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SURFACE FITTING WITH SCATTERED NOISY 
DATA ON EUCLIDEAN D-SPACE AND ON THE SPHERE 

GRACE WAHBA 

ABSTRACT. An overview of cross validated spline methods for 
smoothing noisy data in the plane, in Euclidean espace, and on the 
sphere is given. Cross-validated thin plate smoothing splines are 
reviewed and an efficient numerical algorithm for computing them 
for problems with up to several hundred data points is described. 
Some numerical results for a two-dimensional example are given. 
A theory of vector splines for smoothing noisy vector data on the 
sphere is given. The use of generalized cross-validation to estimate 
both the smoothing parameter as well as the relative energy to be 
assigned to the divergent and nondivergent part of the smoothed 
vector field is described and tested numerically on simulated upper 
air horizontal wind fields. 

1. Introduction; an overview of cross-validated smoothing splines. It is 
assumed that data y = (yl9 . . . , yn)' arise according to the model 

y< =f{Pi) + ei9 i= 1,2, . . . , / ! , 

where P{ e S, some index set (e.g., Euclidean d-space, the sphere, torus, 
etc.). The function / is assumed to be a smooth function in some repro­
ducing kernel (r.k.) Hilbert space X of real-valued or vector-valued 
functions on 5. The {$,-} are independent zero mean measurement errors 
with common unknown variance, and it is desired to recover an estimate 
o f / given y = (yl9 .. .9yn)'. The estimate fx of /wi l l be taken as the 
minimizer in X of 

(i.i) ^ £ 0 v - / ( / \ ) ) 2 + W ) , 

where J(f) is a seminorm on X with M-dimensional null space spanned 
by fa . . . , $M, M < n. Here / 1 / 2 ( / ) can be taken as the norm of the 
orthogonal projection o f / o n t o Xx where Xx is the orthocomplement of 
the span of the {<j>v} in X. If the n x M matrix T with (/, y)-th entry 
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<j)v{Pt) is of rank M, then the minimizer of (1.1) exists uniquely and always 
has a representation of the form 

n M 

(1.2) fx(p) = s CMP) + E djxn 

P e S, where the £,- can be determined from an r.k. or semikernel for X 
with seminorm J1/2, and c = (cl3 . . . , cn)' and d = (dl9 . . . , d^)' satisfy 
a system ofn + M linear equations. For more details, see [15], [24], §2 
below and references cited there. 

The most famous special case of / is surely 

(1.3) J(f) = \\fimKxWx, 
Jo 

which for m = 2 leads to the celebrated cubic smoothing splines (which 
are generally not computed using (1.2) due to the existence of a local 
support basis for the span of the {£j in the special case of (1.3)). In this 
paper we will primarily be considering generalizations of / of (1.3) to 
Euclidean d-space of the form (for d = 2) 

(L4) /(/) = JJlä(w-)2^2' 
which lead to the thin plate splines, and to the sphere of the form (for 
m even) 

(1.5) J(f) = J s(J>»/2f)2dP 

where A is the Laplacian on the sphere. 
The parameter X controls the tradeoff between the "roughness" of the 

solution as measured by / ( / ) , and the infidelity of the solution to the 
data, as measured by (l/n) EîUOv -/(P,-))2 . The visual appearance of 
fx can be quite sensitive to the choice of X, and estimates of derivatives of 
/ obtained by differentiating fx even more sensitive. The value A* of X 
which minimizes the predictive mean square error defined by £?=i(/iCPi) — 
f{Pt))

2 can be estimated from the data by the method of generalized cross-
validation (GCV). The GCV estimate X of X is the minimizer of the 
cross-validation function V(X) given by 

(1.6) V(X) = -£ 

1 ||(/ - A(X))y\\2 

(±Tr(I-A(X)) 

where A(X) is the so called "influence matrix", which satisfies 
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ÏMPÙ " 
(1.7) i \=A(X)y. 

LfÀPn). 

