In this paper, we derive a simple formula for the conditional Wiener
integrals of functions defined on Cy(B) x Cy(B) with the condition-
ing function Xz(z,y) = ((z(t1),... ,z(tk)), (y(s1),-.- ,y(s1))) and de-
fine the conditional analytic Feynman integral on the space Cy(B) X
Co(B) using the formula. Also, we introduce the Banach algebras
F(Co(B);u), Fa,,a,(Co(B)?; u) of functions defined on Cy(B) x Co(B),
which correspond to the Banach algebras F, Fa, 4,, respectively, in
[8]. In fact, we show that the spaces F(Co(B);u), Fa,, a,(Co(B)?u),
F(H) (1)), F, Fa,,a, ([8]) and M(H) are all equivalent, where M (H)
is the space of all complex Borel measures on a real separable Hilbert
space ‘H. In particular, if H = L2[0,T], then they all are equivalent
to S. And then, we evaluate the analytic Feynman integral and the
conditional analytic Feynman integral of functions in F(Cy(B); u) and
]:Al,Az (CO(B)Q; u)

Let (2, A, P) be a probability space, let B be a real normed linear
space and let B(B) be the Borel o-field on B. Let X : (Q,4,P) —
(B, B(B)) be a random variable, and let F' : @ — C be an integrable
function. Let Px be the probability distribution of X on (B, B(B)),
and let D be the o-field {X~1(A) : A € B(B)}. Let Pp be the
probability measure induced by P, that is, Pp(F) = P(FE) for E € D.
By the definition of conditional expectation there exists a D-measurable
function E[F|X] (the conditional expectation of F given X) defined on
Q such that the relation

[ BlFXI@) dPo(w) = [ F)dre)
E

E

holds for every E € D. But there exists a Px-integrable function
1 defined on B which is unique Px almost everywhere such that
E[F|X](w) = (¥ o X)(w) for Pp almost everywhere w in Q. % is also
called the conditional expectation of F' given X and without loss of
generality, it is denoted by E[F|X](¢) for £ € B. Throughout this
paper, we will consider the function % as the conditional expectation
of F given X.
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2. Wiener paths in abstract Wiener space. Let (#,B,m) be an
abstract Wiener space [10]. Let {e; : j > 1} be a complete orthonormal
set in the real separable Hilbert space H such that the e;s are in B,
the dual space of the real separable Banach space B. For each h € ‘H
and y € B, define the stochastic inner product (h,y)~ by

o lim, o0 > i (h,e;)(y,e;) if the limit exists;
(h,y)™ = ! .
0 otherwise,

where (-,-) denotes the dual pairing between B and B* [8]. Note that
for each h (# 0) in H, (h,-)~ is a Gaussian random variable on B
with mean zero, variance |h|?; also (h,y)"™ is essentially independent of
the choice of the complete orthonormal set used in its definition and,
further, (h, \y)~ = (Ah,y)~ = A(h,y)~ for all A € R. It is well known
that, if {hy,ha,...,h,} is an orthogonal set in #, then the random
variables (hj,-)~s are independent. Moreover, if both A and y are in
‘H, then (h,y)~ = (h,y) where (-,-) denotes the inner product h and y.

Let Cy(B) denote the set of all continuous functions on [0, 7] into B
which vanish at 0. Then Cy(B) is a real separable Banach space with
the norm ||z||¢,(B) = supg<;<r ||z(t)||s. The minimal o-field making
the mapping « — x(¢) measurable is B(Cy(B)), the Borel o-field on
Cy(B). Further, Brownian motion in B induces a probability measure
mp on (Co(B),B(Cy(B))) which is mean-zero Gaussian [13]. We will
introduce a concrete form of mg. Let £ = (t1,t2,... ,tx) be given with
O=to<ti <to<---<tp <T. Let Tg:B’“—)B’c be given by

TE(CEl,CL'Q, s ,.’,Uk)

k
= \/tl —towl,\/tl —toml +\/t2 —tlwg,... ,Z\/t]’ —tj_le
j=1

We define a set function vz on B(B*) by

o) = (1) (5 @)

for B € B(B*). Then v; is a Borel measure. Let f; : Co(B) — BF be
the function defined by

fi(z) = (z(t1), z(t2), ..., z(tk)).
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For Borel subsets By, Bs, ... , B, of B, f;_l(H?ﬂ B;) is called the I-set
with respect to By, Bo, ..., Bi. Then the collection Z of all I-sets is a
semi-algebra. We define a set function mg on Z by

(s (112)) =(11)

Then mp is well defined and countably additive on Z. Using Carathéo-
dory extension process, we have a Borel measure mg on B(Cy(B)).

A complex-valued measurable function defined on Cy(B) is said to
be Wiener measurable and a Wiener measurable function is said to be
Wiener integrable if it is integrable.

Definition 2.1. Let F' : Cy(B) — C be Wiener integrable and
let X : (Co(B), B(Cyp(B)),mB) — (B,B(B)) be a random variable,
where B is a real normed linear space with the Borel o-field B(B). The
conditional expectation E[F|X] of F given X defined on B is called
the conditional Wiener integral of F' given X.

Now, we introduce Wiener integration theorem without proof. For
the proof, see [13].

Theorem 2.2 (Wiener integration theorem). Let f = (t1,ta,... ,t)
be given with 0 =ty <tq <ty < .-+ <t <T, and let f : B¥ — C be
a Borel measurable function. Then

/ F(a(t), z(ta), .., x(ty)) dmp ()
Co(B)

k

é/Bk(foT;)(xl,xz,... ,mk)d<Hm>($1,$2,--- ' Tk),

j=1
where by = we mean that, if either side exists, then both sides exist

and they are equal.

For convenience, we adopt the following notations:

oy e [F) = /C ) P s
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if F' is integrable on Cy(B) and

EcyByxco)lF] = / F(z,y) d(ms x mg)(z,y)
Co(B)XCo(B)

if F is integrable on Co(B) x Cy(B).

