
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 18, Number 2, Spring 1988 

ON THE SIMPLICITY A N D UNIQUENESS 
OF POSITIVE EIGENVALUES ADMITTING 

POSITIVE EIGENFUNCTIONS FOR WEAKLY 
COUPLED ELLIPTIC SYSTEMS 

ROBERT STEPHEN CANTRELL 

1. Introduction and preliminaries. Throughout this paper, we 
shall assume that H is a bounded domain in RN,N > 1, with dû of 
class C 2 + a for some a € (0,1). Then, for k = 1,2,..., r, let Lk denote 
the formally self-adjoint operator on Q given by 

N 
Lkw{x) = ~Y, -±(Ak

j(x)^(x)) + Ak(x)w(x). 
dxi 

The coefficients Alf- and Ak are assumed to satisfy 

(i) {AkAx))^jz=zl is symmetric and uniformly positive definite on 0; 

(ii) Ak{x) > 0; 

(iii) A% E C1+(*(n), t, j = 1,2,..., TV, 0 < a < 1; and 

(iv) A f c € C a ( U ) , 0 < a < l . 

L will then denote the diagonal matrix 

•Ll 

L2 0 

0 
U 

L = 

In addition, the matrix M(x) = {mu(x))r
k e^x,x G Cl will be assumed 

to satisfy 

(i) mMeCa(ß), fc,*=l,2,...,r, 0 < a < l ; 

(ii) mu > 0 on fi if k ^ £; and 

(iii) mkt = mtk for A:, ^ = 1 ,2, . . . , r. 
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We will now consider the linear boundary value problem 

, . Lu = PMu in H 
(1.3) 

w = 0on <9Q, 

where u = (u1, u2,..., ur )* is viewed as an r-tuple of functions on H and 
F is a nonnegative r x r scalar matrix with pkk > 0 for fc = 1,2,..., r. 
We are mainly interested in choices of P which admit classical solutions 
of (1.3) for which uk{x) > 0 on Q, k = 1,2,..., r. 

This problem has been addressed in [1] and [2], in case P = A J, À > 0 
and without the assumptions of formal self-adjointness for L and 
symmetry for M. The principal result of Hess [2] is that if rrikki^o) > 0 
for some fc € {1 ,2 , . . . , r} and some XQ € Q, (1.3) has such a solution 
for at least one A > 0. Some partial results on the simplicity and 
uniqueness of such eigenvalues are given in [1]. In particular, if the Hess 
result holds, and if (M + /i/)(x) is a nonnegative irreducible matrix for 
some x € Q, then uk(x) may be chosen strictly positive inside Q for k = 
1,2,..., r. Moreover, dim(ker((L - AM)2)) = dim(ker(L - AM)) = 1. 

However, for purposes of applications to associated nonlinear prob­
lems (as, for example, in bifurcation theory) a more relevant question 
is the algebraic simplicity of an eigenvalue A of 

(1.4) u = XL^Mu. 

As described in [1] and [2], (1.4) is equivalent to (1.3) in case P = XI 
by standard a priori estimates and embedding theorems for second-
order elliptic partial differential equations. In particular, L~XM may 
be viewed as a compact linear operator on either of the Banach spaces 
[C^+a(Ü)] r or [Cg(Ö)]r (the choice of [Cg(0)]r being made when it 
is desirable to exploit the monotone nature of the cone of positive 
functions in this space). To this end, it is shown in [1] that, in case 
L " 1 M = ML~X and (M + /J,I)(XO) is irreducible for some /i > 0 and 
xo E n , (1.4) has a unique algebraically simple eigenvalue admitting an 
eigenfunction with uk(x) > 0, k = 1,2,..., r, provided mk0k0 > 0 for at 
least one fco G {1 ,2 , . . . , r} . It should be noted that the commutativity 
assumption essentially requires that L1 = L2 = • • • = U and that M 
is a constant matrix, although L1 need not be formally self-adjoint and 
mjçk can be negative for fc ̂  fco- Partial results are given in [1] in case 
the commutativity assumption is dropped. 
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In this article we shall show that the simplicity and uniqueness results 
obtain as above without the commutativity assumption provided that 
L is formally self-adjoint and M is symmetric. (These results extend 
to systems the results of [3].) To this end, in §2, we prove a basic 
simplicity theorem, which covers a number of cases, including P = XL 
Corresponding uniqueness results are presented in §3, making strong 
use of the results of [1]. 