For n moderate to large, X so obtained is known to be a good estimate 
of /I*. For a discussion of the method and its properties, see [23], [20], [2], 
[11] and [29]. 

In general, to find/; for given X requires the solution of a linear system 
of the order of the number, n, of data points, and to find the minimizer 
of V(X) entails the solution of an eigenvector-eigenvalue problem of 
size (n — M) x (n — M) (see §2 below). For n very large then, it has 
been proposed [25, 26] that (LI) be minimized in the span XW c l o f 
p suitably chosen basis functions, where p is chosen large enough so that 
X (and not p) is the smoothing parameter. More specifically one wants 
the minimizer of (LI) in XW to be a good approximation to the minimizer 
of (1.1) in X if fis a "smooth" function. Natural choices of these basis 
functions are sines and cosines if X is a space of periodic functions on the 
circle, and J3-splines [3] of degree 2 m - 1 if J(f) = j j (f^(x))2dx. Basis 
functions which are a generalization of i?-splines to Euclidean d-space 
(E*) have been suggested in [25], see also [7]. 

The cross-validation function V(X) is still defined by (1.6) and (1.7), 
but now A(X) will depend on the basis functions used. In this case an 
(n — M) x p singular value decomposition can be used to determine X 
instead of an (n — M) x (n — M) eigenvalue-eigenvector decomposition, 
see §3 below. Bates and Wahba [1] give efficient methods for computing 
X and fi when n is very large and M < p < n basis functions are used, 
including an efficient truncation procedure for the singular value de­
composition. 

In §2 we describe an efficient algorithm from / . Wendelberger's thesis 
[32] for computing cross-validated thin plate splines in d dimensions, and 
show some numerical results. In §3 we extend these ideas to vector obser­
vations on the sphere and investigate the ability of the GCV method to 
govern the relative energy assigned to the divergent and nondivergent 
part of the estimated vector field. The estimates appear to be very good 
from a mean square error point of view. 

A good value of the parameter m governing the number of derivatives 
in / can also be estimated by GCV as can d — 1 relative scale factors in 
Ed, see [10], [31] and [32], It is believed that, if n is large, X as well as 
several parameters in / can be estimated by GCV provided the several 
parameters are chosen so that distinct values of X and the several para­
meters are always associated with r.k.'s which correspond to perpendicular 
stochastic processes, see [28] for a brief discussion of this point, which 
we do not pursue further here. 
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2. Thin plate splines on Ed. In the thin plate spline case J(f) = J£(f) is 
given by 

In particular, for m = 2, J = 2, 

^ = KMaie + (JS> dx1dx2> 

The space X is the space of all generalized functions for which all partial 
derivatives of order less or equal to m exist in L2{Ed). For X to be a 
reproducing kernel Hilbert space (that is, for the evaluation functional 
in X to be bounded with respect to / ) , it is necessary that 2m — d > 0. 
The null space of J£ is the span of the M = {d+rTl) polynomials in Ed 

of total degree less than m. Duchon [5, 6] has given a semikernel from 
which the explicit representation off given in Theorem 1 below has been 
obtained. (See also [16] and [31].) 

Before giving a formula for fx we need some notation. Let / e Ed, 
t = (xh x2, . . . , xd). If s = (><!, . . .,yd), then \t - s\ = (ZIfcifo - ^)2)1 / 2 . 
Let E(T) be defined by 

where 

( l 1W2+1 

d even 

ed = 
22m-

( -

( _ 1)^/2+1 

-%* / 2 (m- l ) ! (m-

1)"/W2 - m) 

r 

-d/2) 

rfeven 
dodd 

/ 
! 

2 2 m ^ / 2 ( m _ !)f ^ O d d . 

Let Et.{t) be the function defined by 

(2.1) Eti{t) = E(\t - /,|), 

and let ç51? . . . , ^ be the M polynomials of total degree less than m; 
for example, if J = 2, m = 2, then M = 3, 0i(.*i, *2) = 1» ^2(*i> ^2) == xi> 
and 03(*i, x2) = x2. 