A subset E of Cy(B) is called a scale-invariant null set if AE is
(Wiener) measurable and mg(AE) = 0 for any A > 0. A property is
said to hold s almost everywhere if it holds except for a scale-invariant
null set. Let F be defined on Cy(B), and let F*(z) = F(A~2z)
for A > 0. If F* is measurable for any A > 0, then F is said to be
scale-invariant measurable.

Suppose, for a scale-invariant measurable function F, E¢,g)[F Al
exists for every A > 0 and it has an analytic extension J}(F') on
Ci = {) € C: ReXx > 0}. Then we call J{(F) the analytic
Wiener integral of F' with parameter A, and it is denoted by E**"A[F].
Moreover, if for nonzero real g, E“*“A[F] has a limit as A approaches
to —iq through C, then it is called the analytic Feynman integral of
F with parameter ¢ and is denoted by E®"f¢[F].

Let 71 : 0 =1tg < t; <--+ < tx =T be a partition of [0,T], and let
be in Cy(B). Define the polygonal function [z] of = on [0,T] by

. t—t; 1
21) 6100 = DX (® [2(t5-2) 4 =57 ol0) ~ (1)

tj — tj_l

where ¢ € [0,T]. For each h £ (é1,...,&) € B*, let [E] be the

polygonal function of € on [0,T] given by (2.1), replacing z(t;) by
¢ for j =0,1,...,k (§ = 0). Note that both [z] : [0,7] — B and
(€] : [0,7] — B are in Cy(B).

The following lemma is useful in defining the conditional analytic
Wiener integral and Feynman integral. For the detailed proof, see [3].

Lemma 2.3. Let F be defined and integrable on Cy(B). Let
X, : Co(B) — BF be a random wvariable given by X, (z) =
(z(t1),...,z(ty)). Then, for every Borel measurable subset B of B,
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| F@dma) = [ Eom(F - o+ E)drx, @,
X7Y(B) B

T1

where Px . is the probability distribution of X,, on (B*, B(B¥)).

By the definition of the conditional Wiener integral (Definition 2.1)
and Lemma 2.3, we have

(22)  BIFIXA)E) = Boyw)Flz - [a] + [{)] for Py, ae. &

The equation (2.2) is called a simple formula for the conditional Wiener
integral of F' given X, on the space Cy(B).

For A > 0 let X} (z) = X,,(A\"/2z) and for £ € B* suppose that
E[F)‘|X:‘1](E) exists. From (2.2) we have

E[FY X)) = Egym) [P (@ — []) + [€])]

for almost every € € B¥. If, for £ € BF, Ecym)[F(A\"Y(z —[z]) +[€])]

-,

has the analytic extension J5(F)(§) on C, then we write

BN X,](6) = JX(F)(E)
for A € C,. E“"">[F|X,] is a version of the conditional analytic
Wiener integral.

For nonzero real ¢ and E € B, if the limit

lim B [F|X,,])(€)

A——1iq
exists, where A approaches to —ig through C., then we write

B FIX)E) = lim B FIX]E)

Eafa[F|X,, ] is a version of the conditional analytic Feynman integral.
Let 5 : 0 = sg < s1 < -+ < §; = T be another partition of [0, T].
Let X,, : Cy(B) — B! be defined by X,,(z) = (z(s1),... ,z(s;)), and
let Xz : Cp(B) x Cp(B) — BF x B! be a random variable defined by
(23) X?(xa y) = (XT1 (I)a X (y))
= ((2(t1), -+ 2(tk), (y(s1)s- - 5 y(s0))-
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Note that, since B is separable, we have B(B* x B!) = B(B*) x B(B!).

Now, for a given random variable Xz, we will define the conditional
Wiener integral and the conditional Feynman integral of functions
defined on Cy(B) x Co(B). For this purpose, we need the following
lemma.

Lemma 2.4. Let F be defined and integrable on Co(B) x Cy(B). Let
Xz be given by (2.3), and let Px. be the probability distribution of Xz
on (BF x B!, B(B* x B')). Then, for any B in B(B* x B'), we have

. Fpdims x me)(e.y)
XZ1(B)

7

= /BECU(B)XCO(B)[F(x —[z] + [€1], y — [y] + [€2])] dPx. (€1, €2).

Proof. Let Px_, be the probability distribution of X, on (B!, B(B!)).
Suppose that F > 0. For B; x B, in B(BF) x B(B!), we have

/B BPxAE ) apx G )

:/ / .I' Y de( )de(ﬂf)
X 1 )(7.2 (Bz)

T1

/X 1 B E m’ |XT2](§2)dPX (f2)de(x)

T1

:/_1 / Ecym)|F(z,y — [y] + [€2])] dPx,, (€2) dmp(z),
7 (B1) Y Ba

where the second equality follows from the definition of conditional
expectation and the last equality from Lemma 2.3. Since F' is nonneg-
ative, we have

/ E[F|X?](Ela§2)dPX.,~. (€1,&2)
B xBs

= [ ) Bl b+ ldmn ) aPy )
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= /B /B ECO(B)xCO(B)[F(x — [z] + [El],y — [yl + [22])]
dPx_ (&) dPx. (&)
- /B N Ecymyxco®)[F(z — [2] + [€1),y — [y] + [€2])] dPx.. (€1,&5).

Since {B; x By : By € B(B*), By € B(B!)} forms a semi-algebra, we
have the result for the case where F' is nonnegative.

The general case follows easily. o

For a function F defined on Cy(B) x Co(B), let Fr122(z,y) =
F()\fl/zx, A;l/zy), where A\; > 0 and A2 > 0. F is said to be
scale-invariant measurable if F*1*2 is measurable for all A\;, Ao > 0.
Given two C-valued scale-invariant measurable functions F' and G on
Co(B) x Cyp(B), F is equal to G s almost everywhere if, for each
A, Ao > 0, (mp x mp)({(z,y) € Co(B) x Co(B) : FA2(z,y) #
G 22 (z,y)}) = 0.