2. Simplicity results . 

THEOREM 2.1. Consider (1.4), where L,M, and P are as described 
in §1. In addition, invertible matrix; 

(i) P is a symmetric, invertible matrix 

( Ì Ì )P- 1 L = L P - 1 ; 

(iii) If A = PM and A = (p>kt)rk,i=\, then au > 0 if k ^ l and 
(A + 6I)(x) is nonnegative irreducible, for some x E f l and some 6 > 0; 

(iv) The map Q : [Cg(Q)]r -+ R given by 

Q(w) = {w,P~lLw) 

is positive definite, where (, ) is the inner product for [L2(Q)]r. 

Then, if (1.4) has a nontrivial solution u in [CQ+Q:(H)]r with uk > 0 
on 0 for k = l , 2 , . . . , r , uk(x) > 0 for x e Q and %£{x) < 0 
on dU, where -^ denotes the outward normal derivative. Moreover, 
N((I - PL~lM)2) = N(I - PL~lM) = span(u). 

PROOF. That uk is as described for k = 1,2,..., r and that N(I -
PL~XM) = span (ti) follow from (iii) as in [1; §3]. Suppose now that 
(J - PL-xM)2x = 0. Then (J - PL~xM)x = cu, where e e R. 
Consequently 

0 = ( ( / - P L - 1 M ) 2 x , 2 / ) 

= ((/ - PL~1M)x1 (I - PL^MYy) 

= c(ui(I^ML-1P)y) 

for any y € [Cfî (fî)]r. In particular, if y = P"1 Lx 

0 = c(u, {I - ML" 1P)(p- 1La:)) 

= c(tt, P~xLx - Mx). 
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But now x = PL~1Mx + cu and PL'1 = L~XP imply P~xLx-Mx = 
cP~xLu. Hence 

0 = c2(u,P~1Lu). 

Since uk > 0 on Q for k = 1,2,..., r, (iv) implies c2 = 0. 

REMARK. Hypothesis (iv) of Theorem 2.1 may be omitted provided 
it is known that {u, P~xLu) = (u,Mu) ^ 0. However, we have chosen 
to present the result with hypothesis (iv) included, as there are two im­
portant cases in which the hypotheses of Theorem 2.1 may be verified. 

COROLLARY 2.2. Suppose that L,M, and P are as in §i. In addi­
tion, assume that pu = 0 if k ^ I and that (M -\-6I)(x) is nonnegative 
irreducible for some x 6 U and some 8 > 0. Then the conclusion of 
Theorem 2.1 obtains. 

PROOF. That hypotheses (i)-(iii) of Theorem 2.1 are satisfied is 
immediate. Suppose now that w G [Co(H)]r. Then 

Q(w) = J2 — I wkLkwk 

= E — f I t 4 ( # ? ^ + / Ak(x)[W
k?dx] ^[PkkUa^ %3K dxi dxj Ja J 

by the formal self-adjointness of Lfc, k = l , . . . , r . Consequently, 
Q(w) > 0 unless w = 0. 

REMARK. In particular, Corollary 2.2 includes, of course, the case 
P = XL 

COROLLARY 2.3. Suppose that L,M, and P are as in §1. In addi­
tion, assume that P and M satisfy hypotheses (i) and (iii) of Theorem 
2.1 and that P is positive definite. Then if L1 = L2 = • • • = U, the 
conclusion of Theorem 2.1 obtains. 
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PROOF. Again, we need only verify hypothesis (iv). Since P " 1 is 
a symmetric positive definite matrix, it is well-known that there is a 
symmetric matrix C such that C2 = P " 1 . So if w e [C^fi)]7*, 

Q H = (w.P^Lw) 
= (w,c2Lw) 

= (Cw,LCw). 

The hypotheses on L guarantee that Q(w) > 0 unless Cw = 0 on fi. 
But if such is the case (w,P~1w) = (Cw,Cw) = 0. Consequently, 
since P " 1 is positive definite, w = 0, and (iv) is verified. 

3. Uniqueness results. Let us now assume that P = A = 

(Ao '* x-r ) ' w i t h xk > 0 fixed for k = l , 2 , . . . , r , that L and M 

are as in Corollary 2.2, and that 

(3.1) mkk{x0) > 0 

for some xo € fi and some k G {1 ,2 , . . . , r} . We may now obtain the 
following 

THEOREM 3.1. Suppose that A,X, and M are as above. Then there 
is a unique so > 0 such that 

(3.2) Lu = soAMu in fi 

u = 0 on9Q 

/las a nontrivial solution UQ with u§ > 0, for k = 1,2,..., r. 

