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ON HAAR MEASURE OF CERTAIN HYPERCOMPLEX 
UNITARY GROUPS 

D.G. KABE 

ABSTRACT. By using the theory of hypercomplex matrices some 
results of Toyama [5] on Haar measure of orthogonal and unitary 
groups are extended to similar results for Haar measure on the 
unitary groups of hypercomplex matrices. A formula for Haar 
measure of unitary and unitary symplectic hypercomplex matrix 
groups of the division algebras is derived, in terms of the Cayley 
parametrization of these matrices. 

1. Introduction. In his celebrated paper on the theory of invariants, 
Hurwitz [2] introduced the notion of invariant measures on group mani­
folds. He gave an explicit expression for Haar measure of unitary uni-
modular groups, and also for orthogonal groups by using the theory of 
generalized polar coordinates. Later Weyl [6], p. 169, and p. 217] obtained 
other expressions for the same measures. Toyama [5] obtained different 
expressions for these measures by using Cayley's parametric representa­
tions of orthogonal and unitary matrices. Toyama's [5] results are as 
follows. 

THEOREM 1. The infinitesimal volume element dQ of Haar measure on the 
unitary group of n x n unitary matrices Q is 

(1) dQ =\I + H2\~»dH. 

Here H is a n x n Hermitian matrix, H = (htJ), dH = TZ^J dh0- = 
%{<j datJ 7ct<jdbt-j, H = A + iB, A = (a{j), B = (Z>,7), A is symmetric and 
B is skewsymmetric, and n x n Q is represented by Cayley's parametric 
representation as 

(2) Q = (I + iH)(I - iH)-\ 

Note that Toyama [5] considers only the group of those unitary matrices 
which can be represented by (2). 
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The second result of Toyama [5] obtains the infinitesimal Haar measure 
on the unitary symplectic group of In x In unitary matrices. Let U be a 
In x In unitary symplectic matrix, then U may be represented by Cayley's 
parametrization as 

(3) £ / = ( / + // /)(/ - iH)-\ 

where the Hermitian matrix H now has the form 

(4) H~[* - A \ 
Here A is an n x n Hermitian matrix, B is a complex symmetric matrix, 
and B' is the complex conjugate of B. Now Toyama [5] proves the follow­
ing theorem. 

THEOREM 2. For unitary symplectic group of In x In matrices U, the 
infinitesimal Haar measure dU on this group is 

(5) dU = \I + / /2 | - ( 2*+ 1 ) /W/. 

Here dH = dAdB, dB = dBxdB2, B = Bx + iB2, and Bx and B2 are 
symmetric matrices. Note that Bh B2 can be diagonalized by a single 
orthogonal matrix, and also note that B may have complex roots while 
A always has real roots. However, the roots of H are always real. For 
any symmetric matrix A the differential dA = %{<j da{j. 

The purpose of the present paper is to generalize the results (1) and (5) 
to the case of hypercomplex matrices. 

The relevant theory of hypercomplex matrices is stated in the next 
section, and the main results of the paper are derived in §3. 

Sometimes the same symbol denotes different quantities, however, its 
meaning is made explicit in the context. 

2. Hypercomplex Matrices. The hypercomplex matrices are divided into 
four categories: 1) quaternion hypercomplex matrices, 2) octonion 
hypercomplex matrices, 3) biquaternion hypercomplex matrices, 4) bioc-
tonion hypercomplex matrices. The hypercomplex numbers do not form 
a field as the real and complex numbers, and several results of real variable 
and complex variable theory cannot be generalized to the hypercomplex 
case. However, certain integration results derived for the groups of real 
and complex matrices do generalize to the hypercomplex case, see e.g., 
Kabe [3], and this paper presents some such results. Here we show that 
the integration results derived by Toyama [5] for the real orthogonal 
matrices and the complex unitary matrices do generalize to the hyper­
complex case. Toyama [5] derives his results separately for orthogonal 
matrices and for the unitary matrices. We give a single unified result 
which holds for orthogonal matrices, unitary matrices, and hypercomplex 



HAAR MEASURE OF HYPERCOMPLEX UNITARY GROUPS 483 

unitary matrices. For the purpose of deriving this unified formula we use 
a particular notation, which although very common in multivariate 
statistical analysis (see, Kabe [3]) is of rare occurrence in group theory. 