Let F be a C-valued measurable function on Cy(B) x Cy(B) such
that the integral

Trona () = / FM2(a,y) d(me x ms)(z,y)
Co(B)xCy(B)

exists as a finite number for A\; > 0, Ay > 0. If there exists a function
I3 2 (F), analytic in (A1,A2) on Cy x Cy such that J , (F) =
S (F) for all Ay > 0, A2 > 0, then J§ ) (F) is defined to be
the analytic Wiener integral of F' over Cy(B) x Cy(B) with parameter
(A1, A2) and we write

B [F] = 5 5, (F)

for (A1, \2) € C4 x Cy. Let (q1,q2) € R?, q1 #0,g2 # 0, and let F be
a C-valued measurable function such that E%"“*i.32[F| exists for all
(A1, A2) € Cy x C. If the following limit exists, we call it the analytic
Feynman integral of F' over Cy(B) x Cy(B) with parameter (¢1,¢2),
and we write

Eaw[F]= lLim EWM2[F]

A1—>—’iql
AQ*}*’iqz

where )\; approaches to —ig; through C for each j =1, 2.
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By the definition of the conditional expectation and Lemma 2.4, we
have

(24) E[F|X#](€1,82) = EcyByxcom) [F(x — [2] + [E1], y — [y] + [€2])]

for Px. almost everywhere (ZI,ZQ) in B x B!. For A;,\y > 0, let
X;‘I’AZ (z,y) = X;.()\I_I/Zm, )\2—1/2y) and for (21, 22) € B* x B!, suppose
E[FAI’)‘2|X;‘1’>‘2](51, €,) exists. From (2.4), we have

E[F)\l,/\z ‘X;m)\z](gl’ 52)
= Eoy@yxco®) FOT (@ — [2]) + €10, 25 2 (y — ) + [Ea])].

If, for (€1, €2) € B¥xB', Eo,m)xcum [FOT (@ [2])+[6], 05 (y -
[y]) + [€2])] has the analytic extension I3 o (F)(£1,€3) on C4 x Cy,
then we call it the conditional analytic Wiener integral of F' given Xz
over Cy(B) x Cp(B), and we write

E*n2 [FIXF] (€1, &) = T3, 0, (F) (€1, &)
for (A1,A2) € C4 x Cy. If, for (q1,¢2)(¢g; # 0 for j = 1,2) in R? and
for (£1,&,) € B* x B!, the limit

lim B2 [F| X7 (€1, &)
Al%fiql
Az%*i(]2
exists, where \; approaches to —ig; through C for each j = 1,2, then
it is called the conditional analytic Feynman integral of F' given X
over Cy(B) x Cy(B), and we write

B [FX]E,6) = | lm, B FIXG] 6 6)
Az*}*iqz

Next we state a well-known integration formula which we use several
times below.

Lemma 2.5. Let (H,B,m) be an abstract Wiener space, and let
h € H. Then we have

/Bexp{i(h,acl)N}dm(a:l) - eXp{_g}.
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3. Evaluation formulas for conditional Feynman integrals of
functions in the Banach algebra F(Cy(B);u). Let H be an infinite
dimensional real separable Hilbert space, and let M(H) be the class
of all C-valued Borel measures on H with bounded variation. Then
M(H) is a Banach algebra under the total variation norm and with
convolution as multiplication.

Throughout the remainder of this paper, let 0 < u < T be fixed, but
arbitrarily.

Definition 3.1. Let F(Cy(B);u) be the space of all s-equivalence
classes of functions F' which for o € M(#) have the form

(3.1) Flz) = /H expi(h, 2(w))™} do(h)
for z € Cy(B).

Theorem 3.2. The space F(Co(B);u) in Definition 3.1 is an
algebra over C under point-wise addition, point-wise multiplication and
complex scalar multiplication. Moreover, F(Co(B);u) is a Banach
algebra with a norm || - || defined by

(3.2) IEl = lell,

where F and o are related by (3.1) and ||o]| is the total variation of the
complex measure o.

Proof. 1t is easily verified that the operations of point-wise addition,
point-wise multiplication and scalar multiplication can be regarded
as operations on the equivalence classes of F(Cp(B);u). Denoting
by F, the function defined by (3.1) for given ¢ € M(H), clearly
Fo, + Fyy = Foih6y, Foy - Foy = Foluo, and AF,, = F),,, for all
01,02 in M(#H) and X € C. Hence,

(3.3) o — [Fy],

where [F,] denotes the s-equivalence class of F,,, defines a map of M(H)
onto F(Co(B); u) which is an algebra homomorphism. It remains only
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to show that (3.3) is one to one. To prove this fact, it suffices to show
that F, = 0 s almost everywhere with respect to mp implies that
o =0.

Note that if F}(z1) = 0 for almost every 1 € B with respect to the
measure m, where for yp € M(H) the function F; is defined by

(3.4) Fy(2) = /H expli(h, 1)} du(h),

then we have p = 0 [8, Proposition 2.1].

Let Fy be the function given by (3.4) with replacing x4 by o. Then
0 = F,(z) = Fi(z(u)) for s almost everywhere z in Cy(B) with respect
to the measure mp. To complete the proof we must show that F;(z;) =
0 almost everywhere z; in B with respect to the measure m. Let
By ={z1 € B: Fi(z1) # 0}, and let B = {z € Cy(B) : Fi(z(u)) # 0}.
Since B is a scale-invariant null set, we have

0= ma(vaB) - [

Co(B

JIRECATE

= [ (g ) dm(ar) = m(21)

by Theorem 2.2 which completes the proof as desired. o

) X sup(x) dmp(z)

Corollary 3.3. Define the space F as the class of all functions on
B of the form, for c € M(H),

(3.5) Fla) = / exp{i(h, 1)~} do(h)
H
for s almost everywhere x, in B with respect to the measure m, and

define the space F(H) as the class of all functions on H of the form,
for o € M(H),

(3.6) F(h) = /H exp{i(h', h)} do(I')
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for any h € H. Then both F and F(H) are Banach algebras. More-
over, M(H), F, F(H) and F(Co(B);u) are all isomorphic as Banach
algebras. In particular, if H = L2[0,T], then they all are isomorphic to
S which is the Banach algebra given in [2].

Proof. The results follow by Propositions 2.1 and 2.3 in [8], Theorems
2.1 and 2.3 in [2] and Theorem 3.2. u]

Now we evaluate the analytic Wiener and Feynman integrals of
functions in F(Cy(B);u).