THEOREM 1. The minimizerf in X of 

n t=l 

is given by 
n M 

(2.2) fx = E cfEt + 2 d^ 
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where c — (cl5 . . . , cn)' and d = (dÌ9 . . . , dM)' are determined by 

(2.3) (K + nXI)c + Td = y 

(2.4) Tc = 0 

where K is the n x n matrix with (/, j)-th entry E(\t; — tj\) and T is the 
n x M matrix with (i, v)-th entry <j)v{tt). 

If Q is any n x (n — M) matrix satisfying Q'Q = In-M and Q'T = 
0(„_M)xM, then it can be shown [31] that 

(2.5) / - A(l) = «;iÔ(Ô'#Ô + nXiyiQ' 

and 

(2.6) «Ac = (/ - A(X))y. 

An efficient numerical algorithm for obtaining X, c and d is given in 
Wendelberger's thesis [32]. It goes as follows. 

1. Form the QR decomposition of T using LINPACK [4] 

(2.7) ^ = ( Ô i : Ô 2 ) ( ^ ) 

where the matrix dimensions are T: n x M; Q\\ n x M; Q2: n x (n — 
M); Rx: M x Af, (Qx: Q2) is orthogonal and Rx is upper triangular. 
Matrix Q in (2.5) will be taken as Q2. Let B = Q2KQ2. 

2. Find the eigenvalue-eigenvector decomposition of B = Q2KQ2 = 
UDBU\ where U is orthogonal and D is diagonal with diagonal entries 
bv, v = 1, 2, . . . , n — M, Then 

(2.8) (/ - A(X))y = nXQ2U(DB + nlI)-WQ'2y 

and 

(2.9) W-^^f^f .̂ 
Letting w = (wh ..., w„.M) = U'Q'2y gives 

(2.10) n»-yj vr= /i^« £ v • 

3. Find the minimizer X of F(A) by global search in log10A on the right 
hand side of (2.10). 

4. Obtain c from 

(2.11) c = <22tf(£s + nXiy^w. 
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Vector d may be obtained by noting that T = QtRh Q[QX = IMxM and 
premultiplying (2.3) by Q[ to obtain Q[Kc + Rxd = Q[y. 

5. Since Ri'is M x M upper triangular, d is easily obtained by solving 

(2.12) Rxd= Q[(y - Kc). 

A test function f(xl9 x2) was generated by Wendelberger and is shown 
in Figure 2.1. A regular 7 x 7 square array of 49 points ti9 i = 1, 2, . . . , 
49, was selected with the middle point (0, 0) and the spacing 1.0. Data 
yi9 i = 1, 2, . . . , 49, was generated as yt- = f{tt) + eh U = (xu, x2t), 
where the et- were pseudorandom normally distributed random variables 
with zero mean and standard deviation .01. This standard deviation is 
about 1/8 of the maximum height off. Figure 2.2 shows/; with X too big, 

THE TEST FUNCTION. THE FITTED SURFACE X » 100 X. 

F I G U R E 2.1 F I G U R E 2.2 

THE FITTED SURFACE X = .01 X. THE FITTED SURFACE X = X. 

FIGURE 2.3 FIGURE 2.4 
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Figure 2.3 shows fx with X too small, and Figure 2.4 shows f\. In this 
experiment the effectiveness of X can be measured by the inefficiency 

J - TT £ W ) - / ( W / i L ( /^ ) - /(^))2 

which was 1.54. Theory as well as other numerical results show that 
/ I 1 rapidly as n becomes large, if f is smooth. For further numerical 
results see [21]. 

3. Vector splines on the sphere. Wind fields, magnetic fields, etc., are 
measured on the surface of the earth discretely and with error. From this 
discrete data it is desired to estimate the field everywhere. In the case of 
wind fields, it is also desired to estimate the horizontal divergence D and 
the vorticity £ of the fields. We define vector splines on the sphere for this 
purpose, and show the results of a Monte Carlo study. 