Let Xh X2, . . . , Xfa t = 1/4, 1/2, 1, 2, 4, be 4t p x n real matrices. 
Then the p x n matrix 

(6) Y = Xx + iX2 4- jX3 + kXA + IXs + m l 6 + nX7 + <?X8, 

where the special (generator) octonions /, j9 k, /, m, n, o satisfy the multi­
plication rule 

/2 = j^— k2 — I2 = m2 = n2 =o2 = — 1 
(7) 

= ///: = /7A? = ion = jln = jmo = klo = kmn, 

is termed the octonion hypercomplex matrix. The matrix 

(8) F = Xx - iX2 - jX3 - kX± - IX5 - mX6 - nX7 - oX8, 

is the octonion hypercomplex conjugate of Y. 
The matrix YY' = H has a special structure and H is termed the 

octonion hypercomplex Hermitian matrix. Note that His positive definite. 
Thus if 2 is a p x p octonion hypercomplex Hermitian matrix, then 2 
can be written as 

(9) 2 = 2l + i22 + j2z + kit, + /2s + " ^ 6 + «^7 + o2s, 

where ^1 is a p x p real symmetric matrix, and 22, 2& . . . , 2^ are /? x /? 
real skew symmetric matrices. If 2\ is positive definite, then 2 is positive 
definite, 2 ' = 2, and hence 21 has real roots. 

The octonion and bioctonion hypercomplex theory used here is due to 
Hamilton, see [1]. There exists a similar system of octonions and bioc-
tonions due to Cayley. The equations (6), (7), (8), (9) assume t = 2. When 
t = 1, we assume /, m, n, 0 to be zero, and in this case the equations 
(6), (7), (8), (9) yield the results for the quaternion case. When t = 1/2 we 
have the complex case, and when t — 1/4 the above equations trivially 
reduce to the real case. 

The bioctonion hypercomplex case is just a complex copy of the octon­
ion case. Let Z b Z2, . . . , Z8 be eight p x n complex matrices, then the 
bioctonion hypercomplex matrix Z is defined by 

(10) Z = Zx + iZ2 + 7Z3 -h kZ± + /Z5 + mZ6 + nZ7 + oZs. 

The bioctonion hypercomplex conjugate of Z is 

(11) Z = Zi — iZ2 — /Z3 — &Z4 — /Z5 — mZQ — nZ7 — ÖZ8. 

The matrix ZZ' — G has a special structure and G is said to be the 
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bioctonion hypercomplex Hermitian matrix. Note that G is positive de­
finite. Thus if 2 is a p x p bioctonion hypercomplex matrix, then 

(12) 2 = 2i + i22 + j23 + k2± + 125 + m26 + n27 + o28, 

where 2^ is/? x /? Hermitian, and 22, . . ., 2s are skew Hermitian matrices. 
If 2\ is positive definite then 2 is positive definite, 2' = 2, and 2 has real 
roots. The bioctonion case corresponds to t = 4. If in (10), (11), (12) we 
set /, m, n, o to be zero, then the bioctonion case reduces to the biquatern-
ion case. The biquaternion case corresponds to the case t = 2, and the 
octonion case also corresponds to case t = 2. However, if in (10), (11), 
(12), we set j , k, /, m, n, o to be zero then the bioctonion case reduces to 
the complex case. 

Note that the / = (—1)1/2 of the complex case commutes with all the 
generator octonions. Further, from the unified formula which is given in 
this paper, special care must be taken to deduce the results for the parti­
cular case t = 2 as this case corresponds to both the biquaternion and 
octonion case. 

We consider only the octonion case, i.e., t = 2. The results for the 
bioctonion case follow simply by setting t to be 2t in our formula and 
replacing all the octonion matrices by the corresponding bioctonion 
matrices. To derive the results for the biquaternion case we first derive 
the results for the quaternion case and then change t to It and replace 
the quaternion matrices by the corresponding biquaternion matrices. 