Theorem 3.4. Let F € F(Cy(B);u) be given by (3.1). Then
Ea"A[F] erists for A € C, and, for any nonzero real q, E*/4[F]
exists. Moreover, we have

g r] = [ exp{ i aoto

and

Bt p] = /H exp{—;—;|h|2} do(h).

Proof. Let A > 0. Then we have
/ FMz) dms (@ / /exp{z (b, A" 20(w))™ )} dor (h)dmus (2)
Co(B) Co(B)
- / / exp{i(h, A~/ 22(w))™} dm (2)do (h)
HJSCo(B)

by Fubini’s theorem. By Theorem 2.2 and Lemma 2.5, we have

/CO(B)F (¢) dm (2 //eXp{”‘ Y2 (h, Vuzy)) ™} dm(zy)o (h)

_ /Hexp{—%|h|2}d0'(h).
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The results now follow by Morera’s theorem and the dominated con-
vergence theorem. ]

Theorem 3.5. Let F € F(Co(B);u) be given by (3.1), and let X,
be as in Lemma 2.3. Then E“"[F|X ] exists for all A € C4 and, for
any nonzero real q, E4"f4[F|X ] exists. Moreover, whent, 1 < u <t,
for some p € {1,...,k}, we have

B ()@ = [ explith )Y exp - 51 P do(n)
for s almost everywhere EE B* and
anf P . ra ~ i 2
E q[FXn](ﬁ):/%eXp{’L(h, [€l(w)) }exp{ilhl }dﬂ(h),

where T' = [(t, — u)(u —tp—1)]/(tp — tp—1). When u = t, for some
p€{l,...,k}, we have

E*"\F|X:)(€) = B*e[F|X,)(€) = F()).

Proof. Let t, 1 < u < t, for some p € {1,... ,k}. For A > 0 and for
s almost everywhere E € BF, we have

Ecy@)[FO 2 (@ — [2]) + [€])]

= [ [ enplith A at) ~ ) + Bw) " do (k) dms ()
Co(B) JH

= [ expfin, @)} exp{z’xm (h 2(u) — 2(ty1)
H Co(B)

u — tp_l

- B aft) ~ (1))} dmn(e) do(h)

ty —tp_1
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by Fubini’s theorem. Let o = [(t, — u)(u — t,—1)"/?]/(t, — t,—1) and
B =—[(u—ty_1)(t, —u)’?]/(t, — t,—1). By Theorem 2.2, we have

Ec,)[F(\™?(z — [2]) + [€])]
— [ explith 1)}
H
></ exp{iA 2 (a(h, z1)~ + B(h, z2)™)} dm?(x1, x2) do(h)
B2

— [ explith )Y exp] -2 L do(n)
/. Sy

= [ exwitn 1) Yexp{ - 5P b ao),

where I' = [(t, —u)(u—tp—1)]/(tp, —tp—1) and the second equality
follows from Lemma 2.5. By Morera’s theorem and the dominated
convergence theorem, the results follow.

When s = t, for some p € {1,...,k}, the results follow trivially. O

Remark 3.6. (1) For each H in B(H), let
i (H) :/ exp{—£h|2} do(h) and
ir
pe(H) = [ exp 72—|h| do(h),
H q

and for s almost everywhere x in Cy(B), let

Fu(z) = /% exp{i(h, 2(w))~} dur(h) and

Fyfe) = [ expli(h,a(w)™}diy(h).
H
Then both Fy and Fj, are in F(Cy(B); u) and, by Theorem 3.5, we have
E*"A\F|X,,)(€) = FA([E]) and  E*o[F|X,,)(€) = F,([€)).

(2) Let A be a nonnegative bounded self-adjoint operator on H. Then
the function F which for 0 € M(#) has the form

(3.7) F(z) = A exp{i(AY2h, z(u))~} do(h)



CONDITIONAL ANALYTIC FEYNMAN INTEGRAL 75

for s almost everywhere z € Cy(B) belongs to F(Co(B);u) since
oo (AY?)"1 € M(H) and F can be rewritten as

F(z) = /Hexp{i(h,fc(U))N} d(o o (AY2)71)(h)

by the change of variable theorem. By Theorems 3.4 and 3.5, we have

(3.8) E*fa[F] = A exp{—s—;(Ah, h)}da(h)

and
(3.9)

Fenfa[F|X,](E) = /H exp{(41/2h, [E](w))~} exp{—%mh, h)} do(h).

4. Evaluation formulas for conditional Feynman integrals of
functions in the Banach algebra Fy, 4,(Co(B)? u). In this sec-
tion, we define a Banach algebra F 4, a,(Co(B)?; u), which corresponds
to the class Fa, 4, of functions defined on B [8]. And then we eval-
uate the analytic Feynman integral and conditional analytic Feynman
integral of functions in Fy, 4, (Co(B)?;u).

Let A; and A3 be two nonnegative bounded self-adjoint operators on
H. Let Fa, a,(Co(B)?u) be the space of all s-equivalence classes of
functions F' which for o in M(#) have the form

(4.1)  F(z,y) = /H exp{i[(A;h, z(w))™ + (A3 h, y(u)) ]} do(h)

for (z,y) in Cy(B) x Cy(B). As is customary we will identify a function
with its s-equivalence class and think of F4, 4,(Co(B)? u) as a class
of functions on Cj(B) x Cyp(B) rather than as a class of equivalence
classes.

Now we treat the analog of Theorem 3.2. For o € M(#), and for
F defined by (4.1), we denote the s-equivalence class of F by [F]. Let
the operations of addition, multiplication and complex scalar multi-
plication on the s-equivalence class of Fa, 4,(Co(B)? u) be generated
by the element-wise operations as in Theorem 3.2. From (4.1) and
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the fact that M(7#) is an algebra under convolution, it follows that
Fay,4,(Co(B)?%;u) is an algebra.

Theorem 4.1. Let Ay and Az be nonnegative bounded self-adjoint
operators on H. Then the map defined by
(4.2) o — [F]

sets up an algebra homomorphism between M(H) and Fa, a,(Co(B)?; u).
This is an isomorphism if and only if R(A; + As) is dense in H, where
R(A1 + A) is the range of A1 + As. In this case, Fa, a,(Co(B)?; u)
becomes a Banach algebra under the norm ||F|| = ||o||, and (4.2) is an
isomorphism of Banach algebras.