We will first describe univariate splines on the sphere and then use the 
results to define vector splines on the sphere. Let P be a point on the 
sphere, P = (X, <f>), where X is its longitude (0 ^ X < 1%) and $ is its 
latitude ( — %\2 ^ <j> ^ nil). (We are using X here for both longitude and 
the smoothing parameter. Which one is meant should be clear from the 
context). We will use the normalized spherical harmonics YS,{X, 0), which 
play the role of sinces and cosines on the sphere. The Y} are defined by 

w # = { e/scossAPftsin0) 0£s ^ / 

e/s sin sXPt/isin 0) - / ^ s < 0, ' ' 

K-
I V Z V 4zr (/+ \s\V. 

5 = 0 

4*r (/+\s\)l 

2/+ 1 
I Ait 

r n , <f>) = i 
where the P$ are the Legendre functions [33]. 

The spherical harmonics are the eigenfunctions of the (spherical) 
Laplacian 

(3.1) âY°, = - / ( / + l)Y'„ 

where 

and a is the radius of the sphere. The spherical harmonics form a complete 
orthonormal system on L2(S). If / e L2(S), it has the Fourier-Bessel ex­
pansion 
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co / 

f~L Ef„r; 
/=0 $=-/ 

where f„ = $sf(P)Y°(P)dP, see [17]. Let 
oo / f4 

/=1 5 = - / A/s V h 

where the {X/s} are some nonnegative numbers with \X/S\ -> 0 as / -> oo. 
The set of all functions in L2(S) with / ( / ) finite can be taken as a Hilbert 
space X with Jî/2 as a seminorm and with the constant functions as its 
null space. Space X can be made into a reproducing kernel Hilbert space, 
provided 

2] ( 2 / + 1) max X/8 < oo. 
/=1 \s\<>/ 

This follows since 

L/WI â l/ool + 2 S lAIIW)! 
/=1 5 = - / 

1/2 / oo / Z-2 \ l / 2 / oo / 

â l/ool + (E E T-) (EL UY;(P)V 
\/=l s=-/ A/s J V=l s=-/ 

•t o o 

^ l/ool + / 1 / 2 ( / ) £ i ; ( 2 / + 1) max ;L„ 

where, in obtaining the last inequality, we have applied the addition for­
mula for spherical harmonics [17]. 

(3.2) £ Y}{P) YW) = - ^ ± J _ P/cos r(P, P% 

where y(P, P') is the angle between P and P', the P/ are the Legendre 
polynomials, and P,(0) = 1. 

It is easy to show that if X/s = [ /( / + l)]~w> then 

(3.3) /</) = 
[ f {Am/2ffdP m even 

J {(J(^-l)/2/)2/sin2^ + (J(m-l)/2/)2} ^p m o d d 

For X to be a reproducing kernel space, it is necessary that m > 1 (al­
though not necessarily an integer). Later on, we will use the fact that 
{Af)(P) will be a bounded linear functional in X for each PeS provided 

CO 

Ë ' V + !)2(2/ + 1) max X„ < oo. 
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We remark that, if X/s = 1/ independent of s, then it can be shown by 
the use of (3.2) that / ( • ) is isotropic; that is, it is invariant under the 
group of all rotations of the sphere. The seminorms J£ of §2 are also 
isotropic; they are invariant under the group of all rotations and transla­
tions of Ed. The vector splines on the sphere described below also result 
from isotropic seminorms. There are, of course, situations when a speci­
fically anisotropic seminorm may be called for (for example, when x±, . . . , 
xd-i are space variables and xd is a time variable, or, when the earth's 
Coriolis force is an important factor) but we omit detailed discussion of 
that case here. 

