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ON THE SIMPLICITY AND UNIQUENESS
OF POSITIVE EIGENVALUES ADMITTING
POSITIVE EIGENFUNCTIONS FOR WEAKLY
COUPLED ELLIPTIC SYSTEMS

ROBERT STEPHEN CANTRELL

1. Introduction and preliminaries. Throughout this paper, we
shall assume that Q is a bounded domain in RV, N > 1, with 8Q of
class C%+2 for some o € (0,1). Then, for k = 1,2,...,r, let L* denote
the formally self-adjoint operator on (2 given by

N
Lrw(z)=- ) %(Afj(x)-a—x—(a:)) + AF (z)w ().

1

The coefficients A¥; and A* are assumed to satisfy
(i) (A%(2))Y;; is symmetric and uniformly positive definite on {;
(i) A*(z) 2 0;
(iii) 4% e C***(@), 4, 7=1,2,...,N, 0<a<1;and
(iv) Ak e C*(),0 < a < 1.

L will then denote the diagonal matrix

Ll

Ir
In addition, the matrix M (z) = (mke(z)) 4=, = € (1 will be assumed
to satisfy
(i) mee € C*(Q), k,£=1,2,...,r, 0< < 1;
(ii) mre > 0 on Q0 if k # £; and
(iil) mge = myy for k,£=1,2,...,r.
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We will now consider the linear boundary value problem

Lu=PMuin ()

(1.3)

u = 0 on 91},
where u = (u!,u?,...,u")? is viewed as an r-tuple of functions on {2 and
P is a nonnegative r X r scalar matrix with pgx > 0 for k =1,2,...,r.
We are mainly interested in choices of P which admit classical solutions
of (1.3) for which u¥(z) >0on 0,k =1,2,...,r.

This problem has been addressed in [1] and [2], in case P = AILA > 0
and without the assumptions of formal self-adjointness for L and
symmetry for M. The principal result of Hess [2] is that if myk(zo) > 0
for some k € {1,2,...,r} and some z € (2, (1.3) has such a solution
for at least one A > 0. Some partial results on the simplicity and
uniqueness of such eigenvalues are given in [1]. In particular, if the Hess
result holds, and if (M + uI)(Z) is a nonnegative irreducible matrix for
some Z € (2, then u*(z) may be chosen strictly positive inside () for k =
1,2,...,r. Moreover, dim(ker((L — AM)?)) = dim(ker(L — AM)) = 1.

However, for purposes of applications to associated nonlinear prob-
lems (as, for example, in bifurcation theory) a more relevant question
is the algebraic simplicity of an eigenvalue A of

(1.4) u=AL"'Mu.

As described in [1] and [2], (1.4) is equivalent to (1.3) in case P = AI
by standard a priori estimates and embedding theorems for second-
order elliptic partial differential equations. In particular, L1 M may
be viewed as a compact linear operator on either of the Banach spaces
[Cot*(@)]" or [C3(Q)]" (the choice of [C()])" being made when it
is desirable to exploit the monotone nature of the cone of positive
functions in this space). To this end, it is shown in [1] that, in case
LM = ML™! and (M + uI)(zo) is irreducible for some x4 > 0 and
zg € , (1.4) has a unique algebraically simple eigenvalue admitting an
eigenfunction with u*(z) > 0, k = 1,2,...,r, provided my,x, > O for at
least one ko € {1,2,...,r}. It should be noted that the commutativity
assumption essentially requires that L! = L? = --- = L" and that M
is a constant matrix, although L! need not be formally self-adjoint and
myx can be negative for k # ko. Partial results are given in [1] in case
the commutativity assumption is dropped.
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In this article we shall show that the simplicity and uniqueness results
obtain as above without the commutativity assumption provided that
L is formally self-adjoint and M is symmetric. (These results extend
to systems the results of [3].) To this end, in §2, we prove a basic
simplicity theorem, which covers a number of cases, including P = AI.
Corresponding uniqueness results are presented in §3, making strong
use of the results of [1].