Proof. Let Fa, a, be the space of all s-equivalence classes [F}] of
functions F defined on B x B which for o € M(#H) have the form

(43)  Fi(e,) = / exp{il(AYh, 21)™ + (AYh, 22)™]} do(h)
H
for (z1,22) € B x B. In view of [8, Proposition 3.2], the map defined
by
(4.4) o+ [F]

is a Banach algebra isomorphism between M(H) and Fy, 4, if and
only if R(A; + As) is dense in H.

Suppose that R(A; + A3) is dense in H. Let F be given by (4.1),
and let F(z,y) = Fi(z(u),y(u)) = 0 for s almost everywhere (z,y) in
Co(B)xCyh(B), where F} is given by (4.3). Let By = {(z1,22) € BxB:
Fi(z1,22) # 0}, and let B = {(z,y) € Cop(B) x Co(B) : (z(u),y(u)) €
B }. Then we have

0= (mp x mg)(vuB)

- / X s (@ y) dms x mp)(z,y)
Co(B)xCo(B)

- / Xy, (@(w), y(w)) d(ms x ms)(z, y)
Co(B)xCo(B)

[ (g, e ) dm < m(en,ea)

= (m x m)(B1),
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where the fourth equality follows from Theorem 2.2. By Proposition 3.2
in [8], 0 = 0. Thus the map given by (4.2) is one to one and hence it
is an isomorphism.

Conversely, suppose that the map given by (4.2) is one to one. To
complete the proof, we must show that the map given by (4.4) is one to
one. Let F (z1,2z2) = 0 for s almost everywhere (z1, z2) in BXxB, where
F, is given by (4.3). Let By = {(z1,22) € B x B : Fi(z1,22) # 0} and
B ={(z,y) € Cyp(B) x Cy(B) : Fi(z(u),y(u)) # 0}. For Ay, Ay > 0, let
By, x, = {(M1z, A2y) : (z,y) € B}. Then we have

(mB x mB)(Bx, x,)

-/ Xy ) s )2
Co(B) XCO

/Co(B)XCO(B <)\11 (w), %y(u)) d(mp x mg)(z,y)

\/—wl, —\/ﬂm2> d(m x m)(z1,z2)
><B A1

= (m x m)({((\/Vu)z1, Ao/Vu)z2) : (21,22) € B1})
=0,

o

where the third equality follows from Theorem 2.2. Since the map given
by (4.2) is one to one, we have o = 0 and hence the result follows. o

Corollary 4.2. Let A be a nonnegative bounded self-adjoint operator
on H, and let Fa(Co(B);u) be the space of all s-equivalence classes of
functions F which for o € M(H) have the form given by (3.7). Then
the map

(4.5) o — [F]

sets up an algebra homomorphism between M(H) and Fa(Co(B);u).
This is an isomorphism if and only if R(A) is dense in H, where R(A)
is the range of A. In this case, Fa(Co(B);u) becomes a Banach algebra
under the norm |F|| = ||o||, and (4.5) is an isomorphism of Banach
algebras.
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Proof. Let Ay = A and Ay = 0 in Theorem 4.1. For any ¢ in M(#),
let

(4.6) Fao(z,y) = /H exp{i(A/2h, 2(u))™} do(h)

for (z,y) in Cy(B) x Cy(B), and let
(4.7) Fa(z) = /H exp{i(A/2h, 2(u))~} do(h),

for z in Cy(B). Define a map from F4 o(Co(B)?; u) to Fa(Co(B);u)
by

(4.8) [Fao] — [Fal

where [F40],[Fa] are s-equivalence classes of Fy4 o, F4, respectively.
Clearly, the map given by (4.8) is well defined and an algebra onto
homomorphism. It remains only to show that the map is one to
one. Let Fy(x) = 0 for s almost everywhere € Cy(B), and let
By ={z € Cy(B) : Fa(z) #0}. Let Ba = {(z,y) € Co(B) x Cy(B) :
Fyo(z,y) # 0}. Then we have, for A\;, Ay > 0,

(mB x mB)({(Mz, A2y) : (z,y) € Bao})
= (mB X mB)()\lBA X AgCo(B))
= mB()\lBA)mB()\2C0(B)) =0-1=0.

Thus, Fu(z,y) = 0 for s almost everywhere (z,y) € Co(B) x Co(B).
Thus, we have the result as desired. a

Corollary 4.3. Let A, A1 and As be nonnegative bounded self-
adjoint operators on H. Suppose both ranges of A and A1+ Aq are dense
in H. Let S be the Banach algebra given as in [2], let F(Co(B);u) be
given as in Definition 3.1, let F, F(H) be given as in Corollary 3.3,
let Fa, ay, Faya,(Co(B)?u) be given as in Theorem 4.1, and let
Fa(Co(B);u) be given as in Corollary 4.2. Then M(H), F, F(H),
F(Co(B);u), Fay, a5 Fay,a,(Co(B)?%u) and Fo(Co(B);u) all are iso-
morphic as Banach algebras. In particular, if H = L2[0,T], then they
all are isomorphic to S.
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Proof. The results follow from Theorem 4.1, Corollaries 3.3 and 4.2,
and Proposition 3.2 in [8]. o

Theorem 4.4. Let F € Fa, 4,(Co(B)%u) be given by (4.1). Then
Emxi2 [F| exists for (A1, \2) € C4 x C and B3 a2 [F| exists for
any (q1,q2) € R?%, (¢; # 0 for j =1,2). Moreover, we have

Eanu))\l,)\z [F] — /

5 exp{—(Alh, h) — @(Azh, h)} do(h)