We are now ready to define vector splines on the sphere. Let V = (U, V) 
be a sufficiently regular horizonal vector field on the sphere, where U(P) 
is the eastward component and V(P) is the northward component at P. 
The vorticity £ and the diverence D of V are given by 

(3.4a) C = l s i -4r(Ucosò) + 4 £ ~ | 
a cos (j> L d<f> v dX J 

and 

(3.4b) D = 1 
a cosci 

du , d 
w + w(Vcos^ 

Then there exists (by Helmoltz' Theorem) two functions W{P) and 0(P), 
P e S, called the stream function and the velocity potential respectively, 
with the following properties : 

(35Ì u = ±(-WL + -±-d^\ V - U l ™L + M\ 
K } a\ d<l> cos<j) dXr a\ cos f dX d<j)) 
and 

(3.6) C = M, D = M. 

Functions W and 0 are uniquely determined up to a constant, which we 
will take to be determined by $sW(P)dP = \s0(P)dP = 0. 

Let X be the collection of all pairs (W, 0) on the sphere which integrate 
to zero, are square integrable and 

oo / 1IÇ2 /» 

/=1 s=-/ A/s\l) J 

oo / ffi2 P 

J<*(0) = S J ^ -jfyj < oo, 0/s = J 0(P) YXP)dP 

where {X/s(\)} and {X,s(2)} are strictly positive sequences satisfying 

2 ' V + I)2 (2 / + l)max ^ , ( 0 < oo, / = 1,2. 
/=1 s 
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Space Xis clearly a Hilbert space with square norm \\(W, 0\\2 = Ja)(¥) + 
(l/S)Ji2)(0) for any fixed 5 > 0 and furthermore both members of each 
pair possess Laplacians everywhere. 

Let data (£/,-, Vt) be given, where Ut and Vt- are supposed to be noisy 
measurements on the true field {U(Pt), V{Pt)). Let {W, 0) be the stream 
function and velocity potential associated with (U, V) and let ( ï ^ , 0x,§) 
be the minimizer of 

(3.7) 

Note that in the residual sum of squares above, U(P{) and V(Pt) are ex­
pressed in terms of W and 0 via (3.5). A unique minimizer (WX,Ô> 0xt§) 
exists for each X > 0, ö > 0 and the resulting wind field (Uxj, F;^) con­
structed from (^,5, 0x,d) m a y be termed a vector smoothing spline field. 
Its vorticity and divergence will be given by £Xt8 = AWX,Ò> DX,Ô = à0x,ô-

The parameter ö influences the relative amount of energy that will be 
assigned to the divergent and nondivergent part of the estimated vector 
field. It is tempting to set ö = 1, however, in some applications this may 
be a priori not the correct value. (The application we have in mind is to 
upper altitude horizontal wind fields in mid latitudes, where the divergent 
part is generally smaller than the nondivergent part.) In the numerical 
study described below we have investigated the ability of the GCV method 
to estimate a good value of ö as well as a good value of A. 

Explicit expressions for the minimizer of (1.1) with / given by (3.3) 
and related expressions may be obtained in terms of infinite series, and 
various methods of approximating the solution by a finite form may be 
based on approximations to the relevant r.k. See [27, 8, 9, 18]. Wendel-
berger [32] has found a closed form expression for the cases of (3.3) with 
m = 2 and 3 in terms of di- and tri-logarithms. These results could have 
been extended to aid in the minimization of (3.7) for special choices of the 
À/S(J). However, in this work we have chosen to obtain the minimizer of 
(3.7) in the span of two sets of the N = N(N + 2) spherical harmonics. 
This proved to be quite feasible for Nup to around 16 on the Amdahl at 
Goddard Space Flight Center. 

Let 

/=1 s=-/ 
( 3 , 8 ) 

/=1 s=—/ 
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The coefficients {a/s} and {ß/s} for which (3.7) is minimized, and the cross-
validation estimates of A and ö are found as follows. 