2. Simplicity results.
THEOREM 2.1. Consider (1.4), where L,M, and P are as described
in §1. In addition, invertible matriz;
(i) P is a symmetric, invertible matriz
(i) P~!L = LP7Y
(iii) If A = PM and A = (ake)y =1, then ake > 0 if k # £ and

(A+6I)(Z) is nonnegative irreducible, for some x € Q) and some § > 0;
(iv) The map Q : [CZ(Q)]" — R given by
Q(w) = (w, P~'Lw)
is positive definite, where (,) is the inner product for [L%(Q)]".
Then, if (1.4) has a nontrivial solution u in [Cat®(Q)]" with u* >0
on Q for k = 1,2,...,r, uk(x) > 0 for 2 € Q and %—”;(:c) <0

on 01, where 567; denotes the outward normal derivative. Moreover,
N((I-PL'M)?) = N(I — PL™'M) = span(u).

PROOF. That u* is as described for k = 1,2,...,r and that N(I —
PL71M) = span (u) follow from (iii) as in [1; §3]. Suppose now that
(I - PL7*M)%z = 0. Then (I — PL™'M)z = cu, where ¢ € R.
Consequently

0=((I - PL"'M)?z,y)
= ((I - PL™'M)z,(I — PL71M)*y)
=c(u, (I - ML™'P)y)
for any y € [C$(Q0)]". In particular, if y = P~ Lx
0=c(u,(I - ML™'P)(P~'Lz))
=c(u, P~ Lz — Mz).
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But now £ = PL"'!Mz+cuand PL™! = L~!P imply P~'Lz— Mz =
cP~1Lu. Hence
0= c?(u, P~ Lu).

Since u* > 0on Q for k= 1,2,...,r, (iv) implies ¢ = 0.

REMARK. Hypothesis (iv) of Theorem 2.1 may be omitted provided
it is known that (u, P! Lu) = (u, Mu) # 0. However, we have chosen
to present the result with hypothesis (iv) included, as there are two im-
portant cases in which the hypotheses of Theorem 2.1 may be verified.

COROLLARY 2.2. Suppose that L,M, and P are as in §1. In addi-
tion, assume that pre = 0 if k # £ and that (M + 6I)(Z) is nonnegative
irreducible for some T € (1 and some 6 > 0. Then the conclusion of
Theorem 2.1 obtains.

PROOF. That hypotheses (i)-(ili) of Theorem 2.1 are satisfied is
immediate. Suppose now that w € [CZ(Q)]". Then

=ilﬁ/wkl’kwk
pkk / Z Ak )‘?;" ‘;’” do +/A'c (&) [w*)?da]

by the formal self-adjointness of L*¥, k = 1,...,r. Consequently,
Q(w) > 0 unless w = 0.

REMARK. In particular, Corollary 2.2 includes, of course, the case
P =)l

COROLLARY 2.3. Suppose that L,M, and P are as in §1. In addi-
tion, assume that P and M satisfy hypotheses (i) and (iii) of Theorem
2.1 and that P is positive definite. Then if L' = L? = ... = L', the
conclusion of Theorem 2.1 obtains.
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PROOF. Again, we need only verify hypothesis (iv). Since P~! is
a symmetric positive definite matrix, it is well-known that there is a
symmetric matrix C such that C? = P~1. So if w € [CZ(Q)]",

Qw) = (w, P~ Lu)
= (w, c?Lw)
= (Cw, LCw).

The hypotheses on L guarantee that @(w) > 0 unless Cw = 0 on (1.
But if such is the case (w, P~lw) = (Cw,Cw) = 0. Consequently,
since P! is positive definite, w = 0, and (iv) is verified.

3. Uniqueness results. Let us now assume that P = A =

()6‘ )‘O_r , with Ay > 0 fixed for £k = 1,2,...,r, that L and M

are as in Corollary 2.2, and that

(3.1) mik(20) > 0
for some z¢ € Q and some k € {1,2,...,r}. We may now obtain the
following

THEOREM 3.1. Suppose that A, L, and M are as above. Then there
18 a unique 8o > 0 such that

(3.2) Lu=s)AMu in Q)
u=0 on ofN
has a nontrivial solution ug with u§ >0, for k=1,2,...,r.