21

and

Eanfquqz [F] = / exp{_ﬂ(Alh,h) — ﬂ(AZh,h)}dU(h)
H 2q1 2qo

Proof. For A\; > 0, Ay > 0, we have

/ FM22(2,y) d(mg x ms)(z,y)
Co(B)xCo(B)
_ / / exp{i[(AY2h, A7 22 (w)) ™ + (ALY 2R, A5 Y2y ()™}
Co(B)xCo(B) JH
do(h)d(ms x m)(z,y)
:/ / / exp{il(Ay h, AT P (u) > +(AY *h, 25 Py (u)) ™)}
H JCo(B) JCo(B)
dmgp(z) dmg(y) do(h)

by Fubini’s theorem. By Theorem 2.2 and Lemma 2.5, we have

/ FA122 (g, y) d(mg x mB)(z,y)
Co(B)xCo(B)

:/ / / exp{i[A; V2 (AL *h, V)™ + A5 (4520, Vuws) ™1}
#JBJ/B
dm(z1) dm(z2) do(h)

u

_/%exp{—;Tl(Alh,h) 2A2(Azh,h)}da(h)-
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The results now follow by Morera’s theorem and the dominated con-
vergence theorem. ]

Theorem 4.5. Let F € Fa, 4,(Co(B)?u) be given by (4.1), and let
Xz be given by (2.3). Let

(4.9) Ty = (bpy — )=ty 1) g p, — (e =)= 8p, 1)
tpy — tpi—1 Spy ™ Spa—1

ifty, 1 < u < tp, and sp, 1 < u < Sp,, and let G(h,&,&) =
explil(AYh, Eil(w)™ + (AY%h, Eal(@)™]} for h € H and for
(€1,€5) € (B*,BY). Then E":[F|X;] exists for (A,As) €
C. x Cy and E“u.e:[F|Xz| ezists for any (q1,¢2) in R? (g # 0 for
Jj = 1,2). Moreover, when t,,_1 < u < t,, for somep1 € {1,... ,k}
and sp,—1 < u < sp, for some py € {1,...,l}, for s almost everywhere

(£1,€5) € (B*,B), we have

EOnWay 2, [F|X:,-‘](§17 22)
_ Iz

Iy
1 2o

= A G(h,gl,&)exp{—i(fhh,h) (Agh,h)}dU(h)

and

Eanfql,qZ [F|XT,-‘](217 22)

- i i
= / G(h7£1a§2) exp{_Q_l(Alh, h) - _Z(Azh, h)} dO’(h)
H jl 2q2
When tp,—1 < u <t,, for somepi € {1,...,k} and u = s,, for some

p2 € {1,...,1}, for s almost everywhere (21,22) € (B*,B!), we have
- - r
Eanwxl,kz [F‘X?](gla 62) = / G(h, 61’ gg) eXp{—i(Alh, h)} do’(h)
H 1
and

B o [FX7)(€r, €2) = /H G(h,&1,85) exp{—%(Alh, h)} do(h).
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When u = tp, for some p1 € {1,... ,k} and sp,_1 < u < sp, for some
p2 € {1,...,1}, for s almost everywhere (21,22) € (B*,BY), we have

e P E) = [ Gl o) exo] 32 (ah ) f o)
and

B o [F\X?](El,zz) = /HG(’% ElaEZ)GXp{_%(Ath h)}da(h)-
When v = t,, for some p1 € {1,...,k} and uw = sp, for some

p2 € {1,...,1}, for any (51,52) € (B*,BY), we have

9MWAL Az [F|X?](§1,52) — F([El], [52]) — Eonfara [F‘X?](zla§2)-

Proof. Let t,,—1 < u < t,, for some p; € {1,...,k} and s,,_1 <
u < sp, for some py € {1,...,l}. For A;, A2 > 0 and for s almost

everywhere (21,52) € B x B!, we have
Ecym)yxco®)FOT (@ — [2]) + [E1], 252 (y — []) + [€2))]
- / / exp{i[(A}*h, A7 (@(w) — [2](w) + [E1] ()™
Co(B)xCo(B) JH

+ (A2 h AP (y(u) —[y)(w)) + [E2) ()]} do(h) d(mp xmp)(z,y)
/Gha,s?)/c e (B)exp [ ”"’( Y2h o) — 2(tpe-1)

B ﬁ(m(tm) - x(tm_l))) +2,12 (Aé/ “hoy(u) = y(sp, 1)
I ) spann))) || dlonmxmn) o) do()

Spy — Spa—1

by Fubini’s theorem. Let

Q) = (tpl - u)(u - tm*l)l/2 By = — (u - tpl*]-)(tpl - u)1/2
tpy — tpi—1 ’ tpy — tpi—1 ’
Qs = (spz - u)(u - SP2—1)1/2 By = — (u - 3172—1)(8;02 - u)1/2 .

Spa — Spa—1 Spa — Spa—1
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By Theorem 2.2 and Lemma 2.5, we have
Ecom)xcom)FO 2@ = o)) + [E1], A 2 (v = ) + [2))]
= / G(h7517§2)
H
<[ el @ (A )+ B (4] he))
B2xB2

+ A5 (o (A5 Ry y1)™ + Ba(Ay Ry y2) ™)}
d(m? x m?)((z1,22), (y1,y2)) do(h)

2 7 1
:/ G(h,§17§2)exp{ - K(a% +5f)|Ai/2h|2
H 1

1
- 53 (@3 + BIAY | do(i)
- =2 T r
= /H G(h,§1,§2)exp{—2—>\11(,41h, h) — i(Azh,h)} do(h)

where T’y and T'y are given by (4.9). By Morera’s theorem and the
dominated convergence theorem, the results follow. The other cases
are similar. i

Remark 4.6. (1) Let A be a bounded self-adjoint operator on #.
Then we can write A = AT — A~ where AT, A~ are both bounded and
nonnegative self-adjoint. Take A; = AT and Ay = A~ in (4.1). By
Theorem 4.4, we have

(4.10) B F] = /% exp{—E(Ah, h)} do(h)
and, by Theorem 4.5, when I'y =I's = I'; we have
(4.11) Eanfl’fl[F|X?](gl,gz)
= Aexp{i[((fl*)”zh, [1)(w)™ + ((A7)"/?h, [€2)(w)) ™1}

x exp{%(Ah, h)} do(h).