First, the indices (/, s), s = - /, . . . , / , are renumbered from 1 to ft. 
Let Xj be the n x ft matrix with (i, /s)-th entry 

Trkrm 

and Xx be the n x N matrix with (i, /s)-th entry 

1 1 3 
Ym 

— X$ Xx 

Xx X$ 

Dx 0 " 

0 ÔD2_ 

a cos §i dX 

and let X be the 2« x 2N matrix 

(3.9) X = 

Let D8 be the IN x 2JV matrix 

(3.10) D8 = 

where Z), is the ft x JV diagonal matrix with (/s, /s)-th entry X/S(J), / = 1,2. 
Letting z = (Uh . . . , C/w, Kx, . . . , Vn), y = (al9 . . . , a#, ßi, • -, /3#), it 
is seen by substituting (3.8) into (3.7) that we have to find y which mini­
mizes 

1 II* - *rll2 + V^rV-

The minimizer is 

(3.11) r = (X'X + nWj^X'z. 

By the use of (3.5) and (3.11), it follows that the estimated wind field 
(Uxtdi VXtd) at the data points satisfies 

(3.12) = A{X> S)z 
YxAPn) 

L vupj 
where A(X, Ô) is the 2« x In "influence" matrix A(X, ö) = X{X'X + 
W/UV)-1^'. The cross-validation function V(A, d) to be minimized in 
X and ô is 
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1 

(3.13) V(l ö) = 
\\(I-A(l S))zf 

1 [Tr(7 - A& ÔW 

The minimizer of V(X9 ô) was found, in the study described below, as fol­
lows. For fixed 5, let W§ = XD1/2, and let the singular value decomposi­
tion (SVD) of Wd be 

(3.14) W9 = UDWV 

where UU' = U'U = 72«x2» = F 'Fand ZV is a diagonal matrix with 
entries bl9 . . . , è2w. (Here, n ^ #.) £/, {bt} and K' are computed using 
UNPACK. Letting w = (wh . . . , w2n)' = £/'z, then 

\2 (3.15) FU, 5) = 
J. ^ ^ \2 

2«èi vt + nx) 
and 

(3.16) r = z)p v 
b\ + nX 

0 >2n 
b\n + «A J 

For fixed <?, (̂<?), the minimizer of (3.15) was easily found by a global 
search in increments of log X. Then V(X(d), d) was plotted for eight values 
of ô chosen in powers of one-sixth, and the minimum was readily evident. 
No doubt more efficient and automatic search procedures can be found. 
However, V is not a convex function of X, and it is possible to encounter 
more than one local minimum. We have on occasion seen this when 
analyzing experimental data with small n. 

For large n, N, and W§ poorly conditioned, computing the SVD can 
be expensive, or it can fail to converge in a reasonable time. Some shortcut 
methods which alleviate this problem somewhat and use less storage have 
been developed. See [1]. 

We designed a Monte Carlo experiment to estimate the accuracy with 
which the method is able to estimate vorticity and horizontal divergence 
of the 500 mb. horizontal wind field over North America from observa­
tions on the East (Ut) and North (Vt) components of the wind taken by 
the North American radiosonde network. We will show the results of one 
such experiment. This information is useful in meteorological studies. 
Since the accuracy will depend on the distribution of data points, and the 
relations between the energy in the true divergent and nondivergent parts 
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of the wind field as well as the measurement error, pains were taken to 
make the simulated truth and simulated measurment errors as realistic 
as possible. Nevertheless, the results obtained below must be treated as 
a lower bound to accuracy expected in practice. In particular, it will be 
seen below that a particular sequence of {X/S(i)} has been chosen to define 
Ja) and/ ( 2 ) , based on some (partly ad hoc) meteorological considerations, 
and the simulated "truth" below was generated via a random model based 
on the same {^/5(0}- In practice the matching of the {X/S(i)} used in Jx 

and J2 cannot be expected to match nature as well. (Also energy exists 
in nature at higher wavenumbers than are being simulated.) 

We digress briefly to discuss the choice of the X/S(i), i = 1, 2, in 
this study. Suppose a (univariate) function on the sphere can be con­
sidered to be a random linear combination of spherical harmonics f(P) 
= S Hf/SY/(.P) where t he / / s are supposed to be realizations of zero mean 
independent (Gaussian) random variables with EJJS = bX/s for some b. 