The Jacobian of the transformation from A = Ax 4- iA2 4- • • • + oAs 

to W = W1 + i\V2 + •. • 4- oWs, A = f(W\ is defined by 

(13) J(A: W) = J(Ah ...9As:Wl9..., W%\ 

where the differential dY of Y of (6) is defined by dY = dXxdX2 • • • dX^ 
i.e., in the octonion case dY = dXxdX2 • • • dXs. 

Thus, e.g., the Jacobian of the transformation Y = G WH, where Y is 
p x n hypercomplex and W is p x n hypercomplex, and G p x p, H 
n x n, are arbitrary is written as 

(14) J(Y: W) = \GG'\^\HH'\2PK 

The Jacobian of the transformation B = HRH', where B is p x p hyper­
complex Hermitian, R is p x p hypercomplex Hermitian, and H p x p 
is arbitrary is 

(15) J(B: R) = \HH'\2i(P-v+K 

Note that the results (14) and (15) are general results. Thus if t = 1/4, 
then (15) represents the Jacobian of the transformation from a sym­
metric matrix B to a symmetric matrix R, by the transformation B = 
HRH'. Again if t — 4, then (15) represents the Jacobian of the trans-



HAAR MEASURE OF HYPERCOMPLEX UNITARY GROUPS 485 

formation from a p x p bioctonion hypercomplex Hermitian matrix B 
to a p x p bioctonion hyper complex Hermitian matrix R, by the trans­
formation B = HRH'. Some further results on such Jacobians are given 
by Kabe [3]. 

The définitions of octonion hypercomplex unitary matrices or the 
bioctonion hypercomplex unitary matrices are similar to those in the 
complex case. Thus if hypercomplex Q is unitary, then we have that 
QQf = /, Q'Q = / and QQ' ^ / implies that Q'Q ^ /. We say that A ^ B 
for two symmetric at least positive semi-definite A and B if B — A is at 
least positive semi-definite. 

We now proceed to generalize (1) and (5). 

3. Main Results. We state the following generalization of (1). 

THEOREM 3. The infinitesimal volume element dQ of Haar measure on 
the unitary group of hypercomplex unitary matrices Q is 

(16) dQ = \I + H2\-a»'+2'-»dH. 

Here H = (htJ) is an n x n hypercomplex Hermitian matrix having the 
structure (9) or (12). The meaning of dH is obvious, and n x n Q is re­
presented by 

(17) Q = (I + / # ) ( / - iH)-\ 

and the structure of Q is either (6) or (10). 
The proof follows exactly on the same lines as the one given by Toyama 

[5]. We form the differential of Q of (17), namely 

(18) dQ = {/ 4- i(H + dH)} {I - i(H + dH)}-i - { ( / + / / / ) ( / _ iH)}-\ 

We multiply (18) on left by {/ - i(H + dH)} and on the right by 
(/ — / / / ) , and we find that 

(19) {/ - i(H + dH)}dQ(I - iH) = 2idH. 

In (19) we neglect the terms of second order, i.e., we omit dHdQ, and we 
have that 

(20) (/ - iH)dQ(I - iH) = 2idH9 

or that 

(21) dû = (I - iH)-mdH(J - /7/)-i. 

By left translation an infinitesimal element dQ is transformed to QdQ, i.e., 

(22) dQ -> QdQ 

and by right translation 
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(23) dû -» (dÛ)(Q). 

We now define the metric dQ by the quadratic differential 

(24) ds2 = tr(dO'dQ) = EEldQijl2-
i J 

The metric ds2 thus defined is clearly invariant under the left and right 
translations, because 

tr(QdQ'QdQ) tr (dQ'dO) = tr((dQ)(Q)'(dQ)(Q)) 

= tr( Q\dQ)'dQ(Q)) = W{dQ'dQ). 

Thus ds2 and hence dö are translation invariant volume elements. Now 
our purpose is to calculate the Euclidean volume element dQ contained 
in the metric ds2. We note that 

ds2 = trÇdQ'dQ) 

(26) = tr{(/ + iH)~\2idH){I + iH)~l(I - iH)(2idH){I - /7/)"1} 

= 4 tr{(/ + H2)-1 dH{I 4- H2YldH). 