(2) If A= = 0, then the righthand sides of (4.10) and (4.11) co-
incide with (3.8) and (3.9), respectively, with ¢ = 1. In particular, if
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A~ =0and AT is the identity operator I, then Fy o(Co(B)?; u) is essen-
tially F(Cy(B);u) in Definition 3.1 and E%fa.«:[Fr o] = Efa[Fy],
Eerfae [Fro| Xz (€1,€5) = E“fu[Fy|X,)(€1), where Fpo,F; are
given by (4.6) and (4.7), respectively, with A replaced with I (also see
Corollary 4.2). In this sense, Fa, 4,(Co(B)? u) contains F(Cy(B);u)
as a special case.

Our next theorem follows from Theorem 4.5, Fubini’s theorem and
Lemma 2.5.

Theorem 4.7. Let F € Fa, 4,(Co(B)%u) be given by (4.1), and let
Xz be given by (2.3). Let ty, 1 < u < tp,, for somep; € {1,... ,k}
and sp,—1 < u < sp, for some ps € {1,...,1}, and let 'y, T'y be given
by (4.9) (possibly, u =t,, or u=s,,). Let

a = U —tp, 1 B, = tp, —u
tpl - tpl*]-’ tpl - tpl*]-,
(4.12)
U— Sp,—1 Sp, — U
b2 P2
Qg = ) 62 =
Spy — Spa—1 Spy — Spa—1

and for E in B(H) let

ou(B) = [ o] =Gl + B2)(Asn 1) + (03 + 65)(Aah, )] { o)

For A, \s € CN =
Q(A1, A2, h) = exp{—

have

/ EO WAL Ap [F‘Xﬂ](gl’gg) (m Xm )(51752)
Bk xB!

{A € C: ReX > 0} — {0} and for h € H, let
(T'1/2X1)(A1h, h) — (T2/2X2)(Ash, h)}. Then we

— [ QW2 ) do ()
H
for (A,A2) € C4 x C4 and

- - -

/ E*aa [F|X2](€1, &) d(mF x m!) (€1, &)
Bk xB!
:/ Q(—iql,—ti,h) dau(h)
H

for (q1,q2) € R? (q; #0 for j =1,2).
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In the following theorems, we regard all complex square roots as the
complex number whose real parts are nonnegative.

Theorem 4.8. Let F € Fyu, 4,(Co(B ) ) be given by (4.1), and
let Xz be given by (2.3). For (q1,92) € ( # 0 with j = 1,2),

let X3 (z,y) = Xz((~iq) ?z, (— lqz) I2y) for (a,y) € Co(B) x
Co(B). Then we have

/ EOMWAL A, [F|X‘?](X;\1,)\2(x,y)) d(’l’I’LB X mB)(%y)
Co(B)XCO(B)

— EanwAL)‘Z [F]
for (A1, %2) € C4 x C and

/ e o [ X (X2 2,) dlonm % ) (z,)
Co(B)xCoh(B)

= Fonfa.e [F].

Proof. For (%,7) € B¥xB! let # = (x1,... ,zx) and § = (y1,--- ,u1)-
For (A1, A2) € C4 x C4, we have

/ E“"%2 [F| X5 ]( A1z (z,y))d(mp x mg)(z,y)
Co(B)XxCo(B)

:/ B [FIX) A2 (@ (), 2 (te), Ay P (y(s0),
Co(B)xCo(B)

4 Y(s1))) d(ms x mp)(z,y)

k
:/ EOWAL A, [F|X:f] ()\1—1/2(\/Ex1’... ,21/” tj—lxj>)
Bk xB! j=1
Yz <\/§y1, Z V8 — Sj— 13/;)) m* x m')(Z,7)

by Theorem 2.2. Let tp,_1 < u < tp, for some p; € {1,...,k} and
Spo—1 < u < sp, for some py € {1,...,1}, and let Q(A1, A2, h) be
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given as in Theorem 4.7. Let a; be given in (4.12) for j = 1,2. By
Lemma 2.5, Theorem 4.5 and Fubini’s theorem, we have

/ B [FIX)(X (2,0)d(ms x m) 2, )
Co(B)xCo(B)
:/ Q()\l,)\g,h)/ exp{i[)\l_l/2 <A1/2h Q1y/tp, — tp, 1Tt
BP1 xBP2
= 1 2 1/2
+ Z Vit —tj- 1$J> ;Y ( 2/ h,o21/$p, = Sps—1Yps

S
d(m™ x m"f)((ﬂcla"' s )y (Y157 3 Yps)
/ Q(iy Az, )eXP{ il <p2 (tj —tj—1) + i (tp, —tp1—1)>

< (Avhsh) = 51 (Z( = im1) 4 (5 = 1) (Aaho ) o)

_ /H exp{m(Alh M- o Y (45h, h)}da(h) — Bonaa ]

by Theorem 4.4. Similarly, we have the other result. ]

Let B; and Bs be nonnegative bounded self-adjoint operators on H,
and let ¢ € Fp, B, be given by the righthand side of equation (4.3)
with A;, A2 and o replaced with By, Bs and v € M(#H), respectively.
Let (71,72) be in B x B, and let

(4.13) G(z,y) = F(z,y)¢((x(T),y(T)) + (1, 7m2))

for s almost everywhere (z,y) in Cy(B) x Cy(B) where F is given by
(4.1).

Our next theorem follows from Theorem 2.2, Fubini’s theorem and
Lemma 2.5.

Theorem 4.9. Let G be given by (4.13), and let R(hy) =
exp{i[(Bi/th,m)N + (B;/th,ﬂz)N]} where hy € H and n1,m2 € B.
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Then, for s almost every (ni,m2) in B x B, E*"Y .22 [(] ewxists for
(A1, X2) € Cy x Cy and E™a.«2[G] ezists for any (q1,q2) in R?

