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A REPRESENTATION FOR THE CONSTRUCTIVE
DESIGN OF CURVED SURFACES

THOMAS JENSEN

ApsTrRACT. Traditionally, there have been two major methods
for the representation of complex, curvilinear shapes. Objects are
represented by binary trees of set operations upon a restricted set
of rigid forms, such as cylinders, spheres, etc., or by an explicit
piecewise definition of the boundary by polygons and patches.
The former is intuitive for modeling, but lacks generality, partic-
ularly in the area of smoothness. The latter, though sufficiently
general for representation, is often difficult to model in environ-
ments where properties such as symmetry are as important as
interpolatory constraints. This paper presents a functional re-
presentation, called Constructive Surface Geometry, which uni-
fies both approaches and which possesses advantages of each.

Introduction. Currently, most solid, animation and simulation produc-
tion modeling systems are not based upon a primitive capable of repre-
senting smooth, curved surfaces. [S] There are several reasons for this.

1. It is much more difficult to render smooth shapes than faceted ones.
The convex planar polygon has a unique property; its perspective projec-
tion is always silhouetted by the projection of its boundary. This is not
true of any curved surface, where determination of the silhouette after
perspective projection entails the solution of a non-linear equation.

2. The increase in computation required to manipulate curved objects
is very large. Calculation of intersections of faceted objects leads to
linear systems; calculation of intersections of curved objects requires
solution of non-linear systems.

3. While it is well known that any continuous surface can be uniformly
approximated to within arbitrary ¢ > 0 by a network of patches, this
says nothing about the ability of a designer to model curved features in
a particular system. [3] In fact, designing by interpolatory constraints
alone, even in an interactive graphical environment where dynamic
rendering of three-dimensional objects is possible, is often difficult. This
follows from the necessity of modeling through a two-dimensional inter-
face and either using several orthographic projections, or a single perspec-
tive projection. The limitations of human depth perception are all too
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apparent in modeling environments developed around the latter, and the
overhead incurred with the former by requiring several actions to alter
the position of one point, is often unacceptable. [6]

Some systems, such as General Motors’ GMSOLID, include a patch
primitive. These systems are not limited by the first two problems; that
of rendering smooth shapes through the solution of a non-linear equation,
or the increase in computation required to manipulate curved objects.
For example, homotopy continuation methods are sufficient for intersec-
tions in GMSOLID. [2] But the use of the patch primitive can be con-
strained by the third reason; the ability of a designer to model curved
features using interpolatory constraints alone.

General curvilinear geometry will always be more expensive and
complex than piecewise linear representation. The first two problems
will always exist. It is only by solving the third problem, that its use
can be justified. Only when it is possible to design intuitively and efficiently
in a curved domain is the consequent complexity of the data and programs
acceptable.

A representation. For designers to effectively manipulate curved features,
they must have general and global structures for control as well as the
necessarily local tool of manipulation of interpolatory constraints. These
general and global structures must provide greater flexibility than the
standard affine transformations: rotations, scales and translations. Sym-
metry should be handled naturally; the designer should be able to uni-
formly affect an arbitrary continguous portion of the surface of an object.
Further, there should be a method by which portions of common curved
objects, such as spheres, ellipsoids and cylinders could interact with and
constitute portions of more complex objects. Constructive Surface
Geometry is proposed as a means of accomplishing these objectives.

In this approach, shapes are represented as sets of parametric surfaces
which may overlap, blend together or meet smoothly. The parametric
surfaces are traditional winged-edge networks of rectangular and trian-
gular patches. The linkages between them form a union of #-ary trees in
which descendence indicates how one surface has been placed, and perhaps
blended, into another. More precisely, the branches correspond to two
related affine mappings: one which associates the domains of the parent
and descendent and one which associates the range of the parent with
the graph of the descendent. This method of combination is generalized
by the inclusion of blending.

Specifically, let {f;}, i = 1, n be a set of functions, each of which maps
a piecewise linearly bounded subset of the plane into R3. Denote the
domain of f; by D; and the graph in R3 of f; by E;. Let y,; denote an
affine mapping from D, to D; and [';; denote an affine mapping from E;
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into R3. Then the representation consists of a function G defined with a
set B = {D;, E;, D;, Ej, 1:;, I';;}, i # j, which describes the linkages of
the tree structures. More intuitively, a particular representation might
be thought of in terms of the following graph, where the arrows denote
the direction of the affine embeddings.

12/ T2/ %13:T13
D D

Ds.E5  Dg/Eg

The function G is defined recursively. Descendents are combined with
their parents one level at a time, beginning at the leaves of the tree and
proceeding upwards towards the root. The result supersedes the parent
in the next iteration and the descendent is deleted. The recursion is com-
plete when only one node remains.

Thus, if (D;, E;, D;, Ej, 1;;, I';;) is an element of B, then at some point
f; is replaced by

@ii(8, 0)fi(s, t) + 0,i(y:i(s, ) I';j{(f(y:i(s, 1)),

where ¢;; is a univariate blending function based on distance to the
boundary of the projection of D; in D,, 0;; is a univariate blending func-
tion based on distance from the inside to the boundary of D;, and (s, ¢)
resides in D;. The blending functions, which are described later, are
chosen so that

I. ¢;; + 8;; =1, for all s and ¢,

2. ¢;; is identically one outside of an open set in D, containing the
projection under ;; of D;, and

3. 6;; is identically one on a closed set in D;.