Letting y{ = f(Pt) -f £,• where the {e,} are independent and normally 
distributed with mean zero and variance a2, t h e n / is the Bayes estimate 
of/; that is fx(P) = E{f(P) |j>i, . . . , yn) where fx is the minimizer of 

where X = a2/nb and J(f) = f%\X/s. For further details, see [15, 24, 30]. 
With many (possibly oversimplifying) assumptions information con­

cerning {X/s} may be obtained from historical records. For example, 
suppose X/s = X/9 independent of s (that is, the resulting /will be isotropic). 
Then 

Ef(P)f(P') = E E £f„f,v Y°AP)YW) 

/s / V 

/s 

= * Ç A / ^ ^ P / ( c o s r ( P , n ) 

= iij{P9 P'\ 

Figure 3.1 gives a sequence of idealized {^} of which the first fourteen 
were used in this study and Figure 3.2 gives a plot of the correlation 
function p{f) » r(r)/r(0) associated with the {X,} of Figure 3.1. Figure 
3.3 gives a fitted isotropic correlation function estimated from historical 
500 mb. geopotential fields by Julian and Thiebaux [12] which roughly 
matches that of Figure 3.2. Although in meteorological practice the 
isotropy and other assumptions made below may be suspect, in principle 
appropriate sequences {X/s}9 or at least appropriate rates of decay of 
the {X/s} may be obtained from historical records. See, for example, [13]. 
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FIGURE 3.4. Simulated Wind Data. 
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FIGURE 3.6 Model and Extimated 
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FIGURE 3.5. Estimated Wind Field. 
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FIGURE 3.8 Mean square error in the estimated voriticty and divergence. 
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We obtained a model stream function and velocity potential of the 
form 

(3-17) „ , 

by choosing a/s and b/s as normally distributed pseudo-random numbers 
with mean zero and variances ^/s(l) = X/s(2) = \, given in Figure 3.1. 
Parameters C\ and C2 were scale factors chosen so that the simulated 
Ç = JW and D = J0 had magnitudes typical of real 500 mb. wind fields. 

^L(f tfdpY2 = 6 x 10-5/sec. (-L f jwpy2^ i x io-5/sec. 

If Q = C2, then the optimal ö would be one (or near to one). However, 
here, the divergent part of the wind field is smaller than the nondivergent 
part, and the optimal ö will be less than one. The experiment below tests 
the ability of GCV to estimate a good value of ö (as well as X). 

Model wind vectors (C/(Pt), V(P{)) were computed from the model 
(¥, 0) of (3.17) for {Pf} corresponding to n = 114 North American 
radiosonde stations. The data z = (Ui9 ..., Un, VÌ9 . . . , Vn)9 where 
Ui = U(Pt) + # , V4 = V(Pt) + ejf, were constructed by adding the 
measurement errors ê » eY a s normally distributed pseudo-random num­
bers with mean zero and standard deviation a = 2.5 meters/sec, a 
realistic value for the measurement error standard deviation. 

Figure 3.4 shows the simulated wind vectors. Figure 3.5 shows the 
estimate of the true wind field, plotted on a 5° x 5° grid in latitude and 
longitude. Figures 3.6 and 3.7 show the model and estimated vorticity 
and divergence, respectively. In Figures 3.5-3.7 ô = 1/36 was used, which 
was the minimizer of VQ(d), d) found by the search described above. 
Figure 3.8 gives MSE(Ç^U) and MSE(Z)^U) and their sum, where 

MSE(£u) = ± t (ZUPÙ - Z(Pk))
2 

MSE(DU) = i f ; (Du(Pk) - D(Pk)f. 

The {Pk} constituted a regular grid inside the United States. It can be 
seen from Figure 3.8 that if ô is taken as too small (i.e., divergence is 
suppressed), then the mean square error in the estimated vorticity becomes 
large, and similarly if ö is too large, then the mean square error in the 
estimated divergence becomes large. It appears that the GCV estimate 
of ö here is quite close to the ö which minimizes MSE(Q + MSE(Z>). 
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