REMARK. The proof of Theorem 3.1 is a special case of the proof of
our Theorem 3.8 in 1], and, consequently, a fully detailed exposition of
the proof is unnecessary. However, in order that this present article be
somewhat self-contained, we will give a brief sketch of the main ideas
of the proof. A reader seeking further details is referred to [1].
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PROOF OF THEOREM 3.1. First of all, there is no loss of generality
in the additional assumption that

1 1
(3.3) 2 < mkk(I) < o
forzeQ, k=1,2,...,r, and that
1
(3.4) 0 < mye(2) < ~

forz€Q,k #4¢,k,£=1,2,...,r. Now consider the family of problems
(3.5) Lu=sA(M —t)u in{)
u=0 on dQ

which contains (3.2). It is easy to see that (3.5) is equivalent to

(3.6) u=8sA(L+sA)" (M —t+1)u.

Notice that if t < 1 — %,M — t + 1 is nonnegative and, for some
T € (1, irreducible as well. Consequently, the right hand side of (3.6)
may be viewed as a compact positive operator on [C§(Q)]" if s > 0
and t < 1 — 4. It follows as in §3 of [1] that, for such s and
t, that the existence of a positive solution to (3.6) is equivalent to
r(sA(L + sA)"}(M — t + 1)) = 1, where r(A) is the spectral radius
of A. Moreover, if (3,%) is such a point there is a smooth function
t(s): (3— 6,3+ 6) — (—o0,1 — 5-), where § > 0 is sufficiently small,
such that ¢(3) = f and such that r(sA(L+sA)~1 (M —t+1)) = 1 exactly
when t = t(s) if |(s,t) — (3,%)| is sufficiently small.

It follows from (3.3)-(3,4) and [4, pp. 188-192] that there is a tg €
(0,1—3) such that (3.6) has no positive solution with s > 0 and ¢ > to.
Let t§ = inf{¢ : ¢ < 1— 2 and (3.6) has no positive solution with s > 0
at t}. Then it follows from (3.1) that 0 < ¢ < to. We may define a
function f : (—oo,t5] — [0,00) by f(t) = 1/s where s is the smallest
positive number for which (3.6) has a positive solution at ¢ provided
t <ty and 0 if t = 5. That M —¢ + 1 is monotonic in ¢ will imply that
f is a decreasing function. Now if ¢ < t3 and s = 1/f(t), Corollary 2.2
implies that

dim(N([I = sAL™Y(M —t)]?)) = dim(N(I — sAL™}(M - t))) = 1.
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A degree theoretic argument, as in [1; §3], may now be made to show
that f is continuous.

Now suppose there is § > 3o such that (3.6) has a positive solution.
Since 0 < 1/3 < 1/s9 = f(0), there is a £ € (0,to) such that f() = 1/5.
Consequently, r(3A(L +3A)"1(M —0)) = 1 = r(3A(L+3A) "1 (M —1)).
So r(BA(L + 3A)~Y(M —t)) = 1 for t € [0,%], a contradiction to the
solvability of ¢ in terms of s at (3, ).

Theorem 3.1 has an immediate consequence which is of substantial
interest in the geometric study of generalized spectra of systems of
second order elliptic partial differential equations [5].

COROLLARY 3.2. Suppose that L and M satisfy the hypotheses
of Corollary 2.2 and in addition that (3.1) holds. Then the set
{(A1sA25--5A8) ¢ A > 0, for k = 1,2,...,r, and Lu = AMu
has a positive solution in Q1 with u = 0 on 90} is homeomorphic
to S = {(A,A2,.-.,Ar) : A > 0 and Y ;_, A2 = 1}. In par-
ticular, if (A\),79,...,20) € S and ¢ denotes the homeomorphism,
P((A,A9,...29)) = a(A], AY,. .., A9), where a > 0.
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