REMARK. The proof of Theorem 3.1 is a special case of the proof of 
our Theorem 3.8 in [1], and, consequently, a fully detailed exposition of 
the proof is unnecessary. However, in order that this present article be 
somewhat self-contained, we will give a brief sketch of the main ideas 
of the proof. A reader seeking further details is referred to [1]. 
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PROOF OF THEOREM 3.1. First of all, there is no loss of generality 
in the additional assumption that 

(3.3) -h<mkk{x)<h 
for x € fi, k = 1,2,..., r, and that 

(3.4) 0 < mki{x) < -
r 

for x € fi, k ^ £, A;, £ = 1,2,..., r. Now consider the family of problems 

(3.5) Lu = sA{M - t)u in fi 

u = 0 on dfi 

which contains (3.2). It is easy to see that (3.5) is equivalent to 

(3.6) u = sA{L + sA)~1{M-t + l)u. 

Notice that if £ < 1 — ^ , M — £ + 1 is nonnegative and, for some 
x € fi, irreducible as well. Consequently, the right hand side of (3.6) 
may be viewed as a compact positive operator on [Co(fi)]r if s > 0 
and t < 1 — ^ . It follows as in §3 of [1] that, for such s and 
t, that the existence of a positive solution to (3.6) is equivalent to 
r(sA(L + sA)_ 1(M - t + 1)) = 1, where r(A) is the spectral radius 
of A. Moreover, if (s,£) is such a point there is a smooth function 
t(s) : (s — 6,s + 6) —> (—oo, 1 — ^ ) , where 6 > 0 is sufficiently small, 
such that t(s~) =t and such that r(sA(L+sA)~1(M—1+1)) = 1 exactly 
when t = t(s) if | (M) — (^J)I is sufficiently small. 

It follows from (3.3)-(3,4) and [4, pp. 188-192] that there is a t0 € 
(0,1 — ^r) such that (3.6) has no positive solution with s > 0 and t > to. 
Let £Q = inf {t : t < 1 — ̂  and (3.6) has no positive solution with s > 0 
at t). Then it follows from (3.1) that 0 < % < tç>. We may define a 
function / : (—OO,£Q] —• [0, oo) by f(t) = 1/s where s is the smallest 
positive number for which (3.6) has a positive solution at t provided 
t < t$ and 0 if t = tç. That M — t + 1 is monotonie in t will imply that 
/ is a decreasing function. Now if t < Eg and s = 1/'f{t), Corollary 2.2 
implies that 

dim(JV([J - sAL-^M - t)]2)) = dim{N{I - sAL~l(M - t))) = 1. 
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A degree theoretic argument, as in [1; §3], may now be made to show 
that / is continuous. 

Now suppose there is s > so such that (3.6) has a positive solution. 
Since 0 < 1/5 < l/s0 = /(0), there is a t G (0, *0) such that f(t) = 1/5. 
Consequently, r(SA(L + SA)" 1 (M-0)) = 1 = r(§A(L + § A ) - 1 ( M - ï ) ) . 
So r(sA(L + 5A)""1(M - t)) = 1 for t G [0,ï], a contradiction to the 
solvability of t in terms of s at (5, t). 

Theorem 3.1 has an immediate consequence which is of substantial 
interest in the geometric study of generalized spectra of systems of 
second order elliptic partial differential equations [5]. 

COROLLARY 3.2. Suppose that L and M satisfy the hypotheses 
of Corollary 2.2 and in addition that (3.1) holds. Then the set 
{(Ai,À2,..., Ar) : Xk > 0, for k = 1,2,.. . ,r, and Lu = KMu 
has a positive solution in fi with u = 0 on dQ} is homeomorphic 
to S = {(Ai,À2,...,A r) : Afe > 0 and YH=i^l = !}• ln Par-
ticular, if (AC, A§, . . . , A£) G S and il) denotes the homeomorphism, 
</>((A?, A§,. . . A?)) = a(A?, Ai},..., A?), öftere a > 0. 

REFERENCES 

1. R.S. Cantrell and K. Schmitt, On the eigenvalue problem for coupled elliptic systems, 
SIAM J. Math. Anal. 17 (1986), 850-862. 

2. P. Hess, On the eigenvalue problem for weakly-coupled elliptic systems, Arch. Rat. 
Mech. Anal. 81 (1983), 151-159. 

3 . A. Manes and A.M. Micheletti, Un'estensione della teoria variationale classica degli 
autovalori per operatori ellitici del secondo ordine, Boll, U.M.I. 7 (1973), 185-301. 

4. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, 
Prentice-Hall, Englewood Cliffs, N.J., 1967. 

5. } The generalized spectrum of second order elliptic systems, Rocky Mountain 
J. Math. 9 (1979), 503-518. 

D E P A R T M E N T OF MATHEMATICS AND C O M P U T E R SCIENCE, T H E UNIVERSITY 
OF MIAMI, CORAL GABLES, FL 33124. 