We omit the constant 4 and following Toyama [5] write (26) as 

ds2 = tr[{(/ + H2)-^dH}2] = tr[{(/ + A2)^dH)2\ 
(27) = 2] EO + ^-Ki + ^)-1l^vl2, 

where yl = diag(jlb .. ., Xn) is the diagonal matrix of the latent roots of H. 
Now we resort to either (9) or (12) and find that 

(28) \dh{j\
2 = da\ij + da2

2ij + • • • + dc\tij, 

where 

(29) ^ = (<n,7), . . . , 2 4 , = (<7W)-

Further from (27) noting that 2*2, • • •, 2 ^ are skew symmetric matrices, 
we have that 

ds2 = £ ( i + ledala + 2 2] (1 + ;©-i(i + A ? ) - 1 ^ 
1=1 i<j 

(30) + 2 L (1 + A?)-H1 + ty-Wo&i + ••• 

+ 2 2 ( 1 + %F\\ + iy^da\tij. 
i<3 

Following Toyama [5] we find that the invariant volume element in (30) 
is </g dH, where 

(3i) g = n o+®-1 n 2(i+^-ia+A2)-1 • • • n 20+^)-io-f-^-1-
**=i *</ *</ 
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Note that the term jTL<y2(l + /© - 1 0 + tf)~~l occurs 4/times while the 
term n?=i(l + ^ ) - 1 occurs only once. The relationship between ds2 and 
du is made clear by Mass [4], which explains the passage from (30) to (31). 

Now we must calculate the number of occurrences of the terms of the 
type (1 + A/) in g. Concentrate on any particular term, say (1 + A?). The 
number of occurrences of the term depends on the order (i.e., size) of the 
matrix, and hence we suppose that it occurs f(n) times. Now consider the 
matrices of order {n — 1), then in this case H has exactly (n— 1) latent 
roots, and hence a term of the type must occur f(n — 1) times. However, 
in passing from n-th order matricse to (n — \)-th order matrices, we lose 
one root, i.e., we lose one term of the type (1 + A?). The question is how 
many times do we lose this term. The answer is obtained by carefully 
examining (31). The contributions to the number of times (1 4- A?) occurs 
in (31) come from the At matrices on the right hand side of (9) or (12). 
Thus we must assume that there are exactly At factors on the right hand 
side of (31), and each factor has lost the term (1 + A?), i.e., 

(32) / ( „ ) _ 4 f = / ( * - 1), 

which yields 

(33) /(/!) = Atn + At - 2, 

and hence (1 -f A?) occurs exactly (Atn + At — 2) times in (31). It follows 
that 

dû = y V dH = ft (1 + À$-™»+*-»dH 
(34) V ^ Mi V 

= [I +//2|-<2/»+2*-l><///. 

The solution to the difference equation (32) contains exactly one arbi­
trary constant. This constant is determined by setting t — 1/2, and then 
using Toyama's [5] result, namely Theorem 1, as the initial condition. 
Note that when / = 1/4, (34) yields Toyama's [5] result for the real case 
(i.e., for the orthogonal matrices case). 

We now proceed with the generalization of (5) to the hypercomplex case, 
i.e., we consider the hypercomplex unitary symplectic group. A hypercom­
plex unitary symplectic matrix is represented by Cayley's parameters as 

(35) U = (/ + / / / ) ( / - iH)-\ 

where H is hypercomplex Hermitian and has the structure 

where A is hypercomplex Hermitian of the n-th order, and B is hyper-
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complex symmetric of order n. Note that B may have hypercomplex roots. 
Here H is In x 2n and has In real roots. Although the calculations in 
this case also follow on similar lines, the equation (29) is no longer true 
in this case. However, following Toyama [5] we may derive an expression 
similar to (31), and hence (32) holds. We solve (32) by first setting t = 1/2, 
and then using (5) as the initial condition, and find that in this case (32) 
yields 

(37) f(n) = Atn + 2/, 

and hence 

(38) dU = \I + H2\-t(2»+»dH. 
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