In the particular case of the graph above, f; and f; would be combined,
then f; and f;, followed by f; and f;. Function f; would then be blended
into f; and g would be defined by the final combination of f, and f;. The
advantages of this type of representation are the following three reasons.

1. Surfaces, though more general than patch networks, are still defined
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as functions. Traversing the domains of the top nodes traverses the
complete surface.

2. There is greater generality at boundaries.

3. Assembly and blending of surfaces is natural.

An example. There are, of course, a large number of affine maps and
univariate blending schemes. The following simple and specific example
shows how the structure can be used in a natural way to define complex,
curved geometries. It demonstrates, and the photographs from an ex-
perimental implementation in the concluding section allude to the repre-
sentation’s generality and applicability to a large variety of surface
construction problems.

In the example we consider the problem of placing some surface, such
as a hemisphere or a fin like that swept from the spline in photograph 1,
in the midst of another, such as a plane or a rounded box shape. We
assume that both domains are starlike; that is, every ray emanating from
the centroid of a domain passes through its boundary only once. The
graph associated with the set B is then very simply

D,, E,

&7‘12’ I'iz
DZa EZ

and G(s, t) can be written explicitly as

G(s, 1) = @ras, DA, 1) + 01,20r1,205, D)1,2(folr1,2(s, 1)))-

In this example, and in those from the experimental implementation,
7:; is defined by a translation which identifies two points from the two
domains D; and D, and an arbitrary rotation which orients the second
domain, (and later the graph of the second function), relative to the first.
Thus, 71,2 = ((s, t) — (@, B))R + (c, d) where (s, t), (a, b) € Dy, (¢, d) € D,
and

cos(f) —sin(0)
I:sin @ cos (G)J ’

It follows from substitution that 7 o(a, b) = (c, d). The particular form
was chosen because it lends itself naturally to an interactive graphics
environment. One can easily imagine a designer orienting one surface
relative to another by associating two points, one on each surface and,
consequently, one in each domain. By implication, /" ,, the corresponding
map in the range which associates the graphs of f; and f;, has the following
form:
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cos(f) —sin(@) O
I'o(x,y,2) = |sin(@) cos(f) O|(x,y,2) + fi(a, b)

m ny ng

where (ny, 1y, 1) = (2/,/3s x 2/,/00)/1(83/05 X 31/00)| |, p—ce,, the unit
normal to f; at (a, b).

As stated above, ¢, » and 0, , are blending functions. In this case, they
are one of the univariate, cubic Hermite basis functions composed with
functions measuring distance to the boundary from the exterior in the
case of the former, and from the interior in the case of the latter. Speci-
fically, 60y,2(u, v) = hy(oa(u, v)), (u,v) € Dy and ¢ (s, t) = 1 —
01,5(r1,2 (5, 1)), (5, t) € Dy. o2 is defined as follows. Let 0D, = {(1 — @)
(41, vi) + alu;z v;2)}, i = 1,mand 0 £ a £ 1. For every (4, v) € Dy,
the centroid, (#,, v,) of D, and (v, v) uniquely defines a ray which intersects
oD, at one point, (1, vp), on the i-th segment. Let (s, #) denote the
ratio of the length of the segment (u, v), (4, v,) to that of the segment
(u,, v,), (up, v,). By Cramer’s rule, ¢ can be written explicitly as

(2 — u ) — 1) = (Vi — Vi), — 5)
(i,2 — u; )V — vi1) — (Vi2 — Vi,l)(”c - U1

tu,v) =1 —

Then g(u, v) = ([ z(u, v)du dv, where the limits of integration are from
v —¢tov+ ¢ and from u — ¢ to u + ¢ respectively. Since ¢ is a con-
tinuous function, g, is CL. ¢ is defined similarly. Over all of D,, o, can
be explicitly integrated since it is piecewise linear in s and ¢.

An implementation: towards an evaluation. The use of tree structures
for the representation of geometry is not a new idea; it is at the heart of
the constructive solid geometric approach to modeling. [4] There, complex
objects are represented as binary trees where the leaves are simple objects,
such as spheres and cubes, and the nodes are set operations such as union
and intersection. The representation described above is derived from
that idea, and is an attempt to bring the advantages of constructive solid
geometry to free form surface modeling.

The approach has been implemented, on a limited scale, in an interac-
tive computer graphics environment consisting of a VAX 11-780 computer
and an Evans and Sutherland Picture System. In the program, symmetry
can be specified at two levels. Initially, symmetric curves can be created
by automated reflection about a center line. Later, a primitive surface
may be instanced in two symmetric positions simultaneously. Both of
those features were used in the definition of the object shown in the series
of photographs. The symmetric B-spline in Figure 1 was swept along a
linear path to create a fin-shaped open surface. Then, the box shape shown
in Figures 3 and 4 was contructed from curves, such as the one shown in
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FIGURE 3
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FIGURE 6

Figure 2. Lastly, the fin was instanced and blended into the box surface.

The result is represented by the following graph and depicted in Figures
5 and 6.

D1 , E1 (box surface)

¥12-Tqp ¥13-T13

D2,E3 (left fin) D3,E3 (right fin)

Finally, it is felt that the value of this approach to a particular problem
can be measured in terms of the simplicity of the primitive surfaces that
are blended and combined. Further research is planned with the goal of
a comprehensive evaluation over a variety of objects.
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