(g; # 0 for j =1,2). Moreover, we have

Eoon (G = R(hs)
HXH

1
X exp{— 2—)\1[’11,(/11}11, h1)+2u(A}/2h1, Bi/zhg)

1
+ T(Blhg, hg)] — %[U/(A2h1; hl)

+ QU(Aé/2h1, B;/zhg) + T(thg, hg)]}
d(O’ X I/)(hl, hg)

and

EJae Q] = R(hs)
HXH

* eXp{_ 2%[“(141111, hy)+2u(A}hy, By hy)
+ T (Byha, ha)] — ;E[U(Aﬂ‘hhl)

+ 2u(AY?hy, BY*hy) + T(Bahs, h2)]}
d(O’ X l/)(hl, hz)

Theorem 4.10. Let G be given by (4.13), and let Xz be given by
(2.3). Then, for s almost everywhere (n1,m2) € BxB, E4"WA1.3:2 [G| X7]
exists for (A1, A\2) € C4 xCy and B2 [G|Xz] exists for any (g1, q2)
in R? (¢; # 0 for j = 1,2). Moreover, for s almost everywhere

(£1,€5) € (B*, B!) we have
Bz (G| X5 (B, Ea) = BOM2 [F| X2 (61, €2)6((Exs E21)+ (11, 72)

and

E*an (G X7](E1, &) = B [F|Xz](E1, &) o((E1k, E20) +(m, m2),
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where B 22 [F|Xz] and E®fa.e[F|Xz] are given as in Theo-
= (&0 5 61k)s 2= (E21,- -+ 5 E21)-

rem 4.5 and 51

P’I"OOf. Let 51 = (511,... aElk) and EQ = (521,... ,fgl). For (I,y) in

Co(B) x Cy(B) and for A1, Ay > 0, we have

2Py —[y)) + [E2)

GOV (@ — [2]) + [E], A
2 APy — [y]) + [E2])

FOL P (2~ [2]) +

Z1P)
x (AL 2 (2(T) — [2)(T))
+ENT), AP (Y(T) — WD) + [ENT)) + (1, m2))

[

; )
= F(A\ 2 (@ — [2]) + [E1), A 2y — ) + [Ea)) 0 ((Ears €21) + (n1,m2)).

1

€], A
Thus, the results follow by Theorem 4.5.
Theorem 4.11. Let G be given by (4.13), and let Xz be given by

(2.3). For (q1,92) € R? (g # 0 with j = 1,2), let X3"(z,y) =
Xz((—ig1) ™" %z, (—ig2)™"?y) for (z,y) € Co(B) x Co(B). Then, for

s almost everywhere (n1,12) € B x B, we have

/ EOT WAL A, [G‘X}»]( ;\1,)\2 (x, y)) d(mB X mB)(LL‘, y)
Co(B)XCo(B)
— FAnWap,xy [G]

for (A1, A2) € C4 x C4 and

/ oo 6] X] (X2 (2,))d(ms x m) 2, )
Co(B)xCoh(B)
= Fonfa e [G].

Proof. For (%,7) € B¥xB! let £ = (x1,... ,zx) and § = (y1,--- ,u1)-
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By Theorems 2.2 and 4.10, for (A1, A2) € C4 x C,, we have
/ B (61X (X 2,9)) dlm x me)(z.)
Co(B)xCp(B)

:/ Eoroxe [FIXE) (7 (2(t), - o), Ay 2 (y(s1),
Co(B)xCp(B)

() (AL 22(T), A5y (T)) + (m, m2))d(me x mp))(z,y)

k
_/ Eanwxl,xz[FX?](All/Q(\/Exl’... ’mej>a
Bk xB! Jj=1
! k
_1/9 —1/2
Y <ﬁy1,...,zmy,~>>¢((xl Y VG o,
— j=1

Ay V2 Z V8~ Sj- 1yg> (n1,m2 > d(mk X ml)(faﬂ)-

Let tp,—1 < u < t,, for some p; € {1,... ,k} and sp,—1 < u < s, for
some py € {1,...,1}, and let Q, R be given as in Theorems 4.7 and 4.9,
respectively. Let o; be given as in (4.12) for j = 1,2. By Lemma 2.5,
Theorem 4.5 and Fubini’s theorem, we have

/ WAL A, [G|X ]( )\1,)\2 (I, y)) d(mB X mB)(xa y)
Co(B)XCO(B)

:/k l|:/ Q(Ala)‘%h)exp{i|:)\1_1/2<A1/2h o tp 7tp1_1xt1’1
BfxB

p1—1
+ Z Vi —ti- 1acj> _1/2< ;/zh,azw/sm — Spy—1Ys,,
p2—1
+ 2 v | e
X |:/ eXp{i|:<Bi/2h,)\11/2Zw/t]’ —tj1$j>
H j=1

+ (B;/Qh, A, 2 é m@ N]}R(h) du(h)} d(m® xmh)(

&l
<L
&
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:/’ Q(A1, Az, hy)R(hy)
HXH

p1—1
X / exp{z' |:)\11/2 [Z \/t]' — tjfl(Ai/zhl + Bi/2h2,$j)w
Bk xB! =1
1/2 1/2 ~
+ Vtp, — tpi—1(a1 Ay’ "ha + By "he, )
k
+ th—tj_l(Bf/th,xj)N]

Jj=p1+1
p2—1

+ A;l/Z |:Z \VSi— ijl(A;/zhl + B;/2h2,yj)N
j=1
+ /392 — Spa—1(c2 Ay *hy + By ha, yp,)™
l
+ ) /si—si1 s]-1(321/2h2,yj)NH}d(mkxml)(ié,g'j)d(oxu)(hl,hz)

Jj=p2+1

= Q()\la)‘27h1)R(h2)
HXH

1
X eXP{_K(tplﬂA}/zhl + B Rho|? + (tyy — tpy 1)

x |ar Ay *hy + By ?hol? + (T — t,,,)| B *ha?)
1

B 2_)\2(sz—1|A§/2h1+321/2h2|2+(5m — sps-1)la2 Ay *hy + B,y *haf?

44T—%»wy%a%}aoxwwhm>

1
_ R(hs)exp{ — =—[u(A1h, h) + 2u(AY?hy, B/ ?hy)
HXH 2\

1
+T(Bihs, ha)] — 53 [u(Azhy, hy) + 2U(A;/2h1,B;/2h2)

2

+ T(Bzh2,h2)]} d(a X I/)(hl,hg) = [ONWA1,A2 [G]

where the last equality follows from Theorem 4.9.

The proof of the other case is similar